
Neos CMS Documentation
Release 4.0.0

The Neos Team

Dec 02, 2020

Contents

1 Getting Started 3
1.1 Installation . 3

2 Technical Principles 9

3 Creating a Site with Neos 11
3.1 Node Types . 11
3.2 Fusion . 28
3.3 Rendering Custom Markup . 41
3.4 Content Dimensions . 71
3.5 Multi Site Support . 75
3.6 Content Cache . 76
3.7 Permissions & Access Management . 82

4 Extending Neos 93
4.1 Creating a plugin . 93
4.2 Custom Backend Modules . 98
4.3 Custom Edit/Preview-Modes . 99
4.4 Custom Editors . 101
4.5 Custom Eel Helper . 103
4.6 Custom FlowQuery Operations . 104
4.7 Custom Fusion Objects . 106
4.8 Custom Validators . 107
4.9 Custom ViewHelpers . 107
4.10 Customizing the Inspector . 110
4.11 Data sources . 113
4.12 Interaction with the Neos backend . 114
4.13 Rendering special formats (CSV, JSON, XML, . . .) . 115
4.14 Neos User Interface Extensibility API . 116
4.15 Writing Tests For Neos . 124

5 Inside of Neos 129
5.1 User Interface Development . 129

6 References 139
6.1 Property Editor Reference . 139
6.2 View Helper Reference . 150
6.3 Fusion Reference . 215
6.4 Eel Helpers Reference . 233
6.5 FlowQuery Operation Reference . 262
6.6 Neos Command Reference . 270

i

6.7 Validator Reference . 300
6.8 Signal Reference . 309
6.9 Coding Guideline Reference . 320
6.10 Configuration Reference . 344
6.11 Node Migration Reference . 345

7 Contribute 351
7.1 Development . 351
7.2 Documentation . 353

8 How To’s 363
8.1 Neos Best Practices (to be written) . 363
8.2 Adding A Simple Contact Form . 363
8.3 Changing the Body Class with a condition . 365
8.4 Changing Defaults Depending on Content Placement . 365
8.5 Creating a simple Content Element . 366
8.6 Customize Login Screen . 367
8.7 Editing a shared footer across all pages . 368
8.8 Extending the Page . 368
8.9 Integrating a JavaScript-based slider . 369
8.10 Rendering Custom Document Types . 372
8.11 Rendering a Menu . 372
8.12 Rendering a Meta-Navigation . 373
8.13 Tagging assets automatically . 375
8.14 Translating content . 377
8.15 Wrapping a List of Content Elements . 378

9 Neos Operations 381
9.1 Command Line Tools . 381

10 Appendixes 385

11 Indices and tables 387

ii

Neos CMS Documentation, Release 4.0.0

Neos is a free enterprise web content management system licensed under the GPL.

This version of the documentation covering Neos 4.0.0 has been rendered at: Dec 02, 2020

Contents 1

Neos CMS Documentation, Release 4.0.0

2 Contents

CHAPTER 1

Getting Started

1.1 Installation

Tip: Neos is built on top of the Flow framework. If you run into technical problems, keep in mind to check the
Flow documentation for possible hints as well.

1.1.1 Requirements

Neos has at least the same system requirements as Flow. You can find them in the Flow Requirements Documen-
tation.

The most important requirements are:

• A Webserver (Apache and Nginx are preferred but others work as well)

• A Database (MySQL > 5.7.7, MariaDB > 10.2.2 and PostgreSQL > 9.4 are preferred but any Database
supported by Doctrine DBAL should work as well).

• PHP >= 7.1.0 (make sure the PHP CLI has the same version)

– PHP modules mbstring, tokenizer and pdo_mysql

– PHP functions exec(), shell_exec(), escapeshellcmd() and escapeshellarg()

– It is recommended to install one of the PHP modules imagick or gmagick

1.1.2 Fundamental Installation

1. First you need to install the dependency manager Composer (if you don’t have it already):

curl -sS https://getcomposer.org/installer | php

By issuing this command Composer will get downloaded as composer.phar to your working directory. If
you like to have composer installed globally, you can simply move it to a directory within your $PATH
environment.

3

http://flowframework.readthedocs.org/en/stable/index.html
http://flowframework.readthedocs.org/en/stable/TheDefinitiveGuide/PartII/Requirements.html
http://flowframework.readthedocs.org/en/stable/TheDefinitiveGuide/PartII/Requirements.html
http://www.doctrine-project.org/projects/dbal.html
http://www.doctrine-project.org/projects/dbal.html

Neos CMS Documentation, Release 4.0.0

mv composer.phar /usr/local/bin/composer

Note: If you are on Windows please refer to the offical documentation on how to install Composer on
Windows

2. Go to your htdocs directory and create a new project based on the Neos base distribution:

cd /your/htdocs/
php /path/to/composer.phar create-project neos/neos-base-distribution Neos

Composer will take care of downloading all dependencies for running your Neos installation to the directory
Neos. You can safely delete the vcs files by answering ‘Y’ to the question ‘Do you want to remove the
existing VCS (.git, .svn..) history? [Y,n]?’.

3. Next set up a virtual domain/host in your webserver configuration

• Apache configuration

Set up a virtual host inside your Apache configuration. Set the DocumentRoot to the Web
directory inside the Neos installation. Set the directive AllowOverride to ÀLL to allow
access to .htaccess

NameVirtualHost *:80 # if needed

<VirtualHost *:80>
DocumentRoot "/your/htdocs/Neos/Web/"
enable the following line for production context
#SetEnv FLOW_CONTEXT Production
ServerName neos.demo

</VirtualHost>

<Directory /your/htdocs/Neos/Web>
AllowOverride All

</Directory>

Make sure that the mod_rewrite module is loaded and restart apache. For further information on
how to set up a virtual host with apache please refer to the Apache Virtual Host documentation.

• nginx configuration

For further information on how to set up a virtual domain with nginx please refer to the nginx docu-
mentation.

4. Add an entry to /etc/hosts to make your virtual host reachable:

127.0.0.1 neos.demo

Make sure to use the same name you defined in ServerName in the virtual host configuration above.

5. Set file permissions as needed so that the installation is read- and writeable by the webserver’s user and
group:

sudo ./flow core:setfilepermissions john www-data www-data

Replace john with your current username and www-data with the webserver’s user and group.

For detailed instructions on setting the needed permissions see Flow File Permissions

Note: Setting file permissions is not necessary and not possible on Windows machines. For Apache to
be able to create symlinks, you need to use Windows Vista (or newer) and Apache needs to be started with
Administrator privileges.

4 Chapter 1. Getting Started

http://getcomposer.org/doc/00-intro.md#installation-windows
https://httpd.apache.org/docs/2.2/en/vhosts/
https://www.linode.com/docs/websites/nginx/how-to-configure-nginx
https://www.linode.com/docs/websites/nginx/how-to-configure-nginx
http://flowframework.readthedocs.org/en/stable/TheDefinitiveGuide/PartII/Installation.html#file-permissions

Neos CMS Documentation, Release 4.0.0

6. Now go to http://neos.demo/setup and follow the on-screen instructions.

1.1.3 The Neos Setup Tool

1. A check for the basic requirements of Flow and Neos will be run. If all is well, you will see a login screen.
If a check failed, hints on solving the issue will be shown and you should fix what needs to be fixed. Then
just reload the page, until all requirements are met.

2. The login screen will tell you the location of a file with a generated password. Keep that password in some
secure place, the generated file will be removed upon login! It is possible to have a new password rendered
if you lost it, so don’t worry too much.

3. The NEOS requirements check checks, if you have installed an image manipulation software.

4. Fill in the database credentials in the first step. The selector box will be updated with accessible databases
to choose from, or you can create a new one.

Tip: Configure your MySQL server to use the utf8_unicode_ci collation by default if possible!

5. In the next step a user with administrator privileges for editing with Neos is created.

6. The following step allows you to import an existing site or kickstart a new site. To import the demo site,
just make sure it is selected in the selector box and go to the next step.

To kickstart a new site, enter a package and site name in the form before going to the next step.

If you are new to Neos, we recommend to import the existing demo site so you can follow the next section
giving you a basic tour of the user interface.

7. If all went well you’ll get a confirmation the setup is completed, and you can enter the frontend or backend
of your Neos website.

Warning: If you install the Neos demo site and it is publicly accessible, make sure the “Try me” page
in the page tree is not publicly accessible because it has a form allowing you to create backend editor
accounts with rights to edit website content.)

1.1. Installation 5

http://neos.demo/setup

Neos CMS Documentation, Release 4.0.0

6 Chapter 1. Getting Started

Neos CMS Documentation, Release 4.0.0

1.1. Installation 7

Neos CMS Documentation, Release 4.0.0

Fig. 1: The Neos demo site start page

8 Chapter 1. Getting Started

CHAPTER 2

Technical Principles

9

Neos CMS Documentation, Release 4.0.0

10 Chapter 2. Technical Principles

CHAPTER 3

Creating a Site with Neos

This guide explains how to implement websites with Neos. It specifically covers the structuring of content using
the Neos Content Repository, and how the content is rendered using Fusion and Fluid.

3.1 Node Types

These are the development guidelines of Neos.

3.1.1 Content Structure

Before we can understand how content is rendered, we have to see how it is structured and organized. These basics
are explained in this section.

Nodes inside the Neos Content Repository

The content in Neos is not stored inside tables of a relational database, but inside a tree-based structure: the
so-called Neos Content Repository.

To a certain extent, it is comparable to files in a file-system: They are also structured as a tree, and are identified
uniquely by the complete path towards the file.

Note: Internally, the Neos ContentRepository currently stores the nodes inside database tables as well, but you
do not need to worry about that as you’ll never deal with the database directly. This high-level abstraction helps
to decouple the data modelling layer from the data persistence layer.

Each element in this tree is called a Node, and is structured as follows:

• It has a node name which identifies the node, in the same way as a file or folder name identifies an element
in your local file system.

• It has a node type which determines which properties a node has. Think of it as the type of a file in your file
system.

• Furthermore, it has properties which store the actual data of the node. The node type determines which
properties exist for a node. As an example, a Text node might have a headline and a text property.

11

Neos CMS Documentation, Release 4.0.0

• Of course, nodes may have sub nodes underneath them.

If we imagine a classical website with a hierarchical menu structure, then each of the pages is represented by a
Neos ContentRepository Node of type Document. However, not only the pages themselves are represented as
tree: Imagine a page has two columns, with different content elements inside each of them. The columns are stored
as Nodes of type ContentCollection, and they contain nodes of type Text, Image, or whatever structure
is needed. This nesting can be done indefinitely: Inside a ContentCollection, there could be another three-
column element which again contains ContentCollection elements with arbitrary content inside.

Predefined Node Types

Neos is shipped with a number of predefined node types. It is helpful to know some of them, as they can be useful
elements to extend, and Neos depends on some of them for proper behavior.

There are a few core node types which are needed by Neos; these are shipped in Neos.Neos directly. All other
node types such as Text, Image, . . . are shipped inside the Neos.NodeTypes package.

Neos.Neos:Node

Neos.Neos:Node is a (more or less internal) base type which should be extended by all content types which
are used in the context of Neos.

It does not define any properties.

Neos.Neos:Document

An important distinction is between nodes which look and behave like pages and “normal content” such as text,
which is rendered inside a page. Nodes which behave like pages are called Document Nodes in Neos. This means
they have a unique, externally visible URL by which they can be rendered.

The standard page in Neos is implemented by Neos.NodeTypes:Page which directly extends from Neos.
Neos:Document.

Neos.Neos:ContentCollection and Neos.Neos:Content

All content which does not behave like pages, but which lives inside them, is implemented by two different node
types:

First, there is the Neos.Neos:ContentCollection type: A Neos.Neos:ContentCollection has a
structural purpose. It usually contains an ordered list of child nodes which are rendered inside.

Neos.Neos:ContentCollection may be extended by custom types.

Second, the node type for all standard elements (such as text, image, youtube, . . .) is Neos.Neos:Content.
This is–by far–the most often extended node type.

Extending the NodeTypes

To extend the existing NodeTypes or to create new ones please read at the Node Type Definition reference.

3.1.2 Node Type Definition

Each Neos ContentRepository Node (we’ll just call it Node in the remaining text) has a specific node type. Node
Types can be defined in any package by declaring them in Configuration/NodeTypes.yaml.

12 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

Each node type can have one or multiple parent types. If these are specified, all properties and settings of the
parent types are inherited.

A node type definition can look as follows:

'My.Package:SpecialHeadline':
superTypes:
'Neos.Neos:Content': true

ui:
label: 'Special Headline'
group: 'general'

properties:
headline:

type: 'string'
defaultValue: 'My Headline Default'
ui:

inlineEditable: true
validation:

'Neos.Neos/Validation/StringLengthValidator':
minimum: 1
maximum: 255

The following options are allowed:

abstract A boolean flag, marking a node type as abstract. Abstract node types can never be used standalone,
they will never be offered for insertion to the user in the UI, for example.

Abstract node types are useful when using inheritance and composition, so mark base node types and mixins
as abstract.

aggregate A boolean flag, marking a node type as aggregate. If a node type is marked as aggregate, it means
that:

• the node type can “live on its own”, i.e. can be part of an external URL

• when moving this node, all node variants are also moved (across all dimensions)

• Recursive copying only happens inside this aggregate, and stops at nested aggregates.

The most prominent aggregate is Neos.Neos:Document and everything which inherits from it, like
Neos.NodeTypes:Page.

superTypes An array of parent node types as keys with a boolean value:

'Neos.Neos:Document':
superTypes:

'Acme.Demo.ExtraMixin': true

'Neos.Neos:Shortcut':
superTypes:

'Acme.Demo.ExtraMixin': false

constraints Constraint definitions stating which nested child node types are allowed. Also see the dedicated
chapter Node Type Constraints for detailed explanation:

constraints:
nodeTypes:

ALLOW text, DISALLOW Image
'Neos.NodeTypes:Text': true
'Neos.NodeTypes:Image': false
DISALLOW as Fallback (for not-explicitly-listed node types)
'*': false

childNodes A list of child nodes that are automatically created if a node of this type is created. For each child
the type has to be given. Additionally, for each of these child nodes, the constraints can be specified
to override the “global” constraints per type. Here is an example:

3.1. Node Types 13

Neos CMS Documentation, Release 4.0.0

childNodes:
someChild:

type: 'Neos.Neos:ContentCollection'
constraints:

nodeTypes:
only allow images in this ContentCollection
'Neos.NodeTypes:Image': true
'*': false

By using position, it is possible to define the order in which child nodes appear in the structure tree. An
example may look like:

'Neos.NodeTypes:Page':
childNodes:

'someChild':
type: 'Neos.Neos:ContentCollection'
position: 'before main'

This adds a new ContentCollection called someChild to the default page. It will be positioned before the
main ContentCollection that the default page has. The position setting follows the same sorting logic used
in Fusion (see the Fusion Reference).

label When displaying a node inside the Neos UI (e.g. tree view, link editor, workspace module) the label
option will be used to generate a human readable text for a specific node instance (in contrast to the ui.
label which is used for all nodes of that type).

The label option accepts an Eel expression that has access to the current node using the node context
variable. It is recommended to customize the label option for node types that do not yield a sufficient
description using the default configuration.

Example:

'Neos.Demo:Flickr':
label: ${'Flickr plugin (' + q(node).property('tags') + ')'}

generatorClass Alternatively the class of a node label generator implementing
Neos\ContentRepository\Domain\Model\NodeLabelGeneratorInterface
can be specified as a nested option.

options Options for third party-code, the Content-Repository ignores those options but Neos or Packages may
use this to adjust their behavior.

fusion Options to control the behavior of fusion-for a specific nodeType.

prototypeGenerator The class that is used to generate the default fusion-prototype for this
nodeType.

If this option is set to a className the class has to implement the interface
\Neos\Neos\Domain\Service\DefaultPrototypeGeneratorInterface and is
used to generate the prototype-code for this node.

If options.fusion.prototypeGenerator is set to null no prototype is created for this
type.

By default Neos has generators for all nodes of type Neos.Neos:Node and creates protoypes
based on Neos.Fusion:Template. A template path is assumed based on the package-prefix
and the nodetype-name. All properties of the node are passed to the template. For the node-
Types of type Neos.Neos:Document, Neos.Neos:Content and Neos.Neos:Plugin
the corresponding prototype is used as base-prototype.

Example:

14 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

prototype(Vendor.Site:Content.SpecialNodeType) < prototype(Neos.
→˓Fusion:Content) {
templatePath = 'resource://Vendor.Site/Private/Templates/NodeTypes/

→˓Content.SpecialNodeType.html'
all properties of the nodeType are passed to the template
date = ${q(node).property('date')}
inline-editable strings additionally get the convertUris processor
title = ${q(node).property('title')}
title.@process.convertUris = Neos.Neos:ConvertUris

}

ui Configuration options related to the user interface representation of the node type

label The human-readable label of the node type

group Name of the group this content element is grouped into for the ‘New Content Element’ dialog. It
can only be created through the user interface if group is defined and it is valid.

All valid groups are given in the Neos.Neos.nodeTypes.groups setting

position Position inside the group this content element is grouped into for the ‘New Content Element’
dialog. Small numbers are sorted on top.

icon This setting defines the icon that the Neos UI will use to display the node type.

Legacy: In Neos versions before 4.0 it was required to use icons from the Fontawesome 3 or 4 versions,
prefixed with “icon-“

Current: In Neos 4.0, Fontawesome 5 was introduced, enabling the usage of all free Fontawesome
icons: https://fontawesome.com/icons?d=gallery&m=free Those can still be referenced via “icon-
[name]”, as the UI includes a fallback to the “fas” prefix-classes. To be sure which icon will be
used, they can also be referenced by their icon-classes, e.g. “fas fa-check”.

help Configuration of contextual help. Displays a message that is rendered as popover when the user
clicks the help icon in an insert node dialog.

message Help text for the node type. It supports markdown to format the help text and can be
translated (see Translate NodeTypes).

thumbnail This is shown in the popover and can be supplied in two ways:

• as an absolute URL to an image (http://static/acme.com/thumbnails/bar.
png)

• as a resource URI (resource://AcmeCom.Website/NodeTypes/Thumbnails/
foo.png)

If the thumbnail setting is undefined but an image matching the nodetype name is found,
it will be used automatically. It will be looked for in <packageKey>/Resources/
Public/NodeTypes/Thumbnails/<nodeTypeName>.png with packageKey
and nodeTypeName being extracted from the full nodetype name like this:

AcmeCom.Website:FooWithBar -> AcmeCom.Website and FooWithBar

The image will be downscaled to a width of 342 pixels, so it should either be that size to be
placed above any further help text (if supplied) or be half that size for the help text to flow
around it.

inlineEditable If true, it is possible to interact with this Node directly in the content view. If false,
an overlay is shown preventing any interaction with the node. If not given, checks if any property is
marked as ui.inlineEditable.

inspector These settings configure the inspector in the Neos UI for the node type

tabs Defines an inspector tab that can be used to group property groups of the node type

label The human-readable label for this inspector tab

3.1. Node Types 15

https://fontawesome.com/icons?d=gallery&m=free

Neos CMS Documentation, Release 4.0.0

position Position of the inspector tab, small numbers are sorted on top

icon This setting define the icon to use in the Neos UI for the tab

Currently it’s only possible to use a predefined selection of icons, which are available in Font
Awesome http://fortawesome.github.io/Font-Awesome/3.2.1/icons/.

groups Defines an inspector group that can be used to group properties of the node type

label The human-readable label for this inspector group

position Position of the inspector group, small numbers are sorted on top

icon This setting define the icon to use in the Neos UI for the group

tab The tab the group belongs to. If left empty the group is added to the default tab.

collapsed If the group should be collapsed by default (true or false). If left empty, the group
will be expanded.

creationDialog Creation dialog elements configuration. See Node Creation Dialog Configuration for
more details.

properties A list of named properties for this node type. For each property the following settings are avail-
able.

Note: Your own property names should never start with an underscore _ as that is used for internal
properties or as an internal prefix.

type Data type of this property. This may be a simple type (like in PHP), a fully qualified PHP class name,
or one of these three special types: DateTime, references, or reference. Use DateTime to
store dates / time as a DateTime object. Use reference and references to store references that
point to other nodes. reference only accepts a single node or node identifier, while references
accepts an array of nodes or node identifiers.

defaultValue Default value of this property. Used at node creation time. Type must match specified
‘type’.

ui Configuration options related to the user interface representation of the property

label The human-readable label of the property

help Configuration of contextual help. Displays a message that is rendered as popover when the user
clicks the help icon in the inspector.

message Help text for this property. It supports markdown to format the help text and can be
translated (see Translate NodeTypes).

reloadIfChanged If true, the whole content element needs to be re-rendered on the server side
if the value changes. This only works for properties which are displayed inside the property
inspector, i.e. for properties which have a group set.

reloadPageIfChanged If true, the whole page needs to be re-rendered on the server side if the
value changes. This only works for properties which are displayed inside the property inspector,
i.e. for properties which have a group set.

inlineEditable If true, this property is inline editable, i.e. edited directly on the page.

aloha Legacy configuration of rich text editor, works for the sake of backwards compatibility, but it
is advised to use inline.editorOptions instead.

inline

editor A way to override default inline editor loaded for this property. Two edi-
tors are available out of the box: ckeditor (loads CKeditor4) and ckeditor5 (loads
CKeditor5). The default editor is configurable in Settings.yaml under the key
Neos.Neos.Ui.frontendConfiguration.defaultInlineEditor. It is strongly recommended to
start using CKeditor5 today, as the CKeditor4 integration will be deprecated and removed

16 Chapter 3. Creating a Site with Neos

http://fortawesome.github.io/Font-Awesome/3.2.1/icons/

Neos CMS Documentation, Release 4.0.0

in the future versions. Additional custom inline editors are registered via the inlineEdi-
tors registry. See Neos User Interface Extensibility API for the detailed information on
the topic.

editorOptions This section controls the text formatting options the user has available
for this property.

Note: When using inline.editorOptions anything defined under the legacy aloha key for
a property is ignored. Keep this in mind when using supertypes and mixins.

placeholder A text that is shown when the field is empty. Supports i18n.

autoparagraph When configured to false, automatic creation of paragraphs is dis-
abled for this property and <enter> key would create soft line breaks instead (equiva-
lent to configuring an editable on a span tag).

linking A way to configure additional options available for a link, e.g. target or rel
attributes.

formatting Various formatting options (see example below for all available options).

Example:

inline:
editorOptions:
placeholder: i18n
autoparagraph: true
linking:
anchor: true
title: true
relNofollow: true
targetBlank: true

formatting:
strong: true
em: true
u: true
sub: true
sup: true
del: true
p: true
h1: true
h2: true
h3: true
h4: true
h5: true
h6: true
pre: true
underline: true
strikethrough: true
removeFormat: true
left: true
right: true
center: true
justify: true
table: true
ol: true
ul: true
a: true

inspector These settings configure the inspector in the Neos UI for the property.

group Identifier of the inspector group this property is categorized into in the content editing
user interface. If none is given, the property is not editable through the property inspector of
the user interface.

3.1. Node Types 17

Neos CMS Documentation, Release 4.0.0

The value here must reference a groups configured in the ui.inspector.groups ele-
ment of the node type this property belongs to.

position Position inside the inspector group, small numbers are sorted on top.

editor Name of the JavaScript Editor Class which is instantiated to edit this element in the
inspector.

editorOptions A set of options for the given editor, see the Property Editor Reference.

editorListeners Allows to observe changes of other properties in order to react to them.
For details see Depending Properties

validation A list of validators to use on the property. Below each validator type any options for the
validator can be given. See below for more information.

Tip: Unset a property by setting the property configuration to null (~).

Here is one of the standard Neos node types (slightly shortened):

'Neos.NodeTypes:Image':
superTypes:
'Neos.Neos:Content': true

ui:
label: 'Image'
icon: 'icon-picture'
inspector:

groups:
image:
label: 'Image'
icon: 'icon-image'
position: 5

properties:
image:

type: Neos\Media\Domain\Model\ImageInterface
ui:

label: 'Image'
reloadIfChanged: true
inspector:
group: 'image'

alignment:
type: string
defaultValue: ''
ui:

label: 'Alignment'
reloadIfChanged: true
inspector:
group: 'image'
editor: 'Neos.Neos/Inspector/Editors/SelectBoxEditor'
editorOptions:
placeholder: 'Default'
values:
'':
label: ''

center:
label: 'Center'

left:
label: 'Left'

right:
label: 'Right'

alternativeText:
type: string
ui:

(continues on next page)

18 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

label: 'Alternative text'
reloadIfChanged: true
inspector:
group: 'image'

validation:
'Neos.Neos/Validation/StringLengthValidator':
minimum: 1
maximum: 255

hasCaption:
type: boolean
ui:

label: 'Enable caption'
reloadIfChanged: true
inspector:
group: 'image'

caption:
type: string
defaultValue: '<p>Enter caption here</p>'
ui:

inlineEditable: true

3.1.3 Node Type Constraints

In a typical Neos project, you will create lots of custom node types. However, many node types should only be
used in a specific context and not everywhere. Neos allows you to define node type constraints, which restrict the
possible node types that can be added as children of a specific node type. There are two ways to do this:

• Regular node type constraints are defined per node type. They apply in any context the node type appears
in.

• Additionally, when a node type has auto-created child nodes (see Node Type Definition), you can define
additional constraints that only apply for these child nodes. This allows you to restrict node type usage
depending on the context that the node types are placed in.

Note: Node type constraints are cached in the browser’s session storage. During development, it’s a good idea
to run sessionStorage.clear() in the browser console to remove the old configuration after you make
changes. Alternatively, you can use an anonymous browser tab to avoid storing outdated node type constraints.

Regular Node Type Constraints

Let’s assume that, inside the “Chapter” node type of the Neos Demo Site (which is a document node), one should
only be able to create nested chapters, and not pages or shortcuts. Using node type constraints, this can be
enforced:

'Neos.Demo:Chapter':
constraints:
nodeTypes:

'Neos.Neos:Document': false
'Neos.Demo:Chapter': true

In the above example, we disable all document node types using 'Neos.Neos:Document': false, and
then enable the Neos.Demo:Chapter node type as well as any node type that inherits from it. The reason
why we use 'Neos.Neos:Document': false instead of '*': false here is that by default, only
document node types are allowed as children of other document node types anyway (see further down for more
information regarding the defaults).

3.1. Node Types 19

Neos CMS Documentation, Release 4.0.0

You might now wonder why it is still possible to create content inside the chapter (because everything ex-
cept Chapter is disabled with the above configuration): The reason is that node type constraints are only en-
forced for nodes which are not auto-created. Because Neos.Demo:Chapter has an auto-created main
ContentCollection, it is still possible to add content inside. In the following example, we see the node
type definition which is shipped with the demo website:

'Neos.Demo:Chapter':
superTypes:
'Neos.Neos:Document': true

childNodes:
'main':

type: 'Neos.Neos:ContentCollection'

The main ContentCollection is still added, even though you cannot add any more because ContentCollections are
not allowed according to the node type constraints.

Auto-Created Child Node Constraints

Let’s assume that our chapter node type should only contain text within its main ContentCollection. This is
possible using additional constraints for each auto-created child node. These constraints will only be applied for
the configured auto-created child nodes - not for any others, even if they are of the same type.

'Neos.Demo:Chapter':
childNodes:
'main':

type: 'Neos.Neos:ContentCollection'
constraints:

nodeTypes:
'*': false
'Neos.NodeTypes:Text': true

Override Logic and Default Values

The following logic applies for node type constraints:

• Constraints are only enforced for child nodes which are not auto-created.

• You can specify node types explicitly or use ‘*’ to allow/deny all node types.

• Setting the value to true is an explicit allow

• Setting the value to false is an explicit deny

• The default is to always deny (in case ‘*’ is not specified).

• More specific constraints override less specific constraints. Specificity is deduced from the inheritance
hierarchy of the node types. This means that e.g. setting ‘*’: false will only apply if no more specific
constraint has been set, such as ‘Neos.Neos:Document’: true.

• Node type constraints are inherited from parent node types. If your node type has listed
Neos.Neos:Document as a superType, its constraints will apply for your node type as well.

The last rule is especially important, since most node types you define will have either Neos.NodeTypes:Page
(which, in turn, inherits from Neos.Neos:Document`) or ``Neos.Neos:Content as superTypes. You
should know which constraints are defined per default in order to effectively override them. These are the current
defaults for these two node types - this is taken from NodeTypes.yaml in the Neos.Neos package.

'Neos.Neos:Document':
constraints:
nodeTypes:

'*': false
'Neos.Neos:Document': true

20 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

The document node type, by default, allows any other document node type below it. This means that if you want
to disable all document node types under your custom one, setting '*': falsewill have no effect on anything
inheriting from Neos.Neos:Document - the more specific constraint 'Neos.Neos:Document': true
will override it. You will need to set 'Neos.Neos:Document': false instead.

The default content node type, on the other hand, only has the catch-all constraint. If you want to enable any child
nodes, you can simply allow them.

'Neos.Neos:Content':
constraints:
nodeTypes:

'*': false

Examples

You can use YAML references (with the &xyz and *xyz syntax) to re-use constraints. Here’s how to disallow
nested Two/Three/FourColumn inside a multi column element:

'Neos.NodeTypes:Column':
childNodes:
column0:

constraints: &columnConstraints
nodeTypes:
'Neos.NodeTypes:TwoColumn': false
'Neos.NodeTypes:ThreeColumn': false
'Neos.NodeTypes:FourColumn': false

column1:
constraints: *columnConstraints

column2:
constraints: *columnConstraints

column3:
constraints: *columnConstraints

3.1.4 Node Creation Dialog Configuration

When creating new nodes, you have the possibility to provide additional data that will be passed to
nodeCreationHandlers.

Creation dialog supports most of the inspector editors, except of those that require to show a secondary inspector
view. See Property Editor Reference for more details about configuring inspector editors.

For example, this functionality is used in Neos to ask users for title before creating document nodes:

'Neos.Neos:Document':
ui:
group: 'general'
creationDialog:

elements:
title:
type: string
ui:
label: i18n
editor: 'Neos.Neos/Inspector/Editors/TextFieldEditor'

validation:
'Neos.Neos/Validation/NotEmptyValidator': []

options:
nodeCreationHandlers:

documentTitle:
nodeCreationHandler:

→˓'Neos\Neos\Ui\NodeCreationHandler\DocumentTitleNodeCreationHandler'

3.1. Node Types 21

Neos CMS Documentation, Release 4.0.0

You may register multiple nodeCreationHandlers per nodetype. Each nodeCreationHandler must imple-
ment NodeCreationHandlerInterface. It gets the newly created $node and the $data coming from
the creation dialog.

Note: elements of the creation dialog define an arbitrary set of data that will be passed to a nodeCreationHandler,
they will not automatically set node properties in any way. To take action based on that data you would need
to write a custom node creation handler or use a package that already provides such functionality, e.g. Flow-
pack.NodeTemplates (https://github.com/Flowpack/Flowpack.NodeTemplates).

3.1.5 Translate NodeTypes

To use the translations for NodeType labels or help messages you have to enable it for each label or message by
setting the value to the predefined value “i18n”.

NodeTypes.yaml

Vendor.Site:YourContentElementName:
ui:
help:
message: 'i18n'

inspector:
tabs:
yourTab:
label: 'i18n'

groups:
yourGroup:
label: 'i18n'

properties:
yourProperty:
type: string
ui:
label: 'i18n'
help:
message: 'i18n'

That will instruct Neos to look for translations of these labels. To register an xliff file for this NodeTypes you have
to add the following configuration to the Settings.yaml of your package:

Neos:
Neos:
userInterface:

translation:
autoInclude:
'Vendor.Site': ['NodeTypes/*']

Inside of the xliff file Resources/Private/Translations/en/NodeTypes/YourContentElementName.xlf the trans-
lated labels for help, properties, groups, tabs and views are defined in the xliff as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">

<file original="" product-name="Vendor.Site" source-language="en" datatype=
→˓"plaintext">

<body>
<trans-unit id="ui.help.message" xml:space="preserve">

<source>Your help message here</source>
</trans-unit>
<trans-unit id="tabs.myTab" xml:space="preserve">

<source>Your Tab Title</source>
</trans-unit>

(continues on next page)

22 Chapter 3. Creating a Site with Neos

https://github.com/Flowpack/Flowpack.NodeTemplates

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

<trans-unit id="groups.myTab" xml:space="preserve">
<source>Your Group Title</source>

</trans-unit>
<trans-unit id="properties.myProperty" xml:space="preserve

→˓">
<source>Your Property Title</source>

</trans-unit>
<trans-unit id="properties.myProperty.ui.help.message"

→˓xml:space="preserve">
<source>Your help message here</source>

</trans-unit>
</body>

</file>
</xliff>

Add properties to existing NodeTypes

For adding properties to existing NodeTypes the use of mixins is encouraged.

NodeTypes.yaml

Vendor.Site:YourNodetypeMixin:
abstract: true
properties:
demoProperty:
type: string
ui:
label: 'i18n'

Neos.Neos:Page:
superTypes:
'Vendor.Site:YourNodetypeMixin': true

That way you can add the translations for the added properties to the file Re-
sources/Private/Translations/en/NodeTypes/YourNodetypeMixin.xlf.

Override Translations

To override translations entirely or to use custom id’s the label property can also contain a path of the format
Vendor.Package:Xliff.Path.And.Filename:labelType.identifier. The string consists of
three parts delimited by ::

• First, the Package Key

• Second, the path towards the xliff file, replacing slashes by dots (relative to Resources/Private/
Translations/<language>).

• Third, the key inside the xliff file.

For the example above that would be Vendor.Site:NodeTypes.
YourContentElementName:properties.title:

properties:
title:
type: string

ui:
label: 'Vendor.Site:NodeTypes.YourContentElementName:properties.title'

If you e.g. want to relabel an existing node property of a different package (like the Neos.NodeTypes:Page),
you always have to specify the full translation key (pointing to your package’s XLIFF files then).

3.1. Node Types 23

Neos CMS Documentation, Release 4.0.0

Validate Translations

To validate that all labels are translated Neos has the following setting in Settings.yaml:

.. code-block:: yaml

Neos:

Neos:

userInterface: scrambleTranslatedLabels: true

If that setting is enabled all already translated labels are replaced with ###### – that way you can easily identify
the labels that still lack translations.

Note: Make sure to flush the browser caches after working with the translation to make sure that the browser
always shows the latest translations.

3.1.6 Dynamic Client-side Configuration Processing

Note: This API is rather low-level and still experimental, we might change some of the implementation details
or compliment it with a more high-level API.

All configuration values that begin with ClientEval: are dynamically evaluated on the client side. They are
written in plain JavaScript (evaluated with eval) and have node variable in the scope pointing to the currently
focused node, with all transient inspector changes applied. For now it is only related to the nodetypes inspector
configuration, but in the future may be extended to the other parts of the user interface.

A few Practical Examples

Hiding one property when the other one is not set

Here is an example how to hide the property borderColor if borderWidth is empty by changing its group
name to a non-existant value:

'Some.Package:NodeType':
properties:
borderWidth:
type: integer
ui:

inspector:
group: 'style'

borderColor:
type: string
ui:

inspector:
group: 'ClientEval:node.properties.borderWidth ? "style" : "invalid-group

→˓"'

Dependent SelectBoxes

If you are using select box editors with data sources (see Data sources for more details) you can use client-
side processing to adjust dataSourceAdditionalData when properties are changed in the inspector. The
following example demonstrates this. It defines two properties (serviceType and contractType) where changes

24 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

to the first property cause the searchTerm on the second properties’ data source to be updated. That in turn
triggers a refresh of the available options from the data source.

properties:
serviceType:
type: string
ui:

label: 'Service Type'
inspector:
group: product
editor: 'Content/Inspector/Editors/SelectBoxEditor'
editorOptions:
allowEmpty: true
placeholder: 'Service Type'
dataSourceIdentifier: 'acme-servicetypes'

contractType:
type: string
ui:

label: 'Contract Type'
inspector:
group: product
editor: 'Content/Inspector/Editors/SelectBoxEditor'
editorOptions:
allowEmpty: true
placeholder: 'Contract Type'
dataSourceIdentifier: 'acme-contracttypes'
dataSourceAdditionalData:
searchTerm: 'ClientEval:node.properties.serviceType'

3.1.7 Depending Properties

Note: This API is outdated and works only in the legacy (Ember) version of the Neos User Interface. For a
relevant version of the API see Dynamic Client-side Configuration Processing.

Note: This API is still experimental, we might change details about the handler signature and implementation
to reduce the amount of exposed internal code. The UI code is undergoing major changes right now which also
might make adjustments necessary.

Sometimes it might be necessary to depend one property editor on another, such as two select boxes where one
selection is not meaningful without the other. For that you can setup listeners that get triggered each time a
property changes.

Here is an example of the configuration:

'Some.Package:NodeType':
properties:
border-width:
type: integer

border-color:
type: string
ui:

label: i18n
inspector:
editorListeners:
activeWithNonEmptyValue:
property: 'border-width'
handler: 'Some.Package/Handlers/BorderHandler'

(continues on next page)

3.1. Node Types 25

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

handlerOptions:
something: true

This sets up a listener named activeWithNonEmptyValue. The name can be freely chosen. This allows to
override specific listeners in other packages by refering to that name. The property setting defines the name
of the property on the same Node that will be observed. That means any change to this property will trigger the
configured handler.

Configuring the handler means defining a require path to the handler object just like with Custom Editors for
properties. Namespaces can be registered like this:

Neos:
Neos:
userInterface:

requireJsPathMapping:
'Some.Package/Handlers': 'resource://Some.Package/Public/Scripts/Inspector/

→˓Handlers'

The handler should be compatible to RequireJS and be an Ember.Object that has a handle function. The
handlerOptions configured for the listener in the NodeType configuration will be given to the handler upon
creation and are available in the handle method.

A code example for a handler:

define(
[

'emberjs'
],
function (Ember) {

return Ember.Object.extend({
handle: function(listeningEditor, newValue, property, listenerName) {

if (this.get('something') === true) {
listeningEditor.set('disabled', (newValue === null || newValue ===

→˓''));
}

}
});

});

The handle function receives the following arguments:

• listeningEditor - The property editor this listener is configured for, in the above example it will be
the border-color editor.

• newValue will be the value of the observed property, which is the border-width probpery in the above
example.

• property is the name of the observed property, literally border-width in the above example.

• listenerName is the configured name of the listener in question, literally
activeWithNonEmptyValue in the example above.

If you are using select box editors with data sources (see Data sources for more details) you can use editor
listeners to adjust dataSourceAdditionalDatawhen properties are changed in the inspector. The following
example shows this. It defines two properties (serviceType and contractType) where changes to the first property
cause the searchTerm on the second properties’ data source to be updated. That in turn triggers a refresh of the
available options from the data source.

properties:
serviceType:
type: string
ui:

(continues on next page)

26 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

label: 'Service Type'
inspector:
group: product
editor: 'Content/Inspector/Editors/SelectBoxEditor'
editorOptions:
allowEmpty: true
placeholder: 'Service Type'
dataSourceIdentifier: 'acme-servicetypes'

contractType:
type: string
ui:

label: 'Contract Type'
inspector:
group: product
editor: 'Content/Inspector/Editors/SelectBoxEditor'
editorOptions:
allowEmpty: true
placeholder: 'Contract Type'
dataSourceIdentifier: 'acme-contracttypes'
dataSourceAdditionalData:
searchTerm: ~

editorListeners:
updateForSourceData:
property: 'serviceType'
handler: 'Neos.Demo/Handlers/TeaserOptionsHandler'

define(['emberjs'], function (Ember) {
return Ember.Object.extend({
handle: function(listeningEditor, newValue, property, listenerName) {
listeningEditor.set('dataSourceAdditionalData.searchTerm', newValue);

}
});

});

3.1.8 Disable NodeTypes

To hide an existing NodeType (e.g. one that comes with Neos already) you have 2 options.

Hide the NodeType from the user interface

NodeTypes.yaml

'Vendor.Site:YourContentElementName':
ui: ~

Nodes of this type will still remain valid in the database and being rendered to the frontend. But they will not be
shown anymore in the dialog for adding nodes.

Completely disallow the direct usage of a NodeType

NodeTypes.yaml

'Vendor.Site:YourContentElementName':
abstract: TRUE

As abstract NodeTypes are not valid to be used directly this will hide the NodeType in the user interface AND
additionally make all existing nodes of this type invalid. If you run a node:repair all existing nodes of this type
will be removed.

3.1. Node Types 27

Neos CMS Documentation, Release 4.0.0

Note: Do not delete the complete NodeType via ~ because this will break all NodeTypes that inherit from this
one.

3.2 Fusion

3.2.1 Inside Fusion

In this chapter, Fusion will be explained in a step-by-step fashion, focusing on the different internal parts, the
syntax of these and the semantics.

Fusion is fundamentally a hierarchical, prototype based processing language:

• It is hierarchical because the content it should render is also hierarchically structured.

• It is prototype based because it allows to define properties for all instances of a certain Fusion object type.
It is also possible to define properties not for all instances, but only for instances inside a certain hierarchy.
Thus, the prototype definitions are hierarchically-scoped as well.

• It is a processing language because it processes the values in the context into a single output value.

In the first part of this chapter, the syntactic and semantic features of the Fusion, Eel and FlowQuery languages are
explained. Then, the focus will be on the design decisions and goals of Fusion, to provide a better understanding
of the main objectives while designing the language.

Goals of Fusion

Fusion should cater to both planned and unplanned extensibility. This means it should provide ways to adjust
and extend its behavior in places where this is to be expected. At the same time it should also be possible to adjust
and extend in any other place without having to apply dirty hacks.

Fusion should be usable in standalone, extensible applications outside of Neos. The use of a flexible language
for configuration of (rendering) behavior is beneficial for most complex applications.

Fusion should make out-of-band rendering easy to do. This should ease content generation for technologies like
AJAX or edge-side includes (ESI).

Fusion should make multiple renderings of the same content possible. It should allow placement of the same
content (but possibly in different representations) on the same page multiple times.

Fusion’s syntax should be familiar to the user, so that existing knowledge can be leveraged. To achieve this,
Fusion takes inspiration from CSS selectors, jQuery and other technologies that are in widespread use in modern
frontend development.

Fusion files

Fusion is read from files. In the context of Neos, some of these files are loaded automatically, and Fusion files can
be split into parts to organize things as needed.

Automatic Fusion file inclusion

All Fusion files are expected to be in the package subfolder Resources/Private/Fusion. Neos will automatically
include the file Root.fusion for the current site package (package which resides in Packages/Sites and has the type
“neos-site” in its composer manifest).

To automatically include Root.fusion files from other packages, you will need to add those packages to the con-
figuration setting Neos.Neos.fusion.autoInclude:

28 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

Settings.yaml

Neos:
Neos:
fusion:

autoInclude:
Your.Package: true

Neos will then autoinclude Root.fusion files from these packages in the order defined by package management.
Files with a name other than Root.fusion will never be auto-included even with that setting. You will need to
include them manually in your Root.fusion.

Manual Fusion file inclusion

In any Fusion file further files can be included using the include statement. The path is either relative to the
current file or can be given with the resource wrapper:

include: NodeTypes/CustomElements.fusion
include: resource://Acme.Demo/Private/Fusion/Quux.fusion

In addition to giving exact filenames, globbing is possible in two variants:

Include all .fusion files in NodeTypes
include: NodeTypes/*

Include all .fusion files in NodeTypes and it's subfolders recursively
include: NodeTypes/**/*

The first includes all Fusion files in the NodeTypes folder, the latter will recursively include all Fusion files in
NodeTypes and any folders below.

The globbing can be combined with the resource wrapper:

include: resource://Acme.Demo/Private/Fusion/NodeTypes/*
include: resource://Acme.Demo/Private/Fusion/**/*

Fusion Objects

Fusion is a language to describe Fusion objects. A Fusion object has some properties which are used to configure
the object. Additionally, a Fusion object has access to a context, which is a list of variables. The goal of a Fusion
object is to take the variables from the context, and transform them to the desired output, using its properties for
configuration as needed.

Thus, Fusion objects take some input which is given through the context and the properties, and produce a single
output value. Internally, they can modify the context, and trigger rendering of nested Fusion objects: This way,
a big task (like rendering a whole web page) can be split into many smaller tasks (render a single image, render
some text, . . .): The results of the small tasks are then put together again, forming the final end result.

Fusion object nesting is a fundamental principle of Fusion. As Fusion objects call nested Fusion objects, the
rendering process forms a tree of Fusion objects.

Fusion objects are implemented by a PHP class, which is instantiated at runtime. A single PHP class is the
basis for many Fusion objects. We will highlight the exact connection between Fusion objects and their PHP
implementations later.

A Fusion object can be instantiated by assigning it to a Fusion path, such as:

foo = Page
or:

(continues on next page)

3.2. Fusion 29

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

my.object = Text
or:
my.image = Neos.Neos.ContentTypes:Image

The name of the to-be-instantiated Fusion prototype is listed without quotes.

By convention, Fusion paths (such as my.object) are written in lowerCamelCase, while Fusion prototypes
(such as Neos.Neos.ContentTypes:Image) are written in UpperCamelCase.

It is possible to set properties on the newly created Fusion objects:

foo.myProperty1 = 'Some Property which Page can access'
my.object.myProperty1 = "Some other property"
my.image.width = ${q(node).property('foo')}

Property values that are strings have to be quoted (with either single or double quotes). A property can also be an
Eel expression (which are explained in Eel, FlowQuery and Fizzle.)

To reduce typing overhead, curly braces can be used to “abbreviate” long Fusion paths:

my {
image = Image
image.width = 200

object {
myProperty1 = 'some property'

}
}

Instantiating a Fusion object and setting properties on it in a single pass is also possible. All three examples mean
exactly the same:

someImage = Image
someImage.foo = 'bar'

Instantiate object, set property one after each other
someImage = Image
someImage {

foo = 'bar'
}

Instantiate an object and set properties directly
someImage = Image {

foo = 'bar'
}

Fusion Objects are Side-Effect Free

When Fusion objects are rendered, they are allowed to modify the Fusion context (they can add or override
variables); and can invoke other Fusion objects. After rendering, however, the parent Fusion object must make
sure to clean up the context, so that it contains exactly the state it had before the rendering.

The API helps to enforce this, as the Fusion context is a stack: The only thing the developer of a Fusion object
needs to make sure is that if he adds some variable to the stack, effectively creating a new stack frame, he needs
to remove exactly this stack frame after rendering again.

This means that a Fusion object can only manipulate Fusion objects below it, but not following or preceding it.

In order to enforce this, Fusion objects are furthermore only allowed to communicate through the Fusion Context;
and they are never allowed to be invoked directly: Instead, all invocations need to be done through the Fusion
Runtime.

30 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

All these constraints make sure that a Fusion object is side-effect free, leading to an important benefit: If somebody
knows the exact path towards a Fusion object together with its context, it can be rendered in a stand-alone manner,
exactly as if it was embedded in a bigger element. This enables, for example, rendering parts of pages with
different cache life- times, or the effective implementation of AJAX or ESI handlers reloading only parts of a
website.

Fusion Prototypes

When a Fusion object is instantiated (i.e. when you type someImage = Image) the Fusion Prototype for this
object is copied and is used as a basis for the new object. The prototype is defined using the following syntax:

prototype(MyImage) {
width = '500px'
height = '600px'

}

When the above prototype is instantiated, the instantiated object will have all the properties of the copied prototype.
This is illustrated through the following example:

someImage = MyImage
now, someImage will have a width of 500px and a height of 600px

someImage.width = '100px'
now, we have overridden the height of "someImage" to be 100px.

Prototype- vs. class-based languages

There are generally two major “flavours” of object-oriented languages. Most languages (such as PHP, Ruby, Perl,
Java, C++) are class-based, meaning that they explicitly distinguish between the place where behavior for a given
object is defined (the “class”) and the runtime representation which contains the data (the “instance”).

Other languages such as JavaScript are prototype-based, meaning that there is no distinction between classes and
instances: At object creation time, all properties and methods of the object’s prototype (which roughly corresponds
to a “class”) are copied (or otherwise referenced) to the instance.

Fusion is a prototype-based language because it copies the Fusion Prototype to the instance when an object is
evaluated.

Prototypes in Fusion are mutable, which means that they can easily be modified:

prototype(MyYouTube) {
width = '100px'
height = '500px'

}

you can change the width/height
prototype(MyYouTube).width = '400px'
or define new properties:
prototype(MyYouTube).showFullScreen = ${true}

Defining and instantiating a prototype from scratch is not the only way to define and instantiate them. You can
also use an existing Fusion prototype as basis for a new one when needed. This can be done by inheriting from a
Fusion prototype using the < operator:

prototype(MyImage) < prototype(Neos.Neos:Content)

now, the MyImage prototype contains all properties of the Template
prototype, and can be further customized.

3.2. Fusion 31

Neos CMS Documentation, Release 4.0.0

This implements prototype inheritance, meaning that the “subclass” (MyImage in the example above) and the
“parent class (Content) are still attached to each other: If a property is added to the parent class, this also
applies to the subclass, as in the following example:

prototype(Neos.Neos:Content).fruit = 'apple'
prototype(Neos.Neos:Content).meal = 'dinner'

prototype(MyImage) < prototype(Neos.Neos:Content)
now, MyImage also has the properties "fruit = apple" and "meal = dinner"

prototype(Neos.Neos:Content).fruit = 'Banana'
because MyImage *extends* Content, MyImage.fruit equals 'Banana' as well.

prototype(MyImage).meal = 'breakfast'
prototype(Neos.Fusion:Content).meal = 'supper'
because MyImage now has an *overridden* property "meal", the change of
the parent class' property is not reflected in the MyImage class

Prototype inheritance can only be defined globally, i.e. with a statement of the following form:

prototype(Foo) < prototype(Bar)

It is not allowed to nest prototypes when defining prototype inheritance, so the following examples are not valid
Fusion and will result in an exception:

prototype(Foo) < some.prototype(Bar)
other.prototype(Foo) < prototype(Bar)
prototype(Foo).prototype(Bar) < prototype(Baz)

While it would be theoretically possible to support this, we have chosen not to do so in order to reduce complexity
and to keep the rendering process more understandable. We have not yet seen a Fusion example where a construct
such as the above would be needed.

Hierarchical Fusion Prototypes

One way to flexibly adjust the rendering of a Fusion object is done through modifying its Prototype in certain parts
of the rendering tree. This is possible because Fusion prototypes are hierarchical, meaning that prototype(.
..) can be part of any Fusion path in an assignment; even multiple times:

prototype(Foo).bar = 'baz'
prototype(Foo).some.thing = 'baz2'

some.path.prototype(Foo).some = 'baz2'

prototype(Foo).prototype(Bar).some = 'baz2'
prototype(Foo).left.prototype(Bar).some = 'baz2'

• prototype(Foo).bar is a simple, top-level prototype property assignment. It means: For all objects
of type Foo, set property bar. The second example is another variant of this pattern, just with more nesting
levels inside the property assignment.

• some.path.prototype(Foo).some is a prototype property assignment inside some.path. It means:
For all objects of type Foo which occur inside the Fusion path some.path, the property some is set.

• prototype(Foo).prototype(Bar).some is a prototype property assignment inside another pro-
totype. It means: For all objects of type Bar which occur somewhere inside an object of type Foo, the
property some is set.

• This can both be combined, as in the last example inside prototype(Foo).left.
prototype(Bar).some.

32 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

Internals of hierarchical prototypes

A Fusion object is side-effect free, which means that it can be rendered deterministically knowing only its Fusion
path and the context. In order to make this work with hierarchical prototypes, we need to encode the types of all
Fusion objects above the current one into the current path. This is done using angular brackets:

a1/a2<Foo>/a3/a4<Bar>

When this path is rendered, a1/a2 is rendered as a Fusion object of type Foo – which is needed to apply the
prototype inheritance rules correctly.

Those paths are rarely visible on the “outside” of the rendering process, but might at times appear in exception
messages if rendering fails. For those cases it is helpful to know their semantics.

Bottom line: It is not important to know exactly how the a rendering Fusion object’s Fusion path is constructed.
Just pass it on, without modification to render a single element out of band.

Namespaces of Fusion objects

The benefits of namespacing apply just as well to Fusion objects as they apply to other languages. Namespacing
helps to organize the code and avoid name clashes.

In Fusion the namespace of a prototype is given when the prototype is declared. The following declares a
YouTube prototype in the Acme.Demo namespace:

prototype(Acme.Demo:YouTube) {
width = '100px'
height = '500px'

}

The namespace is, by convention, the package key of the package in which the Fusion resides.

Fully qualified identifiers can be used everywhere an identifier is used:

prototype(Neos.Neos:ContentCollection) < prototype(Neos.Neos:Collection)

In Fusion a default namespace of Neos.Fusion is set. So whenever Value is used in Fusion, it is a shortcut
for Neos.Fusion:Value.

Custom namespace aliases can be defined using the following syntax:

namespace: Foo = Acme.Demo

the following two lines are equivalent now
video = Acme.Demo:YouTube
video = Foo:YouTube

Warning: These declarations are scoped to the file they are in and have to be declared in every fusion file
where they shall be used.

Setting Properties On a Fusion Object

Although the Fusion object can read its context directly, it is good practice to instead use properties for configu-
ration:

3.2. Fusion 33

Neos CMS Documentation, Release 4.0.0

imagine there is a property "foo=bar" inside the Fusion context at this point
myObject = MyObject

explicitly take the "foo" variable's value from the context and pass it into the
→˓"foo"
property of myObject. This way, the flow of data is more visible.
myObject.foo = ${foo}

While myObject could rely on the assumption that there is a foo variable inside the Fusion context, it has no
way (besides written documentation) to communicate this to the outside world.

Therefore, a Fusion object’s implementation should only use properties of itself to determine its output, and be
independent of what is stored in the context.

However, in the prototype of a Fusion object it is perfectly legal to store the mapping between the context variables
and Fusion properties, such as in the following example:

this way, an explicit default mapping between a context variable and a property
→˓of the
Fusion object is created.
prototype(MyObject).foo = ${foo}

To sum it up: When implementing a Fusion object, it should not access its context variables directly, but instead
use a property. In the Fusion object’s prototype, a default mapping between a context variable and the prototype
can be set up.

Default Context Variables

Neos exposes some default variables to the Fusion context that can be used to control page rendering in a more
granular way.

• node can be used to get access to the current node in the node tree and read its properties. It is of type
NodeInterface and can be used to work with node data, such as:

Make the node available in the template
node = ${node}

Expose the "backgroundImage" property to the rendering using FlowQuery
backgroundImage = ${q(node).property('backgroundImage')}

To see what data is available on the node, you can expose it to the template as above and wrap it in a debug
view helper:

{node -> f:debug()}

• documentNode contains the closest parent document node - broadly speaking, it is the page the current
node is on. Just like node, it is a NodeInterface and can be provided to the rendering in the same way:

Expose the document node to the template
documentNode = ${documentNode}

Display the document node path
nodePath = ${documentNode.path}

documentNode is in the end just a shorthand to get the current document node faster. It could be replaced
with:

Expose the document node to the template using FlowQuery and a Fizzle
→˓operator
documentNode = ${q(node).closest('[instanceof Neos.Neos:Document]').get(0)}

34 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

• request is an instance of Neos\Flow\Mvc\ActionRequest and allows you to access the current
request from within Fusion. Use it to provide request variables to the template:

This would provide the value sent by an input field with name="username".
userName = ${request.arguments.username}

request.format contains the format string of the request, such as "html" or
→˓"json"
requestFormat = ${request.format}

Another use case is to trigger an action, e.g. a search, via a custom Eel helper:

searchResults = ${Search.query(site).fulltext(request.arguments.searchword).
→˓execute()}

A word of caution: You should never trigger write operations from Fusion, since it can be called multiple
times (or not at all, because of caching) during a single page render. If you want a request to trigger a
persistent change on your site, it’s better to use a Plugin.

Manipulating the Fusion Context

The Fusion context can be manipulated directly through the use of the @context meta-property:

myObject = MyObject
myObject.@context.bar = ${foo * 2}

In the above example, there is now an additional context variable bar with twice the value of foo.

This functionality is especially helpful if there are strong conventions regarding the Fusion context variables. This
is often the case in standalone Fusion applications, but for Neos, this functionality is hardly ever used.

Warning: In order to prevent unwanted side effects, it is not possible to access context variables from within
@context on the same level. This means that the following will never return the string Hello World!

@context.contextOne = ‘World!’ @context.contextTwo = ${‘Hello ‘ + contextOne} output = ${contextTwo}

Processors

Processors allow the manipulation of values in Fusion properties. A processor is applied to a property using the
@process meta-property:

myObject = MyObject {
property = 'some value'
property.@process.1 = ${'before ' + value + ' after'}

}
results in 'before some value after'

Multiple processors can be used, their execution order is defined by the numeric position given in the Fusion after
@process. In the example above a @process.2 would run on the results of @process.1.

Additionally, an extended syntax can be used as well:

myObject = MyObject {
property = 'some value'
property.@process.someWrap {

expression = ${'before ' + value + ' after'}
@position = 'start'

}
}

3.2. Fusion 35

Neos CMS Documentation, Release 4.0.0

This allows to use string keys for the processor name, and support @position arguments as explained for
Arrays.

Processors are Eel Expressions or Fusion objects operating on the value property of the context. Additionally,
they can access the current Fusion object they are operating on as this.

Conditions

Conditions can be added to all values to prevent evaluation of the value. A condition is applied to a property using
the @if meta-property:

myObject = Menu {
@if.1 = ${q(node).property('showMenu') == true}

}
results in the menu object only being evaluated if the node's showMenu property
→˓is not ``false``
the php rules for mapping values to boolean are used internally so following
→˓values are
considered beeing false: ``null, false, '', 0, []``

Multiple conditions can be used, and if one of them doesn’t return true the condition stops evaluation.

Debugging

To show the result of Fusion Expressions directly you can use the Neos.Fusion:Debug Fusion-Object:

debugObject = Neos.Fusion:Debug {
optional: set title for the debug output
title = 'Debug'

optional: show result as plaintext
plaintext = TRUE

If only the "value"-key is given it is debugged directly,
otherwise all keys except "title" and "plaintext" are debugged.
value = "hello neos world"

Additional values for debugging
documentTitle = ${q(documentNode).property('title')}
documentPath = ${documentNode.path}

}
the value of this object is the formatted debug output of all keys given to the
→˓object

Domain-specific languages in Fusion

Fusion allows the implementation of domain-specific sublanguages. Those DSLs can take a piece of code, that is
optimized to express a specific class of problems, and return the equivalent fusion-code that is cached and executed
by the Fusion-runtime afterwards.

Fusion-DSLs use the syntax of tagged template literals from ES6 and can be used in all value assignments:

value = dslIdentifier`... the code that is passed to the dsl ...`

If such a syntax-block is detected fusion will:

• Lookup the key dslIdentifier in the Setting Neos.Fusion.dsl to find the matching dsl-
implementation.

• Instantiate the dsl-implementation class that was found registered.

36 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

• Check that the dsl-implementation satisfies the interface \Neos\Fusion\Core\DslInterface

• Pass the code between the backticks to the dsl-implementation.

• Finally parse the returned Fusion-code

Fusion DSLs cannot extend the fusion-language and -runtime itself, they are meant to enable a more efficient
syntax for specific problems.

3.2.2 Eel, FlowQuery and Fizzle

Eel - Embedded Expression Language

Besides simple Fusion assignments such as myObject.foo = 'bar', it is possible to write expressions using
the Eel language such as myObject.foo = ${q(node).property('bar')}.

The Embedded Expression Language (Eel) is a building block for creating Domain Specific Languages. It provides
a rich syntax for arbitrary expressions, such that the author of the DSL can focus on its Semantics.

In this section, the focus lies on the use of Eel inside Fusion.

Syntax

Every Eel expression in Fusion is surrounded by ${...}, which is the delimiter for Eel expressions. Basically,
the Eel syntax and semantics is like a condensed version of JavaScript:

• Most things you can write as a single JavaScript expression (that is, without a ;) can also be written as Eel
expression.

• Eel does not throw an error if null values are dereferenced, i.e. inside ${foo.bar} with foo being
null. Instead, null is returned. This also works for calling undefined functions.

• Eel does not support control structures or variable declarations.

• Eel supports the common JavaScript arithmetic and comparison operators, such as +-*/% for arithmetic and
== != > >= < <= for comparison operators. Operator precedence is as expected, with multiplication
binding higher than addition. This can be adjusted by using brackets. Boolean operators && and || are
supported.

• Eel supports the ternary operator to allow for conditions <condition> ? <ifTrue> :
<ifFalse>.

• When object access is done (such as foo.bar.baz) on PHP objects, getters are called automatically.

• Object access with the offset notation is supported as well: foo['bar']

This means the following expressions are all valid Eel expressions:

${foo.bar} // Traversal
${foo.bar()} // Method call
${foo.bar().baz()} // Chained method call

${foo.bar("arg1", true, 42)} // Method call with arguments

${12 + 18.5} // Calculations are possible
${foo == bar} // ... and comparisons

${foo.bar(12+18.5, foo == bar)} // and of course also use it inside arguments

${[foo, bar]} // Array Literal
${{foo: bar, baz: test}} // Object Literal

3.2. Fusion 37

Neos CMS Documentation, Release 4.0.0

Semantics inside Fusion

Eel does not define any functions or variables by itself. Instead, it exposes the Eel context array, meaning that
functions and objects which should be accessible can be defined there.

Because of that, Eel is perfectly usable as a “domain-specific language construction kit”, which provides the
syntax, but not the semantics of a given language.

For Eel inside Fusion, the semantics are as follows:

• All variables of the Fusion context are made available inside the Eel context.

• The special variable this always points to the current Fusion object implementation.

• The function q() is available, which wraps its argument into a FlowQuery object. FlowQuery is explained
below.

By default the following Eel helpers are available in the default context for Eel expressions:

• String, exposing Neos\Eel\Helper\StringHelper

• Array, exposing Neos\Eel\Helper\ArrayHelper

• Date, exposing Neos\Eel\Helper\DateHelper

• Configuration, exposing Neos\Eel\Helper\ConfigurationHelper

• Math, exposing Neos\Eel\Helper\MathHelper

• Json, exposing Neos\Eel\Helper\JsonHelper

• Security, exposing Neos\Eel\Helper\SecurityHelper

• Translation, exposing Neos\Flow\I18n\EelHelper\TranslationHelper

• Neos.Node, exposing Neos\Neos\Fusion\Helper\NodeHelper

• Neos.Link, exposing Neos\Neos\Fusion\Helper\LinkHelper

• Neos.Array, exposing Neos\Neos\Fusion\Helper\ArrayHelper

• Neos.Rendering, exposing Neos\Neos\Fusion\Helper\RenderingHelper

See: Eel Helpers Reference

This is configured via the setting Neos.Fusion.defaultContext.

Additionally, the defaultContext contains the request object, where you have also access to Arguments. e.g.
${request.httpRequest.arguments.nameOfYourGetArgument}

FlowQuery

FlowQuery, as the name might suggest, is like jQuery for Flow. It’s syntax has been heavily influenced by jQuery.

FlowQuery is a way to process the content (being a Neos ContentRepository node within Neos) of the Eel context.
FlowQuery operations are implemented in PHP classes. For any FlowQuery operation to be available, the package
containing the operation must be installed. Any package can add their own FlowQuery operations. A set of basic
operations is always available as part of the Neos.Eel package itself.

In Neos.Neos, the following FlowQuery operations are defined:

property Adjusted to access properties of a Neos ContentRepository node. If property names are prefixed with
an underscore, internal node properties like start time, end time, and hidden are accessed.

filter Used to check a value against a given constraint. The filters expressions are given in Fizzle, a language
inspired by CSS selectors. The Neos-specific filter changes instanceof to work on node types instead
of PHP classes.

children Returns the children of a Neos ContentRepository node. They are optionally filtered with a filter
operation to limit the returned result set.

38 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

parents Returns the parents of a Neos ContentRepository node. They are optionally filtered with a filter
operation to limit the returned result set.

A reference of all FlowQuery operations defined in Neos.Eel and Neos.Neos can be found in the FlowQuery
Operation Reference.

Operation Resolving

When multiple packages define an operation with the same short name, they are resolved using the priority each
implementation defines, higher priorities have higher precedence when operations are resolved.

The OperationResolver loops over the implementations sorted by order and asks them if they can evaluate
the current context. The first operation that answers this check positively is used.

FlowQuery by Example

Any context variable can be accessed directly:

${myContextVariable}

and the current node is available as well:

${node}

There are various ways to access its properties. Direct access is possible, but should be avoided. It is better to use
FlowQuery instead:

${q(node).getProperty('foo')} // Possible, but discouraged
${q(node).property('foo')} // Better: use FlowQuery instead

Through this a node property can be fetched and assigned to a variable:

text = ${q(node).property('text')}

Fetching all parent nodes of the current node:

${q(node).parents()}

Here are two equivalent ways to fetch the first node below the left child node:

${q(node).children('left').first()}
${q(node).children().filter('left').first()}

Fetch all parent nodes and add the current node to the selected set:

${node.parents().add(node)}

The next example combines multiple operations. First it fetches all children of the current node that have the
name comments. Then it fetches all children of those nodes that have a property spam with a value of false.
The result of that is then passed to the count() method and the count of found nodes is assigned to the variable
‘numberOfComments’:

numberOfComments = ${q(node).children('comments').children("[spam = false]").
→˓count()}

The following expands a little more on that. It assigns a set of nodes to the collection property of the
comments object. This set of nodes is either fetched from different places, depending on whether the current node
is a ContentCollection node or not. If it is, the children of the current node are used directly. If not, the
result of this.getNodePath() is used to fetch a node below the current node and those children are used. In
both cases the nodes are again filtered by a check for their property spam being false.

3.2. Fusion 39

Neos CMS Documentation, Release 4.0.0

comments.collection = ${q(node).is('[instanceof Neos.Neos:ContentCollection]') ?
q(node).children("[spam = false]") : q(node).children(this.getNodePath()).

→˓children("[spam = false]")}

Querying for nodes of two or more different node types

elements = ${q(node).filter('[instanceof Neos.NodeTypes:Text],[instanceof Neos.
→˓NodeTypes:TextWithImage]').get()}

Fizzle

Filter operations as already shown are written in Fizzle. It has been inspired by the selector syntax known from
CSS.

Property Name Filters

The first component of a filter query can be a Property Name filter. It is given as a simple string. Checks
against property paths are not currently possible:

foo //works
foo.bar //does not work
foo.bar.baz //does not work

In the context of Neos the property name is rarely used, as FlowQuery operates on Neos ContentRepository nodes
and the children operation has a clear scope. If generic PHP objects are used, the property name filter is
essential to define which property actually contains the children.

Attribute Filters

The next component are Attribute filters. They can check for the presence and against the values of attributes
of context elements:

baz[foo]
baz[answer = 42]
baz[foo = "Bar"]
baz[foo = 'Bar']
baz[foo != "Bar"]
baz[foo ^= "Bar"]
baz[foo $= "Bar"]
baz[foo *= "Bar"]

As the above examples show, string values can be quoted using double or single quotes.

Available Operators

The operators for checking against attribute are as follows:

= Strict equality of value and operand

!= Strict inequality of value and operand

$= Value ends with operand (string-based)

^= Value starts with operand (string-based)

*= Value contains operand (string-based)

instanceof Checks if the value is an instance of the operand

40 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

For the latter the behavior is as follows: if the operand is one of the strings object, array, int(eger), float, double,
bool(ean) or string the value is checked for being of the specified type. For any other strings the value is used as
class name with the PHP instanceof operation to check if the value matches.

Using Multiple Filters

It is possible to combine multiple filters:

[foo][bar][baz] All filters have to match (AND)

[foo],[bar],[baz] Only one filter has to match (OR)

3.3 Rendering Custom Markup

These are the development guidelines of Neos.

3.3.1 Templating

Templating is done in Fluid, which is a next-generation templating engine. It has several goals in mind:

• Simplicity

• Flexibility

• Extensibility

• Ease of use

This templating engine should not be bloated, instead, we try to do it “The Zen Way” - you do not need to learn too
many things, thus you can concentrate on getting your things done, while the template engine handles everything
you do not want to care about.

What Does it Do?

In many MVC systems, the view currently does not have a lot of functionality. The standard view usually provides
a render method, and nothing more. That makes it cumbersome to write powerful views, as most designers will
not write PHP code.

That is where the Template Engine comes into play: It “lives” inside the View, and is controlled by a special
TemplateView which instantiates the Template Parser, resolves the template HTML file, and renders the template
afterwards.

Below, you’ll find a snippet of a real-world template displaying a list of blog postings. Use it to check whether
you find the template language intuitive:

{namespace f=Neos\FluidAdaptor\ViewHelpers}
<html>
<head><title>Blog</title></head>
<body>
<h1>Blog Postings</h1>
<f:for each="{postings}" as="posting">
<h2>{posting.title}</h2>
<div class="author">{posting.author.name} {posting.author.email}</div>
<p>
<f:link.action action="details" arguments="{id : posting.id}">

{posting.teaser}
</f:link.action>

</p>
</f:for>

(continues on next page)

3.3. Rendering Custom Markup 41

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

</body>
</html>

• The Namespace Import makes the \Neos\FluidAdaptor\ViewHelper namespace available under
the shorthand f.

• The <f:for> essentially corresponds to foreach ($postings as $posting) in PHP.

• With the dot-notation ({posting.title} or {posting.author.name}), you can traverse objects.
In the latter example, the system calls $posting->getAuthor()->getName().

• The <f:link.action /> tag is a so-called ViewHelper. It calls arbitrary PHP code, and in this case
renders a link to the “details”-Action.

There is a lot more to show, including:

• Layouts

• Custom View Helpers

• Boolean expression syntax

We invite you to explore Fluid some more, and please do not hesitate to give feedback!

Basic Concepts

This section describes all basic concepts available. This includes:

• Namespaces

• Variables / Object Accessors

• View Helpers

• Arrays

Namespaces

Fluid can be extended easily, thus it needs a way to tell where a certain tag is defined. This is done using names-
paces, closely following the well-known XML behavior.

Namespaces can be defined in a template in two ways:

{namespace f=NeosFluidAdaptorViewHelpers} This is a non-standard way only understood by Fluid. It links
the f prefix to the PHP namespace \Neos\FluidAdaptor\ViewHelpers.

<html xmlns:foo=”http://some/unique/namespace”> The standard for declaring a namespace in XML. This
will link the foo prefix to the URI http://some/unique/namespace and Fluid can look up the
corresponding PHP namespace in your settings (so this is a two-piece configuration). This makes it possible
for your XML editor to validate the template files and even use an XSD schema for auto completion.

A namespace linking f to \Neos\FluidAdaptor\ViewHelpers is imported by default. All other names-
paces need to be imported explicitly.

If using the XML namespace syntax the default pattern http://typo3.org/ns/<php namespace> is
resolved automatically by the Fluid parser. If you use a custom XML namespace URI you need to configure the
URI to PHP namespace mapping. The YAML syntax for that is:

Neos:
Fluid:
namespaces:

'http://some/unique/namespace': 'My\Php\Namespace'

42 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

Variables and Object Accessors

A templating system would be quite pointless if it was not possible to display some external data in the templates.
That’s what variables are for.

Suppose you want to output the title of your blog, you could write the following snippet into your controller:

$this->view->assign('blogTitle', $blog->getTitle());

Then, you could output the blog title in your template with the following snippet:

<h1>This blog is called {blogTitle}</h1>

Now, you might want to extend the output by the blog author as well. To do this, you could repeat the above steps,
but that would be quite inconvenient and hard to read.

Note: The semantics between the controller and the view should be the following: The controller instructs the
view to “render the blog object given to it”, and not to “render the Blog title, and the blog posting 1, . . . ”.

Passing objects to the view instead of simple values is highly encouraged!

That is why the template language has a special syntax for object access. A nicer way of expressing the above is
the following:

// This should go into the controller:
$this->view->assign('blog', $blog);

<!-- This should go into the template: -->
<h1>This blog is called {blog.title}, written by {blog.author}</h1>

Instead of passing strings to the template, we are passing whole objects around now - which is much nicer to
use both from the controller and the view side. To access certain properties of these objects, you can use Object
Accessors. By writing {blog.title}, the template engine will call a getTitle() method on the blog
object, if it exists. Besides, you can use that syntax to traverse associative arrays and public properties.

Tip: Deep nesting is supported: If you want to output the email address of the blog author, then you can use
{blog.author.email}, which is roughly equivalent to $blog->getAuthor()->getEmail().

View Helpers

All output logic is placed in View Helpers.

The view helpers are invoked by using XML tags in the template, and are implemented as PHP classes (more on
that later).

This concept is best understood with an example:

{namespace f=Neos\FluidAdaptor\ViewHelpers}
<f:link.action controller="Administration">Administration</f:link.action>

The example consists of two parts:

• Namespace Declaration as explained earlier.

• Calling the View Helper with the <f:link.action...> ... </f:link.action> tag renders a
link.

Now, the main difference between Fluid and other templating engines is how the view helpers are implemented:
For each view helper, there exists a corresponding PHP class. Let’s see how this works for the example above:

3.3. Rendering Custom Markup 43

Neos CMS Documentation, Release 4.0.0

The <f:link.action /> tag is implemented in the class \Neos\FluidAdaptor\ViewHelpers\Link\ActionViewHelper.

Note: The class name of such a view helper is constructed for a given tag as follows:

1. The first part of the class name is the namespace which was imported (the namespace prefix f was expanded
to its full namespace Neos\FluidAdaptor\ViewHelpers)

2. The unqualified name of the tag, without the prefix, is capitalized (Link), and the postfix ViewHelper is
appended.

The tag and view helper concept is the core concept of Fluid. All output logic is implemented through such
ViewHelpers / tags! Things like if/else, for, . . . are all implemented using custom tags - a main difference
to other templating languages.

Note: Some benefits of the class-based approach approach are:

• You cannot override already existing view helpers by accident.

• It is very easy to write custom view helpers, which live next to the standard view helpers

• All user documentation for a view helper can be automatically generated from the annotations and code
documentation.

Most view helpers have some parameters. These can be plain strings, just like in <f:link.action
controller="Administration">...</f:link.action>, but as well arbitrary objects. Parameters
of view helpers will just be parsed with the same rules as the rest of the template, thus you can pass arrays or
objects as parameters.

This is often used when adding arguments to links:

<f:link.action controller="Blog" action="show" arguments="{singleBlog: blogObject}
→˓">
... read more

</f:link.action>

Here, the view helper will get a parameter called arguments which is of type array.

Warning: Make sure you do not put a space before or after the opening or closing brackets of an array. If
you type arguments=" {singleBlog : blogObject}" (notice the space before the opening curly
bracket), the array is automatically casted to a string (as a string concatenation takes place).

This also applies when using object accessors: <f:do.something with="{object}" /> and
<f:do.something with=" {object}" /> are substantially different: In the first case, the view
helper will receive an object as argument, while in the second case, it will receive a string as argument.

This might first seem like a bug, but actually it is just consistent that it works that way.

Boolean Expressions

Often, you need some kind of conditions inside your template. For them, you will usually use the <f:if>
ViewHelper. Now let’s imagine we have a list of blog postings and want to display some additional infor-
mation for the currently selected blog posting. We assume that the currently selected blog is available in
{currentBlogPosting}. Now, let’s have a look how this works:

<f:for each="{blogPosts}" as="post">
<f:if condition="{post} == {currentBlogPosting}">... some special output here ...

→˓</f:if>
</f:for>

44 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

In the above example, there is a bit of new syntax involved: {post} == {currentBlogPosting}. Intu-
itively, this says “if the post I’‘m currently iterating over is the same as currentBlogPosting, do something.”

Why can we use this boolean expression syntax? Well, because the IfViewHelper has registered the argument
condition as boolean. Thus, the boolean expression syntax is available in all arguments of ViewHelpers which
are of type boolean.

All boolean expressions have the form X <comparator> Y, where:

• <comparator> is one of the following: ==, >, >=, <, <=, % (modulo)

• X and Y are one of the following:

– a number (integer or float)

– a string (in single or double quotes)

– a JSON array

– a ViewHelper

– an Object Accessor (this is probably the most used example)

– inline notation for ViewHelpers

Inline Notation for ViewHelpers

In many cases, the tag-based syntax of ViewHelpers is really intuitive, especially when building loops, or forms.
However, in other cases, using the tag-based syntax feels a bit awkward – this can be demonstrated best with the
<f:uri.resource>- ViewHelper, which is used to reference static files inside the Public/ folder of a package.
That’s why it is often used inside <style> or <script>-tags, leading to the following code:

<link rel="stylesheet" href="<f:uri.resource path='myCssFile.css' />" />

You will notice that this is really difficult to read, as two tags are nested into each other. That’s where the inline
notation comes into play: It allows the usage of {f:uri.resource()} instead of <f:uri.resource />.
The above example can be written like the following:

<link rel="stylesheet" href="{f:uri.resource(path:'myCssFile.css')}" />

This is readable much better, and explains the intent of the ViewHelper in a much better way: It is used like a
helper function.

The syntax is still more flexible: In real-world templates, you will often find code like the following, formatting a
DateTime object (stored in {post.date} in the example below):

<f:format.date format="d-m-Y">{post.date}</f:format.date>

This can also be re-written using the inline notation:

{post.date -> f:format.date(format:'d-m-Y')}

This is also a lot better readable than the above syntax.

Tip: This can also be chained indefinitely often, so one can write:

{post.date -> foo:myHelper() -> bar:bla()}

Sometimes you’ll still need to further nest ViewHelpers, that is when the design of the ViewHelper does not allow
that chaining or provides further arguments. Have in mind that each argument itself is evaluated as Fluid code, so
the following constructs are also possible:

{foo: bar, baz: '{planet.manufacturer -> f:someother.helper(test: \'stuff\')}'}
{some: '{f:format.stuff(arg: \'foo'\)}'}

3.3. Rendering Custom Markup 45

Neos CMS Documentation, Release 4.0.0

To wrap it up: Internally, both syntax variants are handled equally, and every ViewHelper can be called in both
ways. However, if the ViewHelper “feels” like a tag, use the tag-based notation, if it “feels” like a helper function,
use the Inline Notation.

Arrays

Some view helpers, like the SelectViewHelper (which renders an HTML select dropdown box), need to get
associative arrays as arguments (mapping from internal to displayed name). See the following example for how
this works:

<f:form.select options="{edit: 'Edit item', delete: 'Delete item'}" />

The array syntax used here is very similar to the JSON object syntax. Thus, the left side of the associative array is
used as key without any parsing, and the right side can be either:

• a number:

{a : 1,
b : 2
}

• a string; Needs to be in either single- or double quotes. In a double-quoted string, you need to escape the "
with a \ in front (and vice versa for single quoted strings). A string is again handled as Fluid Syntax, this is
what you see in example c:

{a : 'Hallo',
b : "Second string with escaped \" (double quotes) but not escaped ' (single
→˓quotes)"
c : "{firstName} {lastName}"
}

• a boolean, best represented with their integer equivalents:

{a : 'foo',
notifySomebody: 1
useLogging: 0
}

• a nested array:

{a : {
a1 : "bla1",
a2 : "bla2"

},
b : "hallo"
}

• a variable reference (=an object accessor):

{blogTitle : blog.title,
blogObject: blog
}

Note: All these array examples will result into an associative array. If you have to supply a non-associative, i.e.
numerically-indexed array, you’ll write {0: 'foo', 1: 'bar', 2: 'baz'}.

46 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

Passing Data to the View

You can pass arbitrary objects to the view, using $this->view->assign($identifier, $object)
from within the controller. See the above paragraphs about Object Accessors for details how to use the passed
data.

Layouts

In almost all web applications, there are many similarities between each page. Usually, there are common tem-
plates or menu structures which will not change for many pages.

To make this possible in Fluid, we created a layout system, which we will introduce in this section.

Writing a Layout

Every layout is placed in the Resources/Private/Layouts directory, and has the file ending of the current format
(by default .html). A layout is a normal Fluid template file, except there are some parts where the actual content
of the target page should be inserted:

<html>
<head><title>My fancy web application</title></head>
<body>
<div id="menu">... menu goes here ...</div>
<div id="content">

<f:render section="content" />
</div>
</body>
</html>

With this tag, a section from the target template is rendered.

Using a Layout

Using a layout involves two steps:

• Declare which layout to use: <f:layout name="..." /> can be written anywhere on the page
(though we suggest to write it on top, right after the namespace declaration) - the given name references the
layout.

• Provide the content for all sections used by the layout using the <f:section>...</f:section> tag:
<f:section name="content">...</f:section>

For the above layout, a minimal template would look like the following:

<f:layout name="example.html" />

<f:section name="content">
This HTML here will be outputted to inside the layout

</f:section>

Writing Your Own ViewHelper

As we have seen before, all output logic resides in View Helpers. This includes the standard control flow operators
such as if/else, HTML forms, and much more. This is the concept which makes Fluid extremely versatile and
extensible.

If you want to create a view helper which you can call from your template (as a tag), you just write a plain PHP
class which needs to inherit from Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper
(or its subclasses). You need to implement only one method to write a view helper:

3.3. Rendering Custom Markup 47

Neos CMS Documentation, Release 4.0.0

public function render()

Rendering the View Helper

We refresh what we have learned so far: When a user writes something like <blog:displayNews /> in-
side a template (and has imported the blog namespace to Neos\Blog\ViewHelpers), Fluid will automat-
ically instantiate the class Neos\Blog\ViewHelpers\DisplayNewsViewHelper, and invoke the ren-
der() method on it.

This render() method should return the rendered content as string.

You have the following possibilities to access the environment when rendering your view helper:

• $this->arguments is an associative array where you will find the values for all arguments you regis-
tered previously.

• $this->renderChildren() renders everything between the opening and closing tag of the view
helper and returns the rendered result (as string).

• $this->templateVariableContainer is an instance of Neos\FluidAdaptor\Core\ViewHelper\TemplateVariableContainer,
with which you have access to all variables currently available in the template, and can modify the variables
currently available in the template.

Note: If you add variables to the TemplateVariableContainer, make sure to remove every variable
which you added again. This is a security measure against side-effects.

It is also not possible to add a variable to the TemplateVariableContainer if a variable of the same name already
exists - again to prevent side effects and scope problems.

Implementing a for ViewHelper

Now, we will look at an example: How to write a view helper giving us the foreach functionality of PHP.

A loop could be called within the template in the following way:

<f:for each="{blogPosts}" as="blogPost">
<h2>{blogPost.title}</h2>

</f:for>

So, in words, what should the loop do?

It needs two arguments:

• each: Will be set to some object or array which can be iterated over.

• as: The name of a variable which will contain the current element being iterated over

It then should do the following (in pseudo code):

foreach ($each as $$as) {
// render everything between opening and closing tag

}

Implementing this is fairly straightforward, as you will see right now:

class ForViewHelper extends \Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper {

/**
* Renders a loop

*
(continues on next page)

48 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

* @param array $each Array to iterate over

* @param string $as Iteration variable

*/
public function render(array $each, $as) {

$out = '';
foreach ($each as $singleElement) {

$this->variableContainer->add($as, $singleElement);
$out .= $this->renderChildren();
$this->variableContainer->remove($as);

}
return $out;

}

}

• The PHPDoc is part of the code! Fluid extracts the argument data types from the PHPDoc.

• You can simply register arguments to the view helper by adding them as method arguments of the
render() method.

• Using $this->renderChildren(), everything between the opening and closing tag of the view helper
is rendered and returned as string.

Declaring Arguments

We have now seen that we can add arguments just by adding them as method arguments to the render()method.
There is, however, a second method to register arguments.

You can also register arguments inside a method called initializeArguments(). Call
$this->registerArgument($name, $dataType, $description, $isRequired,
$defaultValue=NULL) inside.

It depends how many arguments a view helper has. Sometimes, registering them as render() arguments is
more beneficial, and sometimes it makes more sense to register them in initializeArguments().

AbstractTagBasedViewHelper

Many view helpers output an HTML tag - for example <f:link.action ...> outputs a
tag. There are many ViewHelpers which work that way.

Very often, you want to add a CSS class or a target attribute to an tag. This often leads
to repetitive code like below. (Don’t look at the code too thoroughly, it should just demonstrate the boring and
repetitive task one would have without the AbstractTagBasedViewHelper):

class ActionViewHelper extends
→˓\Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper {

public function initializeArguments() {
$this->registerArgument('class', 'string', 'CSS class to add to the link');
$this->registerArgument('target', 'string', 'Target for the link');
... and more ...

}

public function render() {
$output = '<a href="..."';
if ($this->arguments['class']) {
$output .= ' class="' . $this->arguments['class'] . '"';

}
if ($this->arguments['target']) {

(continues on next page)

3.3. Rendering Custom Markup 49

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

$output .= ' target="' . $this->arguments['target'] . '"';
}
$output .= '>';
... and more ...
return $output;

}

}

Now, the AbstractTagBasedViewHelper introduces two more methods you can use inside
initializeArguments():

• registerTagAttribute($name, $type, $description, $required): Use this method
to register an attribute which should be directly added to the tag.

• registerUniversalTagAttributes(): If called, registers the standard HTML attributes class,
id, dir, lang, style, title.

Inside the AbstractTagBasedViewHelper, there is a TagBuilder available (with $this->tag) which
makes building a tag a lot more straightforward.

With the above methods, the Link\ActionViewHelper from above can be condensed as follows:

class ActionViewHelper extends
→˓\Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper {

public function initializeArguments() {
$this->registerUniversalTagAttributes();

}

/**
* Render the link.

*
* @param string $action Target action

* @param array $arguments Arguments

* @param string $controller Target controller. If NULL current
→˓controllerName is used

* @param string $package Target package. if NULL current package is used

* @param string $subpackage Target subpackage. if NULL current subpackage
→˓is used

* @param string $section The anchor to be added to the URI

* @return string The rendered link

*/
public function render($action = NULL, array $arguments = array(),

$controller = NULL, $package = NULL, $subpackage =
→˓NULL,

$section = '') {
$uriBuilder = $this->controllerContext->getURIBuilder();
$uri = $uriBuilder->uriFor($action, $arguments, $controller,

→˓$package, $subpackage, $section);
$this->tag->addAttribute('href', $uri);
$this->tag->setContent($this->renderChildren());

return $this->tag->render();
}

}

Additionally, we now already have support for all universal HTML attributes.

Tip: The TagBuilder also makes sure that all attributes are escaped properly, so to decrease the risk of

50 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

Cross-Site Scripting attacks, make sure to use it when building tags.

additionalAttributes

Sometimes, you need some HTML attributes which are not part of the standard. As an example: If you use the
Dojo JavaScript framework, using these non-standard attributes makes life a lot easier.

We think that the templating framework should not constrain the user in his possibilities – thus, it should be
possible to add custom HTML attributes as well, if they are needed. Our solution looks as follows:

Every view helper which inherits from AbstractTagBasedViewHelper has a special argument called
additionalAttributes which allows you to add arbitrary HTML attributes to the tag.

If the link tag from above needed a new attribute called fadeDuration, which is not part of HTML, you could
do that as follows:

<f:link.action action="..." additionalAttributes="{fadeDuration : 800}">
Link with fadeDuration set

</f:link.action>

This attribute is available in all tags that inherit from Neos\FluidAdaptor\Core\ViewHelper\AbstractTagBasedViewHelper.

AbstractConditionViewHelper

If you want to build some kind of if/else condition, you should base the ViewHelper on the
AbstractConditionViewHelper, as it gives you convenient methods to render the then or else parts of
a ViewHelper. Let’s look at the <f:if>-ViewHelper for a usage example, which should be quite self-explanatory:

class IfViewHelper extends
→˓\Neos\FluidAdaptor\Core\ViewHelper\AbstractConditionViewHelper {

/**
* renders <f:then> child if $condition is true, otherwise renders <f:else>

→˓ child.

*
* @param boolean $condition View helper condition

* @return string the rendered string

*/
public function render($condition) {

if ($condition) {
return $this->renderThenChild();

} else {
return $this->renderElseChild();

}
}

}

By basing your condition ViewHelper on the AbstractConditionViewHelper, you will get the following
features:

• Two API methods renderThenChild() and renderElseChild(), which should be used in the
then / else case.

• The ViewHelper will have two arguments defined, called then and else, which are very helpful in the
Inline Notation.

• The ViewHelper will automatically work with the <f:then> and <f:else>-Tags.

3.3. Rendering Custom Markup 51

Neos CMS Documentation, Release 4.0.0

Widgets

Widgets are special ViewHelpers which encapsulate complex functionality. It can be best understood what widgets
are by giving some examples:

• <f:widget.paginate> renders a paginator, i.e. can be used to display large amounts of objects. This
is best known from search engine result pages.

• <f:widget.autocomplete> adds autocompletion functionality to a text field.

• More widgets could include a Google Maps widget, a sortable grid, . . .

Internally, widgets consist of an own Controller and View.

Using Widgets

Using widgets inside your templates is really simple: Just use them like standard ViewHelpers, and consult their
documentation for usage examples. An example for the <f:widget.paginate> follows below:

<f:widget.paginate objects="{blogs}" as="paginatedBlogs" configuration="
→˓{itemsPerPage: 10}">
// use {paginatedBlogs} as you used {blogs} before, most certainly inside
// a <f:for> loop.

</f:widget.paginate>

In the above example, it looks like {blogs} contains all Blog objects, thus you might wonder if all objects were
fetched from the database. However, the blogs are not fetched from the database until you actually use them, so
the Paginate Widget will adjust the query sent to the database and receive only the small subset of objects.

So, there is no negative performance overhead in using the Paginate Widget.

Writing widgets

We already mentioned that a widget consists of a controller and a view, all triggered by a ViewHelper. We’ll now
explain these different components one after each other, explaining the API you have available for creating your
own widgets.

ViewHelper

All widgets inherit from Neos\FluidAdaptor\Core\Widget\AbstractWidgetViewHelper. The
ViewHelper of the widget is the main entry point; it controls the widget and sets necessary configuration for the
widget.

To implement your own widget, the following things need to be done:

• The controller of the widget needs to be injected into the $controller property.

• Inside the render()-method, you should call $this->initiateSubRequest(), which will initiate
a request to the controller which is set in the $controller property, and return the Response object.

• By default, all ViewHelper arguments are stored as Widget Configuration, and are also available in-
side the Widget Controller. However, to modify the Widget Configuration, you can override the
getWidgetConfiguration() method and return the configuration which you need there.

There is also a property $ajaxWidget, which we will explain later in Ajax Widgets.

52 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

Controller

A widget contains one controller, which must inherit from Neos\FluidAdaptor\Core\Widget\AbstractWidgetController,
which is an ActionController. There is only one difference between the normal ActionController
and the AbstractWidgetController: There is a property $widgetConfiguration, containing the
widget’s configuration which was set in the ViewHelper.

Fluid Template

The Fluid templates of a widget are normal Fluid templates as you know them, but have a few ViewHelpers
available additionally:

<f:uri.widget> Generates an URI to another action of the widget.

<f:link.widget> Generates a link to another action of the widget.

<f:renderChildren> Can be used to render the child nodes of the Widget ViewHelper, possibly with some more
variables declared.

Ajax Widgets

Widgets have special support for AJAX functionality. We’ll first explain what needs to be done to create an AJAX
compatible widget, and then explain it with an example.

To make a widget AJAX-aware, you need to do the following:

• Set $ajaxWidget to TRUE inside the ViewHelper. This will generate an unique AJAX Identifier for the
Widget, and store the WidgetConfiguration in the user’s session on the server.

• Inside the index-action of the Widget Controller, generate the JavaScript which triggers the AJAX function-
ality. There, you will need a URI which returns the AJAX response. For that, use the following ViewHelper
inside the template:

<f:uri.widget ajax="TRUE" action="..." arguments="..." />

• Inside the template of the AJAX request, <f:renderChildren> is not available, because the child
nodes of the Widget ViewHelper are not accessible there.

XSD schema generation

A XSD schema file for your ViewHelpers can be created by executing

./flow documentation:generatexsd <Your>\\<Package>\\ViewHelpers
--target-file /some/directory/your.package.xsd

Then import the XSD file in your favorite IDE and map it to the namespace http://typo3.org/ns/<Your/
Package>/ViewHelpers. Add the namespace to your Fluid template by adding the xmlns attribute to the
root tag (usually <xml ...> or <html ...>).

Note: You are able to use a different XML namespace pattern by specifying the --xsd-namespace
argument in the generatexsd command.

If you want to use this inside partials, you can use the “section” argument of the render ViewHelper in order to
only render the content of the partial.

Partial:

3.3. Rendering Custom Markup 53

Neos CMS Documentation, Release 4.0.0

<html xmlns:x="http://typo3.org/ns/Your/Package/ViewHelpers">
<f:section name="content">

<x:yourViewHelper />
</f:section>

Template:

<f:render partial="PartialName" section="content" />

3.3.2 Rendering A Page

This section explains how pages are rendered in Neos. More precisely, we show how to render a node of type
Neos.Neos:Document. The default page type in Neos (Neos.NodeTypes:Page) inherits from this type.
If you create custom document node types, they need to be a subtype of Neos.Neos:Document as well. This
section also explains how to implement custom rendering for your own document node types.

1. An URL is requested from Neos through an HTTP request.

2. The requested URL is resolved to a node. This works via the Frontend NodeController and the
NodeConverter of the Neos CR by translating the URL path to a node path, and then finding the node
with this path. The document node resolution is completely done in the Neos core - usually, site integrators
do not need to modify it.

3. The document node is passed to Fusion, which is the Neos rendering engine. Rendering always starts at the
Fusion path root. This rendering process is explained in detail below.

4. Fusion can render Fluid templates, which in turn can call Fusion again to render parts of themselves. This
can go back and forth multiple times, even recursively.

5. Once Fusion has traversed the rendering tree fully, rendering is done and the rendered output (usually
HTML, but Fusion can render arbitrary text formats) is sent back to the requester.

The root path

You may already have seen a Root.fusion that contain a path page which is filled with an object of type
Neos.Neos:Page. Here, the Neos.Neos:Page Fusion object is assigned to the path page, telling the
system that the Fusion object Page is responsible for further rendering:

page = Neos.Neos:Page {
head {
[...]

}
body {
[...]

}
}

Let’s investigate how this rendering process happens. Fusion always starts rendering at the fusion path root. You
can verify this by simply replacing the code in your Root.fusion file with this snippet:

root = "Hello World!"

All page rendering will disappear and only the words “Hello World” will be rendered by Neos.

54 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

Using the page path is not the recommended way to render your document node types anymore. We encourage
you to define a prototype named after your document node type extending Neos.Neos:Page. Read Rendering
Custom Document Types for further details and how to achieve this.

The root Neos.Fusion:Case object

The root path contains, by default, a Neos.Fusion:Case object. Here is a section from this object - to
see the full implementation, check out the file DefaultFusion.fusion in the package Neos.Neos, path
Resources\Private\Fusion.

root = Neos.Fusion:Case {

[...more matchers before...]

documentType {
condition = Neos.Fusion:CanRender {

type = ${q(documentNode).property('_nodeType.name')}
}
type = ${q(documentNode).property('_nodeType.name')}

}

default {
condition = TRUE
renderPath = '/page'

}
}

If you do not know what a Case object does, you might want to have a look at the Fusion Reference. All paths in
the Case object (so-called matchers) check a certain condition - the condition path in the matcher. Matchers
are evaluated one after another, until one condition evaluates to TRUE. If it does, matcher’s type, renderer or
renderPath path (whichever exists) will be evaluated. If no other condition matches, the default matcher is
evaluated and points Fusion to the path page. Rendering then continues with the page path, which is by default
generated in your site package’s Root.fusion file. This is why, if you don’t do anything else, rendering begins
at your page path.

The current best practice is to use the documentType matcher by defining your own Fusion prototypes for each
document type. This approach will be covered further below.

The page path and Neos.Neos:Page object

The minimally needed Fusion for rendering a page looks as follows:

page = Page {
body {
templatePath = 'resource://My.Package/Private/Templates/PageTemplate.html'

}
}

Page expects one parameter to be set: The path of the Fluid template which is rendered inside the <body> of
the resulting HTML page.

If the template above is an empty file, the output shows how minimal Neos impacts the generated markup:

<!DOCTYPE html>
<html>

<!--
This website is powered by Neos, the Open Source Content Application

→˓Platform licensed under the GNU/GPL.
Neos is based on Flow, a powerful PHP application framework licensed under

→˓the MIT license.

(continues on next page)

3.3. Rendering Custom Markup 55

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

More information and contribution opportunities at https://www.neos.io
-->
<head>
<meta charset="UTF-8" />

</head>
<body>
<script src="/_Resources/Static/Packages/Neos.Neos/JavaScript/LastVisitedNode.

→˓js" data-neos-node="a319a653-ef38-448d-9d19-0894299068aa"></script>
</body>

</html>

It becomes clear that Neos gives as much control over the markup as possible to the integrator: No body markup,
no styles, only little Javascript to record the last visited page to redirect back to it after logging in. Except for the
charset meta tag nothing related to the content is output by default.

If the template file is filled with the following content:

<h1>{title}</h1>

the body would contain a heading to output the title of the current page:

<body>
<h1>My first page</h1>

</body>

Again, no added CSS classes, no wraps. Why {title} outputs the page title is covered in detail below.

Adding pre-rendered output to the page template

Of course the current template is still quite boring; it does not show any content or any menu. In order to change
that, the Fluid template is adjusted as follows:

{namespace fusion=Neos\Fusion\ViewHelpers}
{parts.menu -> f:format.raw()}
<h1>{title}</h1>
{content.main -> f:format.raw()}

Placeholders for the menu and the content have been added. Because the parts.menu and content.main
refer to a rendered Fusion path, the output needs to be passed through the f:format.raw() ViewHelper. The
Fusion needs to be adjusted as well:

page = Neos.Neos:Page {
body {
templatePath = 'resource://My.Package/Private/Templates/PageTemplate.html'

parts {
menu = Neos.Neos:Menu

}

content {
main = Neos.Neos:PrimaryContent {

nodePath = 'main'
}

}
}

}

In the above Fusion, a Fusion object at page.body.parts.menu is defined to be of type Neos.Neos:Menu.
It is exactly this Fusion object which is rendered, by specifying its relative path inside {parts.menu ->

56 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

f:format.raw()}.

Furthermore, the Neos.Neos:PrimaryContent Fusion object is used to render a Neos ContentRepository
ContentCollection node. Through the nodePath property, the name of the Neos ContentRepository
ContentCollection node to render is specified. As a result, the web page now contains a menu and the
contents of the main content collection.

The use of content and parts here is just a convention, the names can be chosen freely. In the example
content is used for the section where content is later placed, and parts is for anything that is not content in
the sense that it will directly be edited in the content module of Neos.

The Neos.Neos:Page object in more detail

To understand what the Neos.Neos:Page object actually does, it makes sense to look at its definition. We
can find the Page prototype in the file Page.fusion in the path Resources\Private\Fusion inside the
Neos.Neos package. Here is a snippet taken from this object’s definition:

prototype(Neos.Neos:Page) < prototype(Neos.Fusion:Http.Message) {

The content of the head tag, integrators can add their own head content in
→˓this array.
head = Neos.Fusion:Array {
Link tags for stylesheets in the head should go here
stylesheets = Neos.Fusion:Array

Script includes in the head should go here
javascripts = Neos.Fusion:Array {

@position = 'after stylesheets'
}

}

Content of the body tag. To be defined by the integrator.
body = Neos.Fusion:Template {
node = ${node}
site = ${site}

Script includes before the closing body tag should go here
javascripts = Neos.Fusion:Array

This processor appends the rendered javascripts Array to the rendered
→˓template

@process.appendJavaScripts = ${value + this.javascripts}
}

}

By looking at this definition, we understand a bit more about how page rendering actually works.
Neos.Neos:Page inherits from Neos.Fusion:Http.Message, which in turn inherits from Neos.
Fusion:Array. Array fusion objects just render their keys one after another, so the Page object just outputs
whatever is in it. The Neos.Neos:Page object renders the HTML framework, such as doctype, head and body
tags, and also defines the default integration points for site integrators - head and body as well as their inner ob-
jects. It is not by coincidence that these exact paths are pre-filled with sensible defaults in site package’s generated
default Root.fusion files.

We can also see that the body object is a Neos.Fusion:Template, which is why we have to set the template
path to a Fluid template which will be rendered as the body.

Rendering custom document types

There are two basic approaches to render different document types. We currently recommend to create a Fusion
prototype per custom page type, which is since Neos 4.0 automatically picked up by Neos (see below). The “old”

3.3. Rendering Custom Markup 57

Neos CMS Documentation, Release 4.0.0

way involves adding one root matcher per document type, explicitly checking for the node type in the condition,
and redirecting Fusion to another render path. It is documented here for completeness’ sake, but we do not
recommend to use it anymore.

Prototype-based rendering

Since Neos 4.0, the root Case object ships with a documentType matcher, which will automatically pick up
and render Fusion prototypes with the same name as the corresponding document node type, if they exist. This
snippet of Fusion in the root Case is responsible for it:

root = Neos.Fusion:Case {

[...]

documentType {
condition = Neos.Fusion:CanRender {

type = ${q(documentNode).property('_nodeType.name')}
}
type = ${q(documentNode).property('_nodeType.name')}

}

[...]
}

This means that if you have a custom page type Your.Site:CustomPage, you simply have to create a Fusion
prototype with a matching name to get different rendering for it. We explain how to do this in more detail in the
“How To” section of the docs: Rendering Custom Document Types

Explicit path rendering (discouraged)

Before document-based rendering, you had to add your own matchers to the root object to get different rendering:

root.customPageType1 {
condition = ${q(node).is('[instanceof Your.Site:CustomPage]')}
renderPath = '/custom1'

}

custom1 < page
custom1 {

output modified here...
}

There are a number of disadvantages of doing this, which is why we recommend to stick to prototype-based
rendering:

• We are polluting the root namespace, adding to the danger of path collision

• We need to copy and modify the page object for each new document type, which becomes messy

• The order of path copying is important, therefore introducing possibly unwanted side effects

Further Reading

Details on how Fusion works and can be used can be found in the section Inside Fusion. Adjusting Neos Output
shows how page, menu and content markup can be adjusted freely.

58 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

3.3.3 Creating Custom Content Elements

Neos ships with commonly used, predefined content elements, but it is easily possible to amend and even com-
pletely replace them.

Defining new content elements is usually a three-step process:

1. Defining a Neos ContentRepository Node Type, listing the properties and types of the node.

2. Defining a Fusion object which is responsible for rendering this content type. Usually, this is a wrapper for
a Fluid Template which then defines the rendered markup.

3. Add a Fluid Template which contains the markup being rendered

Creating a Simple Content Element

The following example creates a new content element Acme.Demo:YouTube which needs the YouTube URL and
then renders the video player.

First, the Neos ContentRepository Node Type needs to be defined in NodeTypes.yaml. This can be done in your
site package or in a package dedicated to content elements, if reuse is foreseeable.

'Acme.Demo:YouTube':
superTypes:
'Neos.Neos:Content': TRUE
ui:
group: 'general'
label: 'YouTube Video'
inspector:

groups:
video:
label: 'Video'
icon: 'icon-film'

properties:
videoUrl:

type: string
ui:

label: 'Video URL'
reloadIfChanged: TRUE
inspector:
group: 'video'

The declaration of node types with all required and optional properties is documented in Node Type Definition.

Next the Fusion rendering for the content element has to be defined. By convention, a Fusion object with the same
name as the content element is used for rendering; thus in this case a Fusion object My.Package:YouTube:

prototype(Acme.Demo:YouTube) < prototype(Neos.Neos:Content) {
templatePath = 'resource://Acme.Demo/Private/Templates/FusionObjects/

→˓YouTube.html'
videoUrl = ${q(node).property('videoUrl')}
width = '640'
height = '360'

}

A new Fusion object prototype with the name My.Package:YouTube is declared, inheriting from the pre-defined
Template Fusion object which provides rendering through Fluid.

The templatePath property of the YouTube Fusion object is set to point to the Fluid template to use for rendering.
All (other) properties which are set on the Template Fusion object are directly made available inside Fluid as
variables – and because the YouTube Fusion object extends the Template Fusion object, this rule also applies there.

3.3. Rendering Custom Markup 59

Neos CMS Documentation, Release 4.0.0

Thus, the last line defines a videoUrl variable to be available inside Fluid, which is set to the result of the Eel
expression ${q(node).property(‘videoUrl’)}. Eel is explained in depth in Eel, FlowQuery and Fizzle, but this is a
close look at the used expression q(node).property(‘videoUrl’):

• The q() function wraps its argument, in this case the Neos ContentRepository Node which is currently
rendered, into FlowQuery.

• FlowQuery defines the property(. . .) operation used to access the property of a node.

To sum it up: The expression ${q(node).property(‘videoUrl’)} is an Eel expression, in which FlowQuery is called
to return the property videoUrl of the current node.

The final step in creating the YouTube content element is defining the YouTube.html Fluid template, f.e. with the
following content:

<iframe width="{width}" height="{height}" src="{videoUrl}" frameborder="0"
→˓allowfullscreen></iframe>

In the template the {videoUrl} variable which has been defined in Fusion is used as we need it.

What are the benefits of indirection through Fusion?

In the above example the videoUrl property of the Node is not directly rendered inside the Fluid template. Instead
Fusion is used to pass the videoUrl from the Node into the Fluid template.

While this indirection might look superfluous at first sight, it has important benefits:

• The Fluid Template does not need to know anything about Nodes. It just needs to know that it outputs a
certain property, but not where it came from.

• Because the rendering is decoupled from the data storage this way, the Fusion object can be instantiated
directly, manually setting a videoUrl:

page.body.parts.teaserVideo = My.Package:YouTube {
videoUrl = 'http://youtube.com/.....'

}

• If a property needs to be modified just slightly, a processor can be used for declarative modification of this
property in Fusion; not even touching the Fluid template. This is helpful for smaller adjustments to foreign
packages.

Creating Editable Content Elements

The simple content element created in Creating a Simple Content Element exposes the video URL only through
the property inspector in the editing interface. Since the URL is not directly visible this is the only viable way.

In case of content that is directly visible in the output, inline editing can be enabled by slight adjustments to the
process already explained.

The node type definition must define which properties are inline editable through setting the inlineEditable prop-
erty:

'Acme.Demo:Quote':
superTypes:
'Neos.Neos:Content': TRUE

ui:
group: 'general'
label: 'Quote'

properties:
quote:

type: string
defaultValue: 'Use the force, Luke!'

(continues on next page)

60 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

ui:
label: 'Quote'
inlineEditable: TRUE

The Fusion for the content element is the same as for a non-inline-editable content element:

prototype(Acme.Demo:Quote) < prototype(Neos.Neos:Content) {
templatePath = 'resource://Acme.Demo/Private/Templates/FusionObjects/Quote.

→˓html'
quote = ${q(node).property('quote')}

}

The Fluid template again needs some small adjustment in form of the contentElement.editable ViewHelper to
declare the property that is editable. This may seem like duplication, since the node type already declares the
editable properties. But since in a template multiple editable properties might be used, this still is needed.

{namespace neos=Neos\Neos\ViewHelpers}
<blockquote>

{neos:contentElement.editable(property: 'quote')}
</blockquote>

The blockquote is wrapped around the contentElement.editable and not the other way because that would
mean the blockquote becomes a part of the editable content, which is not desired in this case.

Using the tag attribute to make the ViewHelper use the blockquote tag needed for the element avoids the
nesting in an additional container div and thus cleans up the generated markup:

{namespace neos=Neos\Neos\ViewHelpers}
{neos:contentElement.editable(property: 'quote', tag: 'blockquote')}

A property can be inline editable and appear in the property inspector if configured accordingly. In such a case
reloadIfChanged should be enabled to make changes in the property editor visible in the content area.

Creating Nested Content Elements

In case content elements do not only contain simple properties, but arbitrary sub-elements, the process again is
roughly the same. To demonstrate this, a Video Grid content element will be created, which can contain two texts
and two videos.

1. A Neos ContentRepository Node Type definition is created. It makes use of the childNodes property to
define (and automatically create) sub-nodes when a node of this type is created. In the example the two
video and text elements will be created directly upon element creation:

'Acme.Demo:VideoGrid':
superTypes:

'Neos.Neos:Content': TRUE
ui:

group: 'structure'
label: 'Video Grid'

childNodes:
video0:
type: 'Acme.Demo:YouTube'

video1:
type: 'Acme.Demo:YouTube'

text0:
type: 'Neos.NodeTypes:Text'

text1:
type: 'Neos.NodeTypes:Text'

2. The needed Fusion is created:

3.3. Rendering Custom Markup 61

Neos CMS Documentation, Release 4.0.0

prototype(Acme.Demo:VideoGrid) {
videoRenderer = Acme.Demo:YouTube
textRenderer = Neos.NodeTypes:Text

video0 = ${q(node).children('video0').get(0)}
video1 = ${q(node).children('video1').get(0)}

text0 = ${q(node).children('text0').get(0)}
text1 = ${q(node).children('text1').get(0)}

}

Instead of assigning variables to the Fluid template, additional Fusion objects responsible for the video and
the text rendering are instantiated. Furthermore, the video and text nodes are fetched using Eel and then
passed to the Fluid template.

3. The Fluid template is created. Instead of outputting the content directly using object access on the passed
nodes, the <ts:render> ViewHelper is used to defer rendering to Fusion again. The needed Neos Con-
tentRepository Node is passed as context to Fusion:

{namespace fusion=Neos\Fusion\ViewHelpers}
<fusion:render path="videoRenderer" context="{node: video0}" />
<fusion:render path="textRenderer" context="{node: text0}" />

<fusion:render path="videoRenderer" context="{node: video1}" />
<fusion:render path="textRenderer" context="{node: text1}" />

Instead of referencing specific content types directly the use of the generic ContentCollection content
element allows to insert arbitrary content inside other elements. An example can be found in the
Neos.NodeTypes:MultiColumn and Neos.NodeTypes:MultiColumnItem content elements.

As explained earlier (in What are the benefits of indirection through Fusion?) the major benefit if using Fusion to
decouple the rendering of items this way is flexibility. In the video grid it shows how this enables composability,
other Fusion objects can be re-used for rendering smaller parts of the element.

Content Element Group

In Neos content elements are grouped by type. By default the following groups are available:

general Basic content elements, like text and image.

structure Elements defining a structure. This group contains for example the 2 column element.

plugins Available plugins in the site installation.

It is possible to create new groups by using the Neos.Neos.nodeTypes.groups settings. Registering 2 new groups
could look like:

Neos:
Neos:
nodeTypes:

groups:
form:
label: 'Form elements'

special:
position: 50
label: 'Special elements'
collapsed: true
icon: 'icon-fort-awesome'

The groups are ordered by the position argument.

62 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

Extending The Inspector

Warning: Adding editors and validators is no fixed API yet, keep an eye on the changelogs if you use this.

It is possible to extend the inspector for adding new editors and validators to edit the properties of your nodetypes.

Editors

By default the following list of editors is available in Neos:

• Neos.Neos/Inspector/Editors/BooleanEditor

A checkbox, by default configured for properties of type boolean.

• Neos.Neos/Inspector/Editors/DateTimeEditor

A datepicker with support for time selection too. By default configured for properties of type date.

• Neos.Neos/Inspector/Editors/CodeEditor

An code editor with syntax highlighting. You can use this editor for editing other types of textual content,
by configuring a different highlightingMode and buttonLabel to change usage for this editor:

style:
type: string
ui:

label: 'CSS'
reloadIfChanged: TRUE
inspector:
group: 'code'
editor: 'Neos.Neos/Inspector/Editors/CodeEditor'
editorOptions:
buttonLabel: 'Edit CSS source'
highlightingMode: 'text/css'

• Neos.Neos/Inspector/Editors/ImageEditor

An image editor with cropping and size support. By default configured for properties of type NeosMedi-
aDomainModelImageInterface.

• Neos.Neos/Inspector/Editors/ReferenceEditor

A selector with autocomplete to reference to another node. By default configured for properties of type
reference.

• Neos.Neos/Inspector/Editors/ReferencesEditor

A selector with autocomplete to reference to multiple nodes. By default configured for properties of type
references.

• Neos.Neos/Inspector/Editors/SelectBoxEditor

A selectbox.

• Neos.Neos/Inspector/Editors/TextFieldEditor

A simple textfield. By default configured for properties of type string and integer

The following editors are also available, but will most likely only be used internally in Neos:

• Neos.Neos/Inspector/Editors/MasterPluginEditor

• Neos.Neos/Inspector/Editors/PluginViewEditor

• Neos.Neos/Inspector/Editors/PluginViewsEditor

3.3. Rendering Custom Markup 63

Neos CMS Documentation, Release 4.0.0

Register Custom Editors

There are 2 ways to register custom editors. Either by registering a namespace for a group of editors, or by
selecting the direct path to an editor specifically.

Registering a namespace pointing to a folder containing editors works as follows:

• Create a folder containing the JavaScript sources for the editors

• Name your files PropertyTypeEditor

• Configure the path as a requirejs path mapping using the following Settings.yaml

Neos:
Neos:

userInterface:
requireJsPathMapping:
'My.Package/Inspector/Editors': 'resource://My.Package/Public/Scripts/

→˓Path/To/Folder'

• Now configure the editor for your property in the NodeTypes.yaml:

'My.Package:NodeType':
properties:

myProperty:
type: 'string'
ui:
inspector:
editor: 'My.Package/Inspector/Editors/PropertyTypeEditor'
editorOptions:
optionName: 'optionValue'

To set global options for your editor you can set a set of defaults in Settings.yaml:

Neos:
Neos:
userInterface:

inspector:
editors:
'My.Package/Inspector/Editors/PropertyTypeEditor':

editorOptions:
optionName: 'optionValue'

The editor options set on a property level will override the global editor options.

To register just one specific path as an editor use the following code:

Neos:
Neos:
userInterface:

inspector:
editors:
'My.Package/Inspector/Editors/CustomEditor':

path: 'resource://My.Package/Public/Scripts/Path/To/File/Without/Js/
→˓Extension'

Validators

By default the following validators are available in Neos:

• Neos.Neos/Validation/AbstractValidator

This abstract validator should be used to base custom validators on.

64 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

• Neos.Neos/Validation/AlphanumericValidator

Supported options:

– regularExpression

• Neos.Neos/Validation/CountValidator

Supported options:

– minimum

– maximum

• Neos.Neos/Validation/DateTimeRangeValidator

Supported options:

– latestDate

– earliestDate

• Neos.Neos/Validation/DateTimeValidator

• Neos.Neos/Validation/EmailAddressValidator

Supported options:

– regularExpression

• Neos.Neos/Validation/FloatValidator

• Neos.Neos/Validation/IntegerValidator

• Neos.Neos/Validation/LabelValidator

Supported options:

– regularExpression

• Neos.Neos/Validation/NumberRangeValidator

Supported options:

– minimum

– maximum

• Neos.Neos/Validation/RegularExpressionValidator

Supported options:

– regularExpression

• Neos.Neos/Validation/StringLengthValidator

Supported options:

– minimum

– maximum

• Neos.Neos/Validation/StringValidator

• Neos.Neos/Validation/TextValidator

• Neos.Neos/Validation/UuidValidator

Supported options:

– regularExpression

3.3. Rendering Custom Markup 65

Neos CMS Documentation, Release 4.0.0

Register Custom Validators

There are 2 ways to register custom validators. Either by registering a namespace for a group of validators, or by
selecting the direct path to an validator specifically.

Registering a namespace pointing to a folder containing validators works as follows:

• Create a folder containing the JavaScript sources for the validators

• Name your files DataTypeValidator

• Configure the path as a requirejs path mapping using the following Settings.yaml

Neos:
Neos:

userInterface:
requireJsPathMapping:
'My.Package/Validation': 'resource://My.Package/Public/Scripts/Path/To/

→˓Folder'

• Now configure the validator for your property in the NodeTypes.yaml:

'My.Package:NodeType':
properties:

myProperty:
type: 'string'
validation:
'My.Package/Validation/DataTypeValidator': []

To register just one specific path as a validator use the following code:

Neos:
Neos:
userInterface:

validators:
'My.Package/Validation/CustomValidator':
path: 'resource://My.Package/Public/Scripts/Path/To/File/Without/Js/

→˓Extension'

3.3.4 Adjusting Neos Output

Page Template

The page template defines the overall structure of the generated markup: what is rendered in the body and head of
the resulting document.

The Body

As briefly explained in Rendering A Page the path to your own template for the body of a generated page can be
set using Fusion:

page = Page
page.body.templatePath = 'resource://My.Package/Private/Templates/PageTemplate.html
→˓'

The file will the be used to render the body content and any Fluid placeholders will be substituted, ViewHelpers
will be executed. Since no further information is given to the rendering process, the full content of the template
will be used for the body.

66 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

If the template contains a full HTML page, this will lead to invalid markup. But in most cases having the template
as a full HTML document is desired, as it allows easy handling by the developer and can be previewed as is in a
browser.

To use just a part of the document for the body, that part can simply be enclosed in a Fluid section:

<!DOCTYPE html>
<html>
<head>

...
</head>
<body>
<f:section name="body">

<h1>{title}</h1>
</f:section>
</body>
</html>

The Fusion is then amended with the declaration of the section to use:

page = Page
page.body {

templatePath = 'resource://My.Package/Private/Templates/PageTemplate.html'
sectionName = 'body'

}

This results in only the part inside the template’s “body” section to be used for rendering the body of the generated
page.

To add actual content from Neos to the desired places in the markup, a special ViewHelper to turn control back to
Fusion is used. This has been mentioned in Rendering A Page already.

This template uses the render ViewHelper twice, once to render the path parts/menu and once to render the path
content.main:

<f:section name="body">
<ts:render path="parts.menu" />
<h1>{title}</h1>
<ts:render path="content.main" />

</f:section>

Those paths are relative to the current path. Since that part of the template is rendered by the Fusion object at
page.body, this is the starting point for the relative paths. This means the Menu and the ContentCollection
in this Fusion are used for rendering the output:

page = Page
page.body {

templatePath = 'resource://My.Package/Private/Templates/PageTemplate.html'
sectionName = 'body'
parts.menu = Menu
content.main = ContentCollection
content.main.nodePath = 'main'

}

The Head

The head of a page generated by Neos contains only minimal content by default. Apart from the meta tag
declaring the character set it is empty:

<head>
<meta charset="UTF-8" />

</head>

3.3. Rendering Custom Markup 67

Neos CMS Documentation, Release 4.0.0

To fill this with life, it is recommended to add sections to the head of your HTML template that group the needed
parts. Additional Fusion Template objects are then used to include them into the generated page. Here is an
example:

Page/Default.html

<head>
<f:section name="meta">

<title>{title}</title>
</f:section>

<f:section name="stylesheets">
<!-- put your stylesheet inclusions here, they will be included in

→˓your website by Fusion -->
</f:section>

<f:section name="scripts">
<!-- put your javascript inclusions here, they will be included in

→˓your website by Fusion -->
</f:section>

</head>

Library/Root.fusion

page.head {
meta = Neos.Fusion:Template {

templatePath = 'resource://Acme.DemoCom/Private/Templates/Page/
→˓Default.html'

sectionName = 'meta'

title = ${q(node).property('title')}
}
stylesheets.site = Neos.Fusion:Template {

templatePath = 'resource://Acme.DemoCom/Private/Templates/Page/
→˓Default.html'

sectionName = 'stylesheets'
}
javascripts.site = Neos.Fusion:Template {

templatePath = 'resource://Acme.DemoCom/Private/Templates/Page/
→˓Default.html'

sectionName = 'scripts'
}

}

The Fusion fills the page.head instance of Neos.Fusion:Array with content. The predefined paths for
page.head.stylesheets, page.head.javascripts or page.body.javascripts should be used to add custom includes.
They are implemented by a Fusion Array and allow arbitrary items to specify JavaScript or CSS includes without
any restriction on the content.

This will render some more head content:

<head>
...
<title>Home</title>
<!-- put your stylesheet inclusions here, they will be included in your

→˓website by Fusion -->
<!-- put your javascript inclusions here, they will be included in your

→˓website by Fusion -->
...

</head>

This provides for flexibility and allows to control precisely what ends up in the generated markup. Anything that
is needed can be added freely, it just has to be in a section that is included.

68 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

Menu Rendering

Out of the box the Menu is rendered using a simple unsorted list:

<ul class="nav">
<li class="current">

Home

<li class="normal">
Blog

Wrapping this into some container (if needed) in a lot of cases provides for enough possibilities to style the menu
using CSS. In case it still is needed, it is possible to change the rendered markup of Menu using Fusion. Menu is
defined inside the core of Neos together with Neos.NodeTypes:

Neos.Neos/Resources/Private/Fusion/Root.fusion

prototype(Neos.Neos:Menu).@class = 'Neos\\Neos\\Fusion\\MenuImplementation'

Neos.NodeTypes/Resources/Private/Fusion/Root.fusion

prototype(Neos.NodeTypes:Menu) < prototype(Neos.Neos:Menu)
prototype(Neos.NodeTypes:Menu) {

templatePath = 'resource://Neos.NodeTypes/Private/Templates/FusionObjects/
→˓Menu.html'

entryLevel = ${String.toInteger(q(node).property('startLevel'))}
maximumLevels = ${String.toInteger(q(node).property('maximumLevels'))}
node = ${node}

}

The above code defines the prototype of Menu with the prototype(Menu) syntax. This prototype is the “blueprint”
of all Menu objects which are instantiated. All properties which are defined on the prototype (such as @class or
templatePath) are automatically active on all Menu instances, if they are not explicitly overridden.

One way to adjust the menu rendering is to override the templatePath property, which points to a Fluid template.
To achieve that, we have two possibilities.

First, the templatePath for the menu at page.body.parts.menu can be set:

page.body.parts.menu.templatePath = 'resource://My.Package/Private/Templates/
→˓MyMenuTemplate.html'

This overrides the templatePath which was defined in prototype(Menu) for this single menu.

Second, the templatePath inside the Menu prototype itself can be changed:

prototype(Menu).templatePath = 'resource://My.Package/Private/Templates/
→˓MyMenuTemplate.html'

In this case, the changed template path is used for all menus which do not override the templatePath explicitly.
Every time prototype(. . .) is used, this can be understood as: “For all objects of type . . . , define something”

After setting the path, changing the menu is simply a job of copying the default Menu template into MyMenuTem-
plate.html and adjusting the markup as needed.

Menu states

The default Menu implementation assigns CSS classes to the li tags depending on their state:

current A menu item pointing to the page that is currently shown

3.3. Rendering Custom Markup 69

Neos CMS Documentation, Release 4.0.0

active Any menu item that is on the path to the current page

normal Any menu item that is neither current nor active

Content Element Rendering

The rendering of content elements follows the same principle as shown for the Menu. The default Fusion is defined
in the Neos.NodeTypes package and the content elements all have default Fluid templates.

Combined with the possibility to define custom templates per instance or on the prototype level, this already
provides a lot of flexibility. Another possibility is to inherit from the existing Fusion and adjust as needed using
Fusion.

The available properties and settings that the Fusion objects in Neos provide are described in Fusion Reference.

Including CSS and JavaScript in a Neos Site

Including CSS and JavaScript should happen through one of the predefined places of the Page object. Depending
on the desired position one of the page.head.javascripts, page.head.stylesheets or page.body.javascripts Arrays
should be extended with an item that renders script or stylesheet includes:

page.head {

stylesheets {
bootstrap = '<link href="//netdna.bootstrapcdn.com/bootstrap/3.0.3/

→˓css/bootstrap.min.css" rel="stylesheet">'
}

javascripts {
jquery = '<script src="//code.jquery.com/jquery-1.10.1.min.js"></

→˓script>'
}

}

page.body {

javascripts {
bootstrap = '<script src="//netdna.bootstrapcdn.com/bootstrap/3.0.

→˓3/js/bootstrap.min.js"></script>'
}

}

The page.body.javascripts content will be appended to the rendered page template so the included scripts should
be placed before the closing body tag. As always in Fusion the elements can be a simple string value, a Fusion
object like Template or an expression:

page.head {
Add a simple value as an item to the javascripts Array
javascripts.jquery = '<script src="//code.jquery.com/jquery-1.10.1.min.js">

→˓</script>'

Use an expression to render a CSS include (this is just an example,
→˓bootstrapVersion is not defined by Neos)

stylesheets.bootstrap = ${'<link href="//netdna.bootstrapcdn.com/bootstrap/
→˓' + bootstrapVersion + '/css/bootstrap.min.css" rel="stylesheet">'}
}

page.body {
Use a Template object to access a special section of the site template

(continues on next page)

70 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

javascripts.site = Neos.Fusion:Template {
templatePath = 'resource://Acme.DemoCom/Private/Templates/Page/

→˓Default.html'
sectionName = 'bodyScripts'

}
}

The order of the includes can be specified with the @position property inside the Array object. This is especially
handy for including JavaScript libraries and plugins in the correct order:

page.head {
jquery = '<script src="//code.jquery.com/jquery-1.10.1.min.js"></script>'

javascripts.jquery-ui = '<script src="path-to-jquery-ui"></script>'
javascripts.jquery-ui.@position = 'after jquery'

}

CSS and JavaScript restrictions in a Neos Site

Very little constraints are imposed through Neos for including JavaScripts or stylesheets. But since the Neos user
interface itself is built with HTML, CSS and JavaScript itself, some caveats exist.

Since the generated markup contains no stylesheets by default and the generated JS is minimal, those restrictions
affect only the display of the page to the editor when logged in to the Neos editing interface.

In this case, the Neos styles are included and a number of JavaScript libraries are loaded, among them jQuery,
Ember JS and VIE. The styles are all confined to a single root selector and for JavaScript the impact is kept as low
as possible through careful scoping.

CSS Requirements

• the <body> tag is not allowed to have a CSS style with position:relative, as this breaks the positions of
modal dialogs we show at various places. Zurb Foundation is one well-known framework which sets this as
default, so if you use it, then fix the error with body { position: static }.

TODO check if this is still true

JavaScript Requirements

TODO “what about the UI below a single DOM element idea”

Adjusting the HTTP response

It is possible to set HTTP headers and the status code of the response from Fusion. See Neos.Fusion:Http.Message
for an example.

3.4 Content Dimensions

3.4.1 Introduction

Content dimensions are a generic concept to have multiple variants of a node. A dimension can be anything like
“language”, “country” or “customer segment”. The content repository supports any number of dimensions. Node
variants can have multiple values for each dimension and are connected by the same identifier. This enables a
single-tree approach for localization, personalization or other variations of the content in a site.

3.4. Content Dimensions 71

Neos CMS Documentation, Release 4.0.0

If content is rendered and thus fetched from the content repository, it will always happen in a context. This context
contains a list of values for each dimension that specifies which dimension values are visible and in which fallback
order these should apply. So the same node variants can yield different results depending on the context that is
used to fetch the nodes.

Dimension presets assign a name to the list of dimension values and are used to display dimensions in the user
interface or in the routing. They represent the allowed combinations of dimension values.

Tip: See the Translating content cookbook for a step-by-step guide to create a multi-lingual website with Neos.

3.4.2 Dimension Configuration

The available dimensions and presets can be configured via settings:

Neos:
ContentRepository:
contentDimensions:

Content dimension "language" serves for translation of content into
→˓different languages. Its value specifies

the language or language variant by means of a locale.
'language':

The default dimension that is applied when creating nodes without
→˓specifying a dimension

default: 'mul_ZZ'
The default preset to use if no URI segment was given when resolving

→˓languages in the router
defaultPreset: 'all'
label: 'Language'
icon: 'icon-language'
presets:
'all':
label: 'All languages'
values: ['mul_ZZ']
uriSegment: 'all'

Example for additional languages:

'en_GB':
label: 'English (Great Britain)'
values: ['en_GB', 'en_ZZ', 'mul_ZZ']
uriSegment: 'gb'

'de':
label: 'German (Germany)'
values: ['de_DE', 'de_ZZ', 'mul_ZZ']
uriSegment: 'de'

The Neos ContentRepository and Neos packages don’t provide any dimension configuration per default.

3.4.3 Preset Constraints

Neos can be configured to work with more than one content dimension. A typical use case is to define separate
dimensions for language and country: pages with product descriptions may be available in English and German,
but the English content needs to be different for the markets target to the UK or Germany respectively. However,
not all possible combinations of language and country make sense and thus should not be accessible. The
allowed combinations of content dimension presets can be controlled via the preset constraints feature.

Consider a website which has dedicated content for the US, Germany and France. The content for each country
is available in English and their respective local language. The following configuration would make sure that the
combinations “German – US”, “German - France”, “French - US” and “French - Germany” are not allowed:

72 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

Neos:
ContentRepository:
contentDimensions:

'language':
default: 'en'
defaultPreset: 'en'
label: 'Language'
icon: 'icon-language'
presets:
'en':
label: 'English'
values: ['en']
uriSegment: 'en'

'de':
label: 'German'
values: ['de']
uriSegment: 'de'
constraints:

country:
'us': false
'fr': false

'fr':
label: 'French'
values: ['fr']
uriSegment: 'fr'
constraints:

country:
'us': false
'de': false

'country':
default: 'us'
defaultPreset: 'us'
label: 'Country'
icon: 'icon-globe'
presets:
'us':
label: 'United States'
values: ['us']
uriSegment: 'us'

'de':
label: 'Germany'
values: ['de']
uriSegment: 'de'

'fr':
label: 'France'
values: ['fr']
uriSegment: 'fr'

Instead of configuring every constraint preset explicitly, it is also possible to allow or disallow all presets of a given
dimension by using the wildcard identifier. The following configuration has the same effect like in the previous
example:

Neos:
ContentRepository:
contentDimensions:

'language':
default: 'en'
defaultPreset: 'en'
label: 'Language'
icon: 'icon-language'
presets:
'en':

(continues on next page)

3.4. Content Dimensions 73

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

label: 'English'
values: ['en']
uriSegment: 'en'

'de':
label: 'German'
values: ['de']
uriSegment: 'de'
constraints:

country:
'de': true
'*': false

'fr':
label: 'French'
values: ['fr']
uriSegment: 'fr'
constraints:

country:
'fr': true
'*': false

'country':
default: 'us'
defaultPreset: 'us'
label: 'Country'
icon: 'icon-globe'
presets:
'us':
label: 'United States'
values: ['us']
uriSegment: 'us'

'de':
label: 'Germany'
values: ['de']
uriSegment: 'de'

'fr':
label: 'France'
values: ['fr']
uriSegment: 'fr'

While the examples only defined constraints in the language dimension configuration, it is perfectly possible
to additionally or exclusively define constraints in country or other dimensions.

3.4.4 Migration of existing content

Adjusting content dimensions configuration can lead to issues for existing content. When a new content dimension
is added, a corresponding value needs to be added to existing content, otherwise no nodes would be found.

This can be done with a node migration which is included in the Neos.ContentRepository package:

./flow node:migrate 20150716212459

This migration adds missing content dimensions by setting the default value on all existing nodes, if not already
set.

Alternatively a custom node migration can be created allowing flexibility and constraints. See Node Migration
Reference.

3.4.5 Routing

Neos provides a route-part handler that will include a prefix with the value of the uriSegment setting of a
dimension preset for all configured dimensions. This means URIs will not contain any prefix by default as long

74 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

as no content dimension is configured. Multiple dimensions are joined with a _ character, so the uriSegment
value must not include an underscore.

The default preset can have an empty uriSegment value. The following example will lead to URLs that do not
contain en if the en_US preset is active, but will show the uriSegment for other languages that are defined as well:

Neos:
ContentRepository:
contentDimensions:

'language':
default: 'en'
defaultPreset: 'en_US'
label: 'Language'
icon: 'icon-language'
presets:
'en':
label: 'English (US)'
values: ['en_US']
uriSegment: ''

The only limitation is that all segments must be unique across all dimensions. If you need non-unique segments,
you can switch support for non-empty dimensions off:

Neos:
Neos:
routing:

supportEmptySegmentForDimensions: FALSE

3.4.6 Limitations

In Neos 1.2 node variants can only be created by having a common fallback value in the presets. This means a
node can only be translated to some other dimension value if it “shined” through from a fallback value.

In Neos 2.0, it is possible to create node variants across dimension borders, i.e. to translate an English version of
a Document to German, without having fall-backs from German to English or vice versa.

Note: This is a documentation stub.

3.5 Multi Site Support

3.5.1 Separating Assets Between Sites

In multi-site setups it can become a use case to having to separate assets to a between sites. For this Neos supports
creating asset collections. An asset collection can contain multiple assets, and an asset can belong to multiple
collections. Additionally tags can belong to one or multiple collections.

Every site can (in the site management module) be configured to have a default asset collection. This means
that when assets are uploaded in the inspector they will automatically be added to the sites collection if one
is configured. When the editor opens the media browser/module it will automatically select the current sites
collection.

The media browser/module allows administrators to create/edit/delete collections and also select which tags are
included in a collection.

3.5. Multi Site Support 75

Neos CMS Documentation, Release 4.0.0

3.6 Content Cache

3.6.1 Introduction

The frontend rendering of a document node in Neos can involve many queries and operations. Doing this for
every request would be too slow to achieve a feasible response time. The content cache is a feature of Fusion and
supports a configurable and nested cache that can answer many requests directly from the cache without expensive
operations. It is based on the Flow caching framework that supports many different cache backends, expiration
and tagging.

Each Fusion path (of type object) can have its own cache configuration. These cache configurations can be nested
to re-use parts of the content and have multiple cache entries with different properties on the same page. This
could be a menu or section that is the same for many pages. The nesting support is also allows to have uncached
content like plugins inside cached content.

The content cache is active even when you are in editing mode. Cache entries will be flushed automatically
whenever data has changed through a tag based strategy or when relevant files changed during development (code,
templates or configuration).

Note: In Neos, you don’t a have a button to clear the cache. Cache invalidation is handled by the core and can be
configured to be application specific. It’s really important to configure the cache correctly to avoid problems with
cache invalidation.

Fig. 1: An example cache hierarchy with different modes

Let’s see how the content cache can help you to deliver a faster user experience.

76 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

3.6.2 The basics

The main Fusion path is root, you can find it in the file Fusion/DefaultFusion.fusion in the Neos.
Neos package. Here is a small part of this file that shows the outermost cache configuration of the root path:

root = Neos.Fusion:Case {
default {

@position = 'end 9999'
condition = TRUE
renderPath = '/page'

}

@cache {
mode = 'cached'

maximumLifetime = '86400'

entryIdentifier {
node = ${node}
editPreviewMode = ${node.context.currentRenderingMode.name}

}

entryTags {
Whenever the node changes the matched condition could

→˓change
1 = ${'Node_' + documentNode.identifier}
Whenever one of the parent nodes changes the layout

→˓could change
2 = ${'DescendantOf_' + documentNode.identifier}

}
}

}

The given configuration will cache the entire page content with a unique identifier defined by the current node (the
document node), the preview mode and globally configured entry identifiers.

Note: All entryIdentifier values will be evaluated and combined to a single string value (the keys will be
part of the identifier and sorted alphabetically).

In the @cache meta property the following subproperties are allowed:

mode Sets the caching mode of the current path. Possible values are 'embed' (default), 'cached',
'dynamic' or 'uncached'. Only simple string values are supported for this property.

It defaults to mode embed which will not create a new cache entry but store the con‘tent into the next outer
cached entry. With mode cached a separate cache entry will be created for the path. Mode uncached
can be used to always evaluate a path even if is contained inside a cached path. The dynamic mode
evalutes a so called “discriminator” on every request and caches results differently depending on it’s value.
Dynamic cache mode is therefore much faster than uncached but slightly slower compared to cached
mode. It is useful in situations where arguments (eg. from the request) lead to different rendering results.
The context property should be set to configure the Fusion context variables that will be available when
evaluating the uncached path.

maximumLifetime Set the maximum lifetime for the nearest cached path. Possible values are null (default),
0 (unlimited lifetime) or the amount of seconds as an integer.

If this property is declared on a path with caching mode cached or dynamic it will set the lifetime of the
cache entry to the minimum of all nested maximumLifetime configurations (in paths with mode embed)
and the maximumLifetime of the current configuration.

entryIdentifier Configure the cache entry identifier for mode cached or dynamic based on an array of
values.

3.6. Content Cache 77

Neos CMS Documentation, Release 4.0.0

The prototype Neos.Fusion:GlobalCacheIdentifiers will be used as the base object, so global
values that influence all cache entries can be added to that prototype, see Global cache entry identifiers for
more details.

If this property is not set, the identifier is built from all Fusion context values that are simple values or
implement CacheAwareInterface.

The identifier string value will be a hash built over all array values including and sorted by their key.

Note: It is very important to add all values that influence the output of the current path to the
entryIdentifier array since cache entries will be re-used across rendered documents if the same identifier
is requested. In the cache hierarchy the outermost cache entry determines all the nested entries, so it’s important
to add values that influence the rendering for every cached path along the hierarchy.

entryTags Configure a set of tags that will be assigned to the cache entry for mode cached or dynamic as
an array.

The correct entry tags are important to achieve an automatic flushing of affected cache entries if a node or
other data in Neos was changed during editing, publishing or other actions. A number of tags with a specific
pattern are flushed by default in Neos whenever a node is changed, published or discarded. See Cache Entry
Tags for a full list.

context Configure a list of variable names that will be stored from the Fusion context for later rendering of a
path with mode uncached or dynamic. Only values that are configured here will be available in Fusion
when the path is evaluated in subsequent request.

Example from Plugin.fusion:

prototype(Neos.Neos:Plugin) {
@cache {

mode = 'uncached'
context {

1 = 'node'
2 = 'documentNode'

}
}

}

entryDiscriminator Configure an expression that uniquely discriminates different entries of a dynamic
cached area. The expression or Fusion object must evaluate to a string to be used as discriminator and
should be different for every cache entry you want to create for this dynamic cached area.

Example for a dynamic configuration with entryDiscriminator:

prototype(Neos.Neos:Plugin) {
@cache {

mode = 'dynamic'
entryIdentifier {
node = ${node}

}
entryDiscriminator = ${request.arguments.pagination}
context {

1 = 'node'
2 = 'documentNode'

}
entryTags {

1 = ${'Node_' + node.identifier}
}

}
}

When using dynamic as the cache mode, the cache can be disabled by setting the entryDiscriminator
to false. This can be used to make the cache behavior dependable on some context, i.e. the current request

78 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

method:

prototype(Neos.NodeTypes:Form) {
@cache {

mode = 'dynamic'
entryIdentifier {
node = ${node}

}
entryDiscriminator = ${request.httpRequest.methodSafe ? 'static' :

→˓false}
context {

1 = 'node'
2 = 'documentNode'

}
}

}

In this example the Form will be cached unless the request method is unsafe (for example POST) in which case
it is switched to uncached.

Cache Entry Tags

Neos will automatically flush a set of tags whenever nodes are created, changed, published or discarded. The
exact set of tags depends on the node hierarchy and node type of the changed node. You should assign tags that
mathches one of these patterns in your configuration. You can use an Eel expression to build the pattern depending
on any context variable including the node identifier or type.

The following patterns of tags will be flushed by Neos:

Everything Flushes cache entries for every changed node.

NodeType_[My.Package:NodeTypeName] Flushes cache entries if any node with the given node type
changes. [My.Package:NodeTypeName] needs to be replaced by any node type name. Inheri-
tance will be taken into account, so for a changed node of type Neos.NodeTypes:Page the tags
NodeType_Neos.NodeTypes:Page and NodeType_Neos.Neos:Document (and some more)
will be flushed.

Node_[Identifier] Flushes cache entries if a node with the given identifier changes. Identifier needs
to be replaced by a valid node identifier.

DescendantOf_[Identifier] Flushes cache entries if a child node of the node with the given identifier
changes. Identifier need to be replaced by a valid node identifier.

Example:

prototype(Neos.Neos:ContentCollection) {
#...

@cache {
#...

entryTags {
1 = ${'Node_' + node.identifier}
2 = ${'DescendantOf_' + contentCollectionNode.identifier}

}
}

}

The ContentCollection cache configuration declares a tag that will flush the cache entry for the collection
if any of it’s descendants (direct or indirect child) changes. So editing a node inside the collection will flush the
whole collection cache entry and cause it to re-render.

3.6. Content Cache 79

Neos CMS Documentation, Release 4.0.0

Note: When using cached as the cache mode, your entryTags should always contain the node identifier.
Otherwise, the cache will not be flushed when you make changes to the node itself, which will lead to unexpected
behavior in the Neos backend:

@cache {
mode = 'cached'
entryTags {

1 = ${'Node_' + node.identifier}
2 = ... additional entry tags ...

}
}

3.6.3 Default cache configuration

The following list of Fusion prototypes is cached by default:

• Neos.Neos:Breadcrumb

• Neos.Neos:Menu

• Neos.Neos:Page

• Neos.Neos:ContentCollection (see note)

The following list of Fusion prototypes is uncached by default:

• Neos.NodeTypes:Form

• Neos.Neos:Plugin

Note: The Neos.Neos:ContentCollection prototype is cached by default and has a cache configuration
with proper identifier, tags and maximumLifetime defined. For all ContentCollection objects inside a
Content object the mode is set to embed. This means that node types that have a ContentCollection do
not generate a separate cache entry but are embedded in the outer static ContentCollection.

Overriding default cache configuration

You can override default cache configuration in your Fusion:

prototype(Neos.Neos:PrimaryContent).@cache.mode = 'uncached'

You can also override cache configuration for a specific Fusion Path:

page.body.content.main {
prototype(Neos.Neos:Plugin).@cache.mode = 'cached'

}

3.6.4 Global cache entry identifiers

Information like the request format or base URI that was used to render a site might have impact on all gen-
erated URIs. Depending on the site or application other data might influence the uniqueness of cache entries.
If an entryIdentifier for a cached path is declared without an object type, it will default to Neos.
Fusion:GlobalCacheIdentifiers:

80 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

prototype(My.Package:ExampleNode) {
@cache {

mode = 'cached'

This is the default if no object type is specified
entryIdentifier = Neos.Fusion:GlobalCacheIdentifiers
entryIdentifier {

someValue = ${q(node).property('someValue')}
}

}
}

This prototype can be extended to add or remove custom global values that influence all cache entries without a
specific object type:

prototype(Neos.Fusion:GlobalCacheIdentifiers) {
myRequestArgument = ${request.arguments.myArgument}

}

You can use a Neos.Fusion:RawArray to explicitly specify the values that are used for the entry identifier:

prototype(My.Package:ExampleNode) {
@cache {

mode = 'cached'

entryIdentifier = Neos.Fusion:RawArray {
someValue = ${q(node).property('someValue')}

}
}

}

Security Context

In addition to entry identifiers configured in Fusion, the Security Context Hash is added to the identifier of all
cached segments. This hash is build from the roles of all authenticated accounts and cache identifiers from custom
global objects (exposed through Neos.Flow.aop.globalObjects) implementing CacheAwareInterface.1

3.6.5 Tuning your cache

Change the cache backend

By default, all cache entries are stored on the local filesystem. You can change this in Caches.yaml, the
example below will use the Redis backend for the content cache:

Neos_Fusion_Content:
backend: Neos\Cache\Backend\RedisBackend

Note: The best practice is to change the cache configuration in your distribution.

1 Custom Global Objects are explained in detail in the Flow documentation: http://flowframework.readthedocs.io/en/stable/
TheDefinitiveGuide/PartIII/Security.html#content-security-entityprivilege.

3.6. Content Cache 81

http://flowframework.readthedocs.io/en/stable/TheDefinitiveGuide/PartIII/Security.html#content-security-entityprivilege
http://flowframework.readthedocs.io/en/stable/TheDefinitiveGuide/PartIII/Security.html#content-security-entityprivilege

Neos CMS Documentation, Release 4.0.0

3.7 Permissions & Access Management

3.7.1 Introduction

A common requirement, especially for larger websites with many editors, is the possibility to selectively control
access to certain backend tools and parts of the content. For example so that editors can only edit certain pages or
content types or that they are limited to specific workspaces. These access restrictions are used to enforce certain
workflows and to reduce complexity for editors.

Neos provides a way to define Access Control Lists (ACL) in a very fine-grained manner, enabling the following
use cases:

• hide parts of the node tree completely (useful for multi-site websites and frontend-login)

• show only specific Backend Modules

• allow to create/edit only specific Node Types

• allow to only edit parts of the Node Tree

• allow to only edit a specific dimension

The underlying security features of Flow provide the following generic possibilities in addition:

• protect arbitrary method calls

• define the visibility of arbitrary elements depending on the authenticated user

Privilege targets define what is restricted, they are defined by combining privileges with matchers, to address
specific parts of the node tree. A user is assigned to one or more specific roles, defining who the user is. For each
role, a list of privileges is specified, defining the exact permissions of users assigned to each role.

In the Neos user interface, it is possible to assign a list of multiple roles to a user. This allows to define the
permissions a user actually has on a fine-grained level. Additionally, the user management module has basic
support for multiple accounts per user: a user may, for example, have one account for backend access and another
one for access to a member-only area on the website.

As a quick example, a privilege target giving access to a specific part of the node tree looks as follows:

'Neos\ContentRepository\Security\Authorization\Privilege\NodeTreePrivilege':
'YourSite:EditWebsitePart':
matcher: 'isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")'

3.7.2 Adjusting and defining roles

Neos comes with a number of predefined roles that can be assigned to users:

Role Parent role(s) Description
Neos.ContentRepository:Administrator A no-op role for future use
Neos.Neos:AbstractEditor Neos.ContentRepository:AdministratorGrants the very basic things needed to

use Neos at all
Neos.Neos:LivePublisher A “helper role” to allow publishing to the

live workspace
Neos.Neos:RestrictedEditor Neos.Neos:AbstractEditor Allows to edit content but not publish to

the live workspace
Neos.Neos:Editor Neos.Neos:AbstractEditor

Neos.Neos:LivePublisher
Allows to edit and publish content

Neos.Neos:Administrator Neos.Neos:Editor Everything the Editor can do, plus admin
things

82 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

To adjust permissions for your editors, you can of course just adjust the existing roles (Neos.Neos:RestrictedEditor
and Neos.Neos:Editor in most cases). If you need different sets of permissions, you will need to define your own
custom roles, though.

Those custom roles should inherit from RestrictedEditor or Editor and then grant access to the additional privilege
targets you define (see below).

Here is an example for a role (limiting editing to a specific language) that shows this:

privilegeTargets:
'Neos\ContentRepository\Security\Authorization\Privilege\Node\EditNodePrivilege':
this privilegeTarget is defined to switch to a "whitelist" approach
'Acme.Com:EditAllNodes':

matcher: 'TRUE'

'Acme.Com:EditFinnish':
matcher: 'isInDimensionPreset("language", "fi")'

roles:
'Neos.Neos:Editor':
privileges:

-
privilegeTarget: 'Acme.Com:EditAllNodes'
permission: GRANT

'Acme.Com:FinnishEditor':
parentRoles: ['Neos.Neos:RestrictedEditor']
privileges:

-
privilegeTarget: 'Acme.Com:EditFinnish'
permission: GRANT

3.7.3 Node Privileges

Node privileges define what can be restricted in relation to accessing and editing nodes. In combination with
matchers (see the next section) they allow to define privilege targets that can be granted or denied for specific
roles.

Note: This is a blacklist by default, so the privilege won’t match if one of the conditions don’t match. So the
example:

privilegeTargets:
'Neos\ContentRepository\Security\Authorization\Privilege\Node\CreateNodePrivilege

→˓':
'Some.Package:SomeIdentifier':

matcher: >-
isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")
&& createdNodeIsOfType("Neos.NodeTypes:Text")

will actually only affect nodes of that type (and subtypes). All users will still be able to create other node types,
unless you also add a more generic privilege target:

privilegeTargets:
'Neos\ContentRepository\Security\Authorization\Privilege\Node\CreateNodePrivilege

→˓':
'Some.Package:SomeIdentifier':

matcher: isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")

That will be abstained by default. It’s the same with MethodPrivileges, but with those we abstain all actions by
default (in Neos that is).

3.7. Permissions & Access Management 83

Neos CMS Documentation, Release 4.0.0

NodeTreePrivilege

A privilege that prevents matching document nodes to appear in the Navigate Component. It also prevents editing
of those nodes in case the editor navigates to a node without using the Navigate Component (e.g. by entering the
URL directly).

Usage example:

privilegeTargets:
'Neos\Neos\Security\Authorization\Privilege\NodeTreePrivilege':
'Some.Package:SomeIdentifier':

matcher: 'isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")'

This defines a privilege that intercepts access to the specified node (and all of its child nodes) in the node tree.

EditNodePropertyPrivilege

A privilege that targets editing of node properties.

Usage example:

privilegeTargets:

→˓'Neos\ContentRepository\Security\Authorization\Privilege\Node\EditNodePropertyPrivilege
→˓':

'Some.Package:SomeIdentifier':
matcher: >-
isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")
&& nodePropertyIsIn(["hidden", "name"])

This defines a privilege target that intercepts editing the “hidden” and “name” properties of the specified node
(and all of its child nodes).

ReadNodePropertyPrivilege

A privilege that targets reading of node properties.

Usage example:

→˓'Neos\ContentRepository\Security\Authorization\Privilege\Node\ReadNodePropertyPrivilege
→˓':
'Some.Package:SomeIdentifier':
matcher: 'isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")'

This defines a privilege target that intercepts reading any property of the specified node (and all of its child-nodes).

RemoveNodePrivilege

A privilege that targets deletion of nodes.

Usage example:

privilegeTargets:
'Neos\ContentRepository\Security\Authorization\Privilege\Node\RemoveNodePrivilege
→˓':

'Some.Package:SomeIdentifier':
matcher: 'isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")'

This defines a privilege target that intercepts deletion of the specified node (and all of its child-nodes).

84 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

CreateNodePrivilege

A privilege that targets creation of nodes.

Usage example:

privilegeTargets:
'Neos\ContentRepository\Security\Authorization\Privilege\Node\CreateNodePrivilege

→˓':
'Some.Package:SomeIdentifier':

matcher: >-
isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")
&& createdNodeIsOfType("Neos.NodeTypes:Text")

This defines a privilege target that intercepts creation of Text nodes in the specified node (and all of its child
nodes).

EditNodePrivilege

A privilege that targets editing of nodes.

Usage example:

privilegeTargets:
'Neos\ContentRepository\Security\Authorization\Privilege\Node\EditNodePrivilege':

'Some.Package:SomeIdentifier':
matcher: >-

isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")
&& nodeIsOfType("Neos.NodeTypes:Text")

This defines a privilege target that intercepts editing of Text nodes on the specified node (and all of its child nodes).

ReadNodePrivilege

The ReadNodePrivilege is used to limit access to certain parts of the node tree:

With this configuration, the node with the identifier c1e528e2-b495-0622-e71c-f826614ef287 and all its child
nodes will be hidden from the system unless explicitly granted to the current user (by assigning SomeRole):

privilegeTargets:
'Neos\ContentRepository\Security\Authorization\Privilege\Node\ReadNodePrivilege':
'Some.Package:MembersArea':

matcher: 'isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")'

roles:
'Some.Package:SomeRole':
privileges:

-
privilegeTarget: 'Some.Package:MembersArea'
permission: GRANT

3.7.4 Privilege Matchers

The privileges need to be applied to certain nodes to be useful. For this, matchers are used in the policy, written
using Eel. Depending on the privilege, various methods to address nodes are available.

Note: Global objects in matcher expressions

3.7. Permissions & Access Management 85

Neos CMS Documentation, Release 4.0.0

Since the matchers are written using Eel, anything in the Eel context during evaluation is usable for matching.
This is done by using the context keyword, followed by dotted path to the value needed. E.g. to access the
personal workspace name of the currently logged in user, this can be used:

privilegeTargets:
'Neos\ContentRepository\Security\Authorization\Privilege\Node\ReadNodePrivilege':
'Neos.ContentRepository:Workspace':

matcher: 'isInWorkspace("context.userInformation.personalWorkspaceName“))’

These global objects available under context (by default the current SsecurityContext imported as
securityContext and the UserService imported as userInformation) are registered in the Set-
tings.yaml file in section aop.globalObjects. That way you can add your own as well.

Position in the Node Tree

This allows to match on the position in the node tree. A node matches if it is below the given node or the node
itself.

Signature: isDescendantNodeOf(node-path-or-identifier)

Parameters:

• node-path-or-identifier (string) The nodes’ path or identifier

Applicable to: matchers of all node privileges

This allows to match on the position in the node tree. A node matches if it is above the given node.

Signature: isAncestorNodeOf(node-path-or-identifier)

Parameters:

• node-path-or-identifier (string) The nodes’ path or identifier

Applicable to: matchers of all node privileges

This allows to match on the position in the node tree. A node matches if it is above the given node or anywhere
below the node itself.

Signature: isAncestorOrDescendantNodeOf(node-path-or-identifier)

Parameters:

• node-path-or-identifier (string) The nodes’ path or identifier

Applicable to: matchers of all node privileges

Note: The node path is not reliable because it changes if a node is moved. And the path is not “human-readable”
in Neos because new nodes get a unique random name. Therefore it is best practice not to rely on the path but on
the identifier of a node.

NodeType

Matching against the type of a node comes in two flavors. Combining both allows to limit node creation in a
sophisticated way.

The first one allows to match on the type a node has:

Signature: nodeIsOfType(nodetype-name)

Parameters:

• node-path-or-identifier (string|array) an array of supported node type identifiers or a single
node type identifier

86 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

Applicable to: matchers of all node privileges

Inheritance is taken into account, so that specific types also match if a supertype is given to this matcher.

The second one allows to match on the type of a node that is being created:

Signature: createdNodeIsOfType(nodetype-identifier)

Parameters:

• nodetype-identifier (string|array) an array of supported node type identifiers or a single node
type identifier

Applicable to: matchers of the CreateNodePrivilege

This acts on the type of the node that is about to be created.

Workspace Name

This allows to match against the name of a workspace a node is in.

Signature: isInWorkspace(workspace-names)

Parameters:

• workspace-names (string|array) an array of workspace names or a single workspace name

Applicable to: matchers of all node privileges

Property Name

This allows to match against the name of a property that is going to be affected.

Signature: nodePropertyIsIn(property-names)

Parameters:

• property-names (string|array) an array of property names or a single property name

Applicable to: matchers of he ReadNodePropertyPrivilege and the
EditNodePropertyPrivilege

Content Dimension

This allows to restrict editing based on the content dimension a node is in. Matches if the currently-selected preset
in the passed dimension name is one of presets.

Signature: isInDimensionPreset(name, value)

Parameters:

• name (string) The content dimension name

• presets (string|array) The preset of the content dimension

Applicable to: matchers of all node privileges

The following example first blocks editing of nodes completely (by defining a privilege target that always matches)
and then defines a privilege target matching all nodes having a value of “de” for the “language” content dimension.
That target is then granted for the “Editor” role.

privilegeTargets:
'Neos\ContentRepository\Security\Authorization\Privilege\Node\EditNodePrivilege':
This privilegeTarget must be defined, so that we switch to a "whitelist"

→˓approach
'Neos.Demo:EditAllNodes':

(continues on next page)

3.7. Permissions & Access Management 87

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

matcher: 'TRUE'

'Neos.Demo:EditGerman':
matcher: 'isInDimensionPreset("language", "de")'

roles:
'Neos.Neos:Editor':
privileges:

-
privilegeTarget: 'Neos.Demo:EditGerman'
permission: GRANT

3.7.5 Asset Privileges

Asset privileges define what can be restricted in relation to accessing Assets (images, documents, videos, . . .),
AssetCollections and Tags.

Note: Like Node Privileges this is a blacklist by default, so the privilege won’t match if one of the conditions
don’t match.

ReadAssetPrivilege

A privilege that prevents reading assets depending on the following Privilege Matchers:

Asset Title

This allows to match on the title of the asset.

Signature: titleStartsWith(title-prefix)

Parameters:

• title-prefix (string) Beginning of or complete title of the asset to match

Signature: titleEndWith(title-suffix)

Parameters:

• title-suffix (string) End of title of the asset to match

Signature: titleContains(title-prefix)

Parameters:

• title-prefix (string) Part of title of the asset to match

Asset Media Type

This allows to match on the media type of the asset.

Signature: hasMediaType(media-type)

Parameters:

• media-type (string) Media Type of the asset to match (for example “application/json”)

88 Chapter 3. Creating a Site with Neos

Neos CMS Documentation, Release 4.0.0

Tag

This allows to match on a label the asset is tagged with.

Signature: isTagged(tag-label-or-id)

Parameters:

• tag-label-or-id (string) Label of the Tag to match (for example “confidential”) or its technical
identifier (UUID)

Asset Collection

This allows to match on an Asset Collection the asset belongs to.

Signature: isInCollection(collection-title-or-id)

Parameters:

• collection-title-or-id (string) Title of the Asset Collection to match (for example
“confidential-documents”) or its technical identifier (UUID)

Alternatively, the isWithoutCollection filter to match on assets that don’t belong to any Asset Collection.

Signature: isWithoutCollection()

Usage example:

privilegeTargets:
'Neos\Media\Security\Authorization\Privilege\ReadAssetPrivilege':
'Some.Package:ReadAllPDFs':

matcher: 'hasMediaType("application/pdf")'

'Some.Package:ReadConfidentialPdfs':
matcher: 'hasMediaType("application/pdf") && isTagged("confidential")'

ReadAssetCollectionPrivilege

A privilege that prevents reading Asset Collections depending on the following Privilege Matchers:

Collection Title

This allows to match on the title of the Asset Collection.

Signature: isTitled(collection-title)

Parameters:

• collection-title (string) Complete title of the Asset Collection to match

Usage example:

privilegeTargets:
'Neos\Media\Security\Authorization\Privilege\ReadAssetCollectionPrivilege':
'Some.Package:ReadSpecialAssetCollection':

matcher: 'isTitled("some-asset-collection")'

3.7. Permissions & Access Management 89

Neos CMS Documentation, Release 4.0.0

Collection Identifier

This allows to match on the technical identifier (UUID) of the Asset Collection.

Signature: hasId(collection-id)

Parameters:

• collection-id (string) Technical identifier (UUID) of the Asset Collection to match

Usage example:

privilegeTargets:
'Neos\Media\Security\Authorization\Privilege\ReadAssetCollectionPrivilege':
'Some.Package:ReadSpecialAssetCollection':

matcher: 'hasId("9b13346d-960a-45e6-8e93-c2929373bc90")'

ReadTagPrivilege

A privilege that prevents reading tags depending on the following Privilege Matchers:

Tag Label

This allows to match on the label of the tag.

Signature: isLabeled(tag-label)

Parameters:

• tag-label (string) Complete label of the tag to match

Usage example:

privilegeTargets:
'Neos\Media\Security\Authorization\Privilege\ReadTagPrivilege':
'Some.Package:ReadConfidentialTags':

matcher: 'isLabeled("confidential")'

Tag Identifier

This allows to match on the technical identifier (UUID) of the Tag.

Signature: hasId(tag-id)

Parameters:

• tag-id (string) Technical identifier (UUID) of the Tag to match

Usage example:

privilegeTargets:
'Neos\Media\Security\Authorization\Privilege\ReadTagPrivilege':
'Some.Package:ReadConfidentialTags':

matcher: 'hasId("961c3c03-da50-4a77-a5b4-11d2bbab7197")'

Note: You can find out more about the Asset Privileges in the Neos Media documentation

90 Chapter 3. Creating a Site with Neos

http://neos-media.readthedocs.io/en/stable/

Neos CMS Documentation, Release 4.0.0

3.7.6 Restricting Access to Backend Modules

Restrict Module Access

The available modules are defined in the settings of Neos. Here is a shortened example containing only the relevant
parts:

Neos:
Neos:

modules:
'management':

controller: 'Some\Management\Controller'
submodules:
'workspaces':
controller: 'Some\Workspaces\Controller'

Along with those settings privilege targets should be defined. Those are used to hide the module links from the UI
and to protect access to the modules if no access is granted.

The targets are defined as usual in the security policy, using ModulePrivilege. Here is a shortened example:

privilegeTargets:

'Neos\Neos\Security\Authorization\Privilege\ModulePrivilege':

'Neos.Neos:Backend.Module.Management':
matcher: 'management'

'Neos.Neos:Backend.Module.Management.Workspaces':
matcher: 'management/workspaces'

Now those privilege targets can be used to grant/deny access for specific roles. Internally those module privileges
create a MethodPrivilege covering all public actions of the configured module controller. Additionally more fine-
grained permissions can be configured on top.

Note: If the path of a module changes the corresponding privilege target needs to be adjusted accordingly.

See chapter Custom Backend Modules for more examples.

Disable Modules

To completely disable modules available in the Neos UI a setting can be used:

Neos:
Neos:
modules:

'management':
submodules:
'history':
enabled: FALSE

3.7.7 Limitations

Except for the assignment of roles to users there is no UI for editing security related configuration. Any needed
changes have to be made to the policies in Policy.yaml.

3.7. Permissions & Access Management 91

Neos CMS Documentation, Release 4.0.0

3.7.8 Further Reading

The privileges specific to Neos are built based on top of the Flow security features. Read the corresponding
documentation.

92 Chapter 3. Creating a Site with Neos

CHAPTER 4

Extending Neos

4.1 Creating a plugin

Any Flow package can be used as a plugin with a little effort. This section will guide you through a simple
example. First, we will create a really basic Flow package. Second, we’ll expose this Flow package as a Neos
plugin.

4.1.1 Creating a Flow package

First we will create a very simple Flow package to use for integrating it as a plugin.

Note: When developing sites the need for simple plugins will often arise. And those small plugins will be very
site-specific most of the time. In these cases it makes sense to create the needed code inside the site package,
instead of in a separate package.

For the sake of simplicity we will create a separate package now.

If you do not have the Kickstart package installed, you must do this now:

cd /your/htdocs/Neos
php /path/to/composer.phar require neos/kickstarter *

Now create a package with a model, so we have something to show in the plugin:

./flow kickstart:package Sarkosh.CdCollection

./flow kickstart:model Sarkosh.CdCollection Album title:string year:integer
→˓description:string rating:integer
./flow kickstart:repository Sarkosh.CdCollection Album

Then generate a migration to create the needed DB schema:

./flow doctrine:migrationgenerate

The command will ask in which directory the migration should be stored. Select the package
Sarkosh.CdCollection. Afterwards the migration can be applied:

93

Neos CMS Documentation, Release 4.0.0

./flow doctrine:migrate

You should now have a package with a default controller and templates created.

Configure Access Rights

To be able to call the actions of the controller you have to configure a matching set of rights. Create a Policy.yaml
file in Packages/Application/Sarkosh.CdCollection/Configuration/Policy.yaml containing:

privilegeTargets:
Neos\Flow\Security\Authorization\Privilege\Method\MethodPrivilege:
'Sarkosh.CdCollection:StandardControllerActions':

matcher: 'method(Sarkosh\CdCollection\Controller\StandardController->
→˓(index)Action())'

roles:
'Neos.Flow:Everybody':
privileges:

-
privilegeTarget: 'Sarkosh.CdCollection:StandardControllerActions'
permission: GRANT

Note: If you add new actions later on you will have to extend the matcher rule to look like
(index|other|third).

Configure Routes

To actually call the plugin via HTTP request you have to include the Flow default-routes into the Configura-
tion/Routes.yaml of your whole setup (before the Neos routes):

##
Flow subroutes
-

name: 'Flow'
uriPattern: 'flow/<FlowSubroutes>'
defaults:
'@format': 'html'

subRoutes:
FlowSubroutes:

package: Neos.Flow

The frontend of your plugin can now be called via http://neos.demo/flow/sarkosh.cdcollection.
We specifically use the flow prefix here to ensure that the routes of Flow do not interfere with Neos.

Note: The routing configuration will become obsolete as soon as you use the package as as Neos-Plugin as
described in the following steps.

Add data

Now you can add some entries for your CD collection in the database:

INSERT INTO sarkosh_cdcollection_domain_model_album (
persistence_object_identifier, title, year, description, rating

) VALUES (

(continues on next page)

94 Chapter 4. Extending Neos

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

uuid(), 'Jesus Christ Superstar', '1970',
'Jesus Christ Superstar is a rock opera by Andrew Lloyd Webber, with lyrics by

→˓Tim Rice.',
'5'

);

(or using your database tool of choice) and adjust the templates so a list of CDs is shown. When you are done
with that, you can make a plugin out of that.

As an optional step you can move the generated package from its default location Packages/Application/ to Pack-
ages/Plugins. This is purely a convention and at times it might be hard to tell an “application package” from a
“plugin”, but it helps to keep things organized. Technically it has no relevance.

mkdir Packages/Plugins
mv Packages/Application/Sarkosh.CdCollection Packages/Plugins/Sarkosh.CdCollection

If you do this, it is important to rescan the available packages:

./flow flow:package:rescan

After this, you can use the Plugin with the same url http://neos.demo/flow/sarkosh.
cdcollection

4.1.2 Converting a Flow Package Into a Neos Plugin

To activate a Flow package as a Neos plugin, you only need to provide two configuration blocks.

Add a NodeType

First, you need to add a new node type for the plugin, such that the user can choose the plugin from the list of
content elements:

Add the following to Configuration/NodeTypes.yaml of your package:

'Sarkosh.CdCollection:Plugin':
superTypes:
'Neos.Neos:Plugin': TRUE

ui:
label: 'CD Collection'
group: 'plugins'

This will add a new entry labeled “CD Collection” to the “Plugins” group in the content element selector (existing
groups are General, Structure and Plugins).

Configure Fusion

Second, the rendering of the plugin needs to be specified using Fusion, so the following Fusion needs to be added
to your package.

Resources/Private/Fusion/Plugin.fusion:

prototype(Sarkosh.CdCollection:Plugin) < prototype(Neos.Neos:Plugin)
prototype(Sarkosh.CdCollection:Plugin) {

package = 'Sarkosh.CdCollection'
controller = 'Standard'
action = 'index'

}

Finally tweak your site package’s Root.fusion and include the newly created Fusion file:

4.1. Creating a plugin 95

Neos CMS Documentation, Release 4.0.0

include: Plugin.fusion

Now log in to your Neos backend (you must remove the Flow routes again), and you will be able to add your
plugin just like any other content element.

To automatically include the Root.fusion in Neos you have to add the following lines to the Configura-
tion/Settings.yaml of your Package:

Neos:
Neos:
fusion:

autoInclude:
'Sarkosh.CdCollection': TRUE

Use Fusion to configure the Plugin

To hand over configuration to your plugin you can add arbitrary Fusion values to Re-
sources/Private/Fusion/Plugin.fusion:

prototype(Sarkosh.CdCollection:Plugin) {
...
myNodeName = ${q(node).property('name')}

}

In the controller of your plugin you can access the value from Fusion like this.

$myNodeName = $this->request->getInternalArgument('__myNodeName');

4.1.3 Linking to a Plugin

Inside of your Plugin you can use the usual f:link.action and f:uri.action ViewHelpers from fluid to
link to other ControllerActions:

<f:link.action package="sarkosh.cdcollection" controller="standard" action="show"
→˓arguments="{collection: collection}" />

If you want to create links to your plugin from outside the plugin context you have to use one of the following
methods.

To create a link to a ControllerAction of your Plugin in Fusion you can use the following code:

link = Neos.Neos:NodeUri {
you have to identify the document that contains your plugin somehow
node = ${q(site).find('[instanceof Sarkosh.CdCollection:Plugin]').first().

→˓closest('[instanceof Neos.Neos:Document]').get(0)}
absolute = true
additionalParams = ${{'--sarkosh_cdcollection-plugin': {'@package': 'sarkosh.

→˓cdcollection', '@controller':'standard', '@action': 'show', 'collection':
→˓collection}}}
}

The same code in a fluid template looks like this:

{namespace neos=Neos\Neos\ViewHelpers}
<neos:uri.node node="{targetNode}" arguments="{'--sarkosh_cdcollection-plugin': {
→˓'@package': 'sarkosh.cdcollection', '@controller':'standard', '@action': 'show',
→˓'collection': collection}}" />

96 Chapter 4. Extending Neos

Neos CMS Documentation, Release 4.0.0

4.1.4 Configuring a plugin to show specific actions on different pages

With the simple plugin you created above, all of the actions of that plugin are executed on one specific page
node. But sometimes you might want to break that up onto different pages. For this use case there is a node
type called Plugin View. A plugin view is basically a view of a specific set of actions configured in your
NodeTypes.yaml.

The steps to have one plugin which is rendered at multiple pages of your website is as follows:

1. Create your plugin as usual; e.g. like in the above example.

2. Insert your plugin at a specific page, just as you would do normally. This is later called the Master View of
your plugin.

3. You need to define the parts of your plugin you lateron want to have separated in a different page. This is
done in the options.pluginViews setting inside NodeTypes.yaml (see below).

4. Then, in Neos, insert a Plugin View instance on the other page where you want a part of the plugin to
be rendered. In the inspector, you can then select the Plugin instance inside the Master View option, and
afterwards choose the specific Plugin View you want to use.

You can update your Configuration/NodeTypes.yaml like this to configure which actions will be available for the
Plugin View:

'Sarkosh.CdCollection:Plugin':
superTypes:
'Neos.Neos:Plugin': TRUE

ui:
label: 'CD Collection'
group: 'plugins'

options:
pluginViews:
'CollectionShow':

label: 'Show Collection'
controllerActions:
'Sarkosh\CdCollection\Controller\CollectionController': ['show']

'CollectionOverview':
label: 'Collection Overview'
controllerActions:
'Sarkosh\CdCollection\Controller\CollectionController': ['overview']

When you insert a plugin view for a node the links in both of the nodes get rewritten automatically to link to the
view or plugin, depending on the action the link points to. Insert a “Plugin View” node in your page, and then, in
the inspector, configure the “Master View” (the master plugin instance) and the “Plugin View”.

Fixing Plugin Output

If you reuse an existing flow-package a plugin in Neos and check the HTML of a page that includes your plugin,
you will clearly see that things are not as they should be. The plugin is included using its complete HTML,
including head and body tags. This of course results in an invalid document.

To improve that you can add a Configration/Views.yaml file to your Package that can be used to alter the used
template and views based on certain conditions. The documentation for that can be found in the Flow Framework
Documentation.

Optimizing the URLs

By default Neos will create pretty verbose urls for your plugin. To avoid that you have to configure a proper
routing for your Package.

4.1. Creating a plugin 97

Neos CMS Documentation, Release 4.0.0

Plugin Request and Response

The plugin controller action is called as a child request within the parent request. Alike that, the response is also
a child response of the parent and will be handed up to the parent.

Warning: The documentation is not covering all aspects yet. Please have a Look at the How To’s Section as
well.

4.2 Custom Backend Modules

If you want to integrate custom backend functionality you can do so by adding a submodule to the administration
or management section of the main menu. Alternatively a new top level section can be created either by adding a
overview module like the the existing ones or a normal module.

Some possible use cases would be the integrating of external web services, triggering of import or export actions
or creating of editing interfaces for domain models from other packages.

Warning: This is not public API yet due to it’s unpolished state and is subject to change in the future.

4.2.1 Controller Class

Implementing a Backend Module starts by creating an action controller class derived from
\Neos\Flow\Mvc\Controller\ActionController

Classes/Vendor/Site/Domain/Controller/BackendController:

namespace Vendor\Site\Controller;

use Neos\Flow\Annotations as Flow;

class BackendController extends \Neos\Flow\Mvc\Controller\ActionController {
public function indexAction() {

$this->view->assign('exampleValue', 'Hello World');
}

}

4.2.2 Fluid Template

The user interface of the module is defined in a fluid template in the same way the frontend of a website is defined.

Resources/Private/Templates/Backend/Index.html:

{namespace neos=Neos\Neos\ViewHelpers}
<div class="neos-content neos-container-fluid">

<h1></h1>
<p>{exampleValue}</p>

</div>

Note: Neos comes with some ViewHelpers for easing backend tasks. Have a look at the neos:backend
ViewHelpers from the Neos ViewHelper Reference

98 Chapter 4. Extending Neos

Neos CMS Documentation, Release 4.0.0

4.2.3 Configuration

To show up in the management or the administration section the module is defined in the package settings.

Configuration/Settings.yaml:

Neos:
Neos:
modules:

'management':
submodules:
'exampleModule':
label: 'Example Module'
controller: 'Vendor\Site\Controller\BackendController'
description: 'An Example for implementing Backend Modules'
icon: 'icon-star'

4.2.4 Access Rights

To use the module the editors have to be granted access to the controller actions of the module.

Configuration/Policy.yaml:

privilegeTargets:

'Neos\Neos\Security\Authorization\Privilege\ModulePrivilege':

'Vendor.Site:BackendModule':
matcher: 'management/exampleModule'

roles:

'Neos.Neos:Editor':
privileges:

-
privilegeTarget: 'Vendor.Site:BackendModule'
permission: GRANT

Tip: Neos contains several backend modules built with the same API which can be used for inspiration.

4.3 Custom Edit/Preview-Modes

From the beginning the Neos backend was designed to be extensible with different rendering modes users can
switch depending on their use-case. In-place editing and the raw-content-editing-mode are only a small glimpse
of what is possible.

It is encouraged to add custom edit- or preview modes. Use-cases could be the preview of the content in search
engines or on mobile devices.

4.3.1 Add a custom Preview Mode

Edit/preview modes are added to the Neos-Backend via Settings.yaml.

Neos:
Neos:
userInterface:

(continues on next page)

4.3. Custom Edit/Preview-Modes 99

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

editPreviewModes:
print:
title: 'Print'
show as edit mode
isEditingMode: FALSE
show as preview mode
isPreviewMode: TRUE
render path
fusionRenderingPath: 'print'
show after the existing modes
position: 200
sets the width of the iframe (React UI only)
width: 800
sets the height of the iframe (React UI only)
height: 600
custom background color for content canvas
backgroundColor: '#ffffff'

The settings isEditingMode and isPreviewMode are controlling whether the mode will show up in the
section “Edit” or “Preview” of the Neos-Backend. The major difference between both sections is that inside
“Preview” section the inline editing options are not activated.

The actual rendering of the edit/preview mode is configured in Fusion:

print < page
print {

head {
stylesheets.printCss = Neos.Fusion:Tag {

@position = 'end 10'
tagName = 'link'
attributes {

media = 'all'
rel = 'stylesheet'
href = Neos.Fusion:ResourceUri {

path = 'resource://Neos.Demo/Public/Styles/
→˓Print.css'

}
}

}
}

}

In this example the default rendering as defined in the path page is used and altered to include the Print.css for
all media.

4.3.2 Add a custom Editing Mode

To add an editing mode instead of a preview mode the configuration in Settings.yaml has to be changed.

Neos:
Neos:
userInterface:
editPreviewModes:
print:

isEditingMode: TRUE
isPreviewMode: FALSE

100 Chapter 4. Extending Neos

Neos CMS Documentation, Release 4.0.0

Warning: It is currently possible to configure an edit/preview-mode for editing and preview at the same time.
We are still unsure whether this is a bug or a feature – so this behavior may change in future releases.

4.4 Custom Editors

Note: For documentation on how to create inspector editors for the legacy Ember version of the user interface,
refer to the older versions of the documentation.

Every dataType has its default editor set, which can have options applied like:

Neos:
Neos:
userInterface:

inspector:
dataTypes:
'string':
editor: 'Neos.Neos/Inspector/Editors/TextFieldEditor'
editorOptions:

placeholder: 'This is a placeholder'

On a property level this can be overridden like:

Neos:
Neos:
userInterface:

inspector:
properties:
'string':
editor: 'My.Package/Inspector/Editors/TextFieldEditor'
editorOptions:

placeholder: 'This is my custom placeholder'

In order to implement a custom inspector editor one has to use the UI extensibility layer exposed through the
@neos-project/neos-ui-extensibility package. See Neos User Interface Extensibility API for the detailed informa-
tion on the topic.

Let’s create a simple colour picker editor. For this, create a folder structure in your package to lok like this:

AcmeCom.Neos.Colorpicker
Configuration

Settings.yaml
Resources

Private
Scripts

ColorPickerEditor
package.json
src

ColorPickerEditor.js
index.js
manifest.js

Public
composer.json

You need to have a Composer manifest (composer.json) in place, otherwise the package will not be picked up by
Flow and loading the editor will fail:

4.4. Custom Editors 101

Neos CMS Documentation, Release 4.0.0

{
"name": "acmecom/neos-colorpicker",
"type": "neos-package",
"require": {

"neos/neos-ui": "^1.3"
},
"extra": {

"neos": {
"package-key": "AcmeCom.Neos.Colorpicker"

}
}

}

Use the following package.json file:

{
"scripts": {
"build": "neos-react-scripts build",
"watch": "neos-react-scripts watch"

},
"neos": {
"buildTargetDirectory": "../../../Public/ColorPickerEditor"

},
"devDependencies": {
"@neos-project/neos-ui-extensibility": "^1.3"

},
"dependencies": {
"react-color": "^2.11.1"

}
}

This will put the compiled Plugin.js asset into the Public/ColorPickerEditor folder. This file has to be loaded into
the host UI to be useable. Put the following configuration into Settings.yaml to do it:

Neos:
Neos:
Ui:

resources:
javascript:
'AcmeCom.Neos.ColorPicker:ColorPickerEditor':
resource: resource://AcmeCom.Neos.ColorPicker/Public/ColorPickerEditor/

→˓Plugin.js

The key below javascript has no significance, but it is best practice to use the full package key and editor name,
to avoid name clashes.

Now it is time to write the actual source code of the editor. From index.js we just require the manifest.js file:

require('./manifest');

In manifest.js we use the manifest API to get access to the globalRegistry, then we get the editors registry out of
it and register our custom editor into it:

import manifest from '@neos-project/neos-ui-extensibility';
import ColorPickerEditor from './ColorPickerEditor';

manifest('AcmeCom.Neos.ColorPicker:ColorPickerEditor', {}, globalRegistry => {
const editorsRegistry = globalRegistry.get('inspector').get('editors');
editorsRegistry.set('AcmeCom.Neos.ColorPicker/ColorPickerEditor', {
component: ColorPickerEditor

});
});

102 Chapter 4. Extending Neos

Neos CMS Documentation, Release 4.0.0

And finally the editor component itself in ColorPickerEditor.js:

import React, {PureComponent} from 'react';
import PropTypes from 'prop-types';
import {SketchPicker} from 'react-color';

export default class ColorPickerEditor extends PureComponent {
static propTypes = {
value: PropTypes.string,
commit: PropTypes.func.isRequired,

};
handleChangeColor = newColor => {
this.props.commit(newColor.hex);

};
render() {
return <SketchPicker color={this.props.value} onChange={this.handleChangeColor}

→˓/>;
}

}

Each editor component gets a few API props passed, including the current value of the editor and the commit
callback which the editor should use to commit the new value.

That is it! Now it is time to build and use our brand new editor! To build the editor you need to run the following
commands:

cd Resources/Private/Scripts/ColorPickerEditor
yarn
yarn build # or yarn watch

The first call to yarn will install the needed dependencies, the second call to yarn build actually builds the editor.
During development you can use yarn watch to run the build process whenever the code changes.

Then include the editor for some property in a node type:

'Neos.NodeTypes:TextMixin':
properties:
color:

ui:
label: 'Color picker'
inspector:
editor: 'AcmeCom.Neos.ColorPicker/ColorPickerEditor'

Note: You should exclude Resources/Private/Scripts/YamlEditor/node_modules from version control. . .

4.5 Custom Eel Helper

Eel Helpers provide methods that can be used inside of Eel expressions. That is mostly used to extend the capa-
bilities for data-aquisition and processing of Fusion.

The first step is to create the EelHelper class. Every Helper has to implement the interface
Neos\Eel\ProtectedContextAwareInterface.

namespace Vendor\Site\Eel\Helper;

use Neos\Flow\Annotations as Flow;
use Neos\Eel\ProtectedContextAwareInterface;

class ExampleHelper implements ProtectedContextAwareInterface {

(continues on next page)

4.5. Custom Eel Helper 103

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

/**
* Wrap the incoming string in curly brackets

*
* @param $text string

* @return string

*/
public function wrapInCurlyBrackets($text) {

return '{' . $text . '}';
}

/**
* All methods are considered safe, i.e. can be executed from within Eel

*
* @param string $methodName

* @return boolean

*/
public function allowsCallOfMethod($methodName) {

return TRUE;
}

}

Afterwards the namespace of the Helper has to be registered for usage in Fusion in the Settings.yaml of the
package:

Neos:
Fusion:
defaultContext:

'Vendor.Example': 'Vendor\Site\Eel\Helper\ExampleHelper'

In Fusion you can call the methods of the helper inside of EelExpressions:

exampleEelValue = ${Vendor.Example.wrapInCurlyBrackets('Hello World')}

4.6 Custom FlowQuery Operations

The FlowQuery EelHelper provides you with methods to traverse the ContentRepository. Implementing custom
operations allows the creation of filters, sorting algorithms and much more.

Warning: This has not been declared a public api yet and still might change a bit in future release. Neverthe-
less it is an important functionality and this or a similar mechanism will still be available in the future.

4.6.1 Create FlowQuery Operation

Implementing a custom operation is done by extending the Neos\Eel\FlowQuery\Operations\AbstractOperation
class. The Operation is implemented in the evaluate method of that class.

To identify the operation lateron in Fusion the static class variable $shortName has to be set.

If you pass arguments to the FlowQuery Operation they end up in the numerical array $arguments that is
handed over to the evaluate method.

namespace Vendor\Site\FlowQuery\Operation;

use Neos\Eel\FlowQuery\FlowQuery;

(continues on next page)

104 Chapter 4. Extending Neos

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

use Neos\Eel\FlowQuery\Operations\AbstractOperation;

class RandomElementOperation extends AbstractOperation {

/**
* {@inheritdoc}

*
* @var string

*/
static protected $shortName = 'randomElement';

/**
* {@inheritdoc}

*
* @param FlowQuery $flowQuery the FlowQuery object

* @param array $arguments the arguments for this operation

* @return void

*/
public function evaluate(FlowQuery $flowQuery, array $arguments) {

$context = $flowQuery->getContext();
$randomKey = array_rand($context);
$result = array($context[$randomKey]);
$flowQuery->setContext($result);

}
}

In Fusion you can use this operation to find a random element of the main ContentCollection of the Site-Node:

randomStartpageContent = ${q(site).children('main').children().randomElement()}

Note: For overriding existing operations another operation with the same shortName but a higher priority can be
implemented.

4.6.2 Create Final FlowQuery Operations

If a FlowQuery operation does return a value instead of modifying the FlowQuery Context it has to be declared
$final.

namespace Vendor\Site\FlowQuery\Operation;

use Neos\Eel\FlowQuery\FlowQuery;
use Neos\Eel\FlowQuery\Operations\AbstractOperation;

class DebugOperation extends AbstractOperation {

/**
* If TRUE, the operation is final, i.e. directly executed.

*
* @var boolean

* @api

*/
static protected $final = TRUE;

/**
* {@inheritdoc}

*
* @param FlowQuery $flowQuery the FlowQuery object

(continues on next page)

4.6. Custom FlowQuery Operations 105

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

* @param array $arguments the arguments for this operation

* @return void

*/
public function evaluate(FlowQuery $flowQuery, array $arguments) {

return \Neos\Flow\var_dump($flowQuery->getContext(), NULL, TRUE);
}

}

4.6.3 Further Reading

1. For checking that the operation can actually work on the current context a canEvaluate method can be
implemented.

2. You sometimes might want to use the Fizzle Filter Engine to use jQuery like selectors in the arguments of your
operation. Therefore you can apply a filter operation that is applied to the context as follows:
$flowQuery->pushOperation('filter', $arguments);.

4.7 Custom Fusion Objects

By adding custom Fusion Objects it is possible to extend the capabilities of Fusion in a powerful and configurable
way. If you need to write a way to execute PHP code during rendering, for simple methods, Eel helpers should be
used. For more complex functionality where custom classes with more configuration options are needed, Fusion
objects should rather be created.

As an example, you might want to create your own Fusion objects if you are enriching the data that gets passed
to the template with external information from an API or if you have to convert some entities from identifier to
domain objects.

In the example below, a Gravatar image tag is generated.

4.7.1 Create a Fusion Object Class

To create a custom Fusion object the Neos\Fusion\FusionObjects\AbstractFusionObject class
is extended. The only method that needs to be implemented is evaluate(). To access values from Fusion the
method $this->fusionValue('__fusion_value_key__'); is used:

namespace Vendor\Site\Fusion;

use Neos\Flow\Annotations as Flow;
use Neos\Fusion\FusionObjects\AbstractFusionObject;

class GravatarImplementation extends AbstractFusionObject {

/**
* @return string

*/
public function evaluate() {

$emailAddress = $this->fusionValue('emailAddress');
$size = $this->fusionValue('size') ?: 80;
$gravatarImageSource = 'http://www.gravatar.com/avatar/' .

→˓md5(strtolower(trim($emailAddress))) . '?s=' . $size . '&d=mm&r=g';
return '';

}

}

To use this implementation in Fusion, you have to define a Fusion-prototype first:

106 Chapter 4. Extending Neos

Neos CMS Documentation, Release 4.0.0

prototype(Vendor.Site:Gravatar) {
@class = 'Vendor\\Site\\Fusion\\GravatarImplementation'
emailAddress = ''
size = 80

}

Afterwards the prototype can be used in Fusion:

garavatarImage = Vendor.Site:Gravatar
garavatarImage {

emailAddress = 'hello@neos.io'
size = 120

}

4.8 Custom Validators

Note: For documentation on how to create validators for the legacy Ember version of the user interface, refer to
the older versions of the documentation.

The custom validators are created similarly to custom Custom Editors.

Refer to Neos User Interface Extensibility API for detailed information on the topic.

4.9 Custom ViewHelpers

Custom ViewHelpers are the way to extend the Fluid templating engine to the needs of your project.

Note: The full documentation for writing ViewHelpers is included in the Flow documentation This documenta-
tion is a short introduction of the basic principles.

4.9.1 Create A ViewHelper Class

If you want to create a ViewHelper that you can call from your template (as a tag), you write a php class which has
to inherit from \Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper (or its subclasses).
You need to implement only one method to write a view helper:

namespace Vendor\Site\ViewHelpers;
class TitleViewHelper extends
→˓\Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper {

public function render() {
return 'Hello World';

}
}

Afterwards you have to register the namespace of your ViewHelper in the template before actually using it:

{namespace site=Vendor\Site\ViewHelpers}
<!-- tag syntax -->
<site:title />

<!-- inline syntax -->
{site:title()}

4.8. Custom Validators 107

http://flowframework.readthedocs.org/en/stable/

Neos CMS Documentation, Release 4.0.0

Note: Please look at the Templating documentation for an in-depth explanation of Fluid templating.

4.9.2 Declare View Helper Arguments

There exist two ways to pass arguments to a ViewHelper that can be combined:

1. Add arguments to the render-method of the ViewHelper Class:

namespace Vendor\Site\ViewHelpers;

class TitleViewHelper extends
→˓\Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper {

/**
* Render the title and apply some magic

*
* @param string $title the title

* @param string $value If $key is not specified or could not
→˓be resolved, this value is used. If this argument is not set, child
→˓nodes will be used to render the default

* @return string Translated label or source label / ID key

* @throws \Neos\FluidAdaptor\Core\ViewHelper\Exception

*/
public function render($title, $flag = FALSE) {

apply magic here ...

return '<h1>' . $title . '</h1>';
}

}

2. Use the registerArgument method of the AbstractViewHelper Class:

This is especially useful if you have to define lots of arguments or create base classes for derived
ViewHelpers.

namespace Vendor\Site\ViewHelpers;

class TitleViewHelper extends
→˓\Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper {

/**
* Initialize arguments

*
* @return void

*/
public function initializeArguments() {

$this->registerArgument('title', 'string', 'The Title
→˓to render');

$this->registerArgument('flag', 'boolean', 'A ');
}

public function render() {
$title = $this->arguments['title'];
$flag = $this->arguments['flag'];

apply magic here ...

return '<h1>' . $title . '</h1>';
}

}

108 Chapter 4. Extending Neos

Neos CMS Documentation, Release 4.0.0

4.9.3 Context and Children

If your ViewHelper contains HTML code and possibly other ViewHelpers as well, the content of the ViewHelper
can be rendered and used for further processing:

public function render($title = NULL) {
if ($title === NULL) {

$title = $this->renderChildren();
}
return '<h1>' . $title . '</h1>';

}

Note: It is a good practice to support passing of the main context as argument or children for flexibility an ease
of use.

Sometimes your ViewHelper has to interact with other ViewHelpers insider that are rendered via
$this->renderChildren(). To do that you can modify the context for the fluid rendering of the children.
That allows keeping the scope of every ViewHelper clean and the implementation simple.

public function render() {
get the template variable container
$templateVariableContainer = $renderingContext->

→˓getTemplateVariableContainer();
add a variable to the context
$templateVariableContainer->add('salutation', 'Hello World');
render the children, the variable salutation is available for the child

→˓view helpers
$result = $this->renderChildren();
remove the added variable again from the context
$templateVariableContainer->remove('salutation');
return $result;

}

Note: It is a considered a good practice to create a bunch of simple ViewHelpers that interact via Fluid context
instead of creating complex logic inside a single ViewHelper.

4.9.4 Further reading

1. TagBased ViewHelpers - For the common case that a ViewHelper renders a single HTML-Tag as a result
there is a special base class. The TagBased ViewHelper contains automatic security measures, so if you use
this, the likelyhood of cross-site-scripting vulnerabilities is greatly reduced.

To find out more about that please lookup AbstractTagBasedViewHelper in the Flow documentation

2. Condition ViewHelpers - To provide ViewHelpers that are doing either this or that there is a base
class AbstractConditionViewHelper. This can be used in cases where you cannot express
your condition via <f:if condition="..." >. To find out more about that please lookup
AbstractTagBasedViewHelper in the Flow-Documentation.

3. Widget ViewHelpers - If a view helper needs complex controller logic, has to interact with repositories to
fetch data, needs some ajax-interaction or needs a Fluid-Template for rendering, you can create a Fluid
Widget. It is possible to override the Fluid Template of a Widget in another package so this also provides a
way to create extensible ViewHelpers.

4.9. Custom ViewHelpers 109

http://flowframework.readthedocs.org/en/stable/

Neos CMS Documentation, Release 4.0.0

4.10 Customizing the Inspector

When you add a new node type, you can customize the rendering of the inspector. Based on the first node that we
created in the “CreatingContentElement” cookbook, we can add some properties in the inspector.

4.10.1 Add a simple checkbox element

This first example adds a checkbox, in a dedicated inspector section, to define if we need to hide the Subheadline
property.

You can just add the following configuration to your NodesType.yaml, based on the previous cookbook example:

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml)

'Vendor.Site:YourContentElementName':
ui:
inspector:

groups:
advanced:
label: 'Advanced'
icon: 'icon-fort-awesome'
position: 2

properties:
hideSubheadline:

type: boolean
defaultValue: TRUE
ui:

label: 'Hide Subheadline ?'
reloadIfChanged: TRUE
inspector:
group: 'advanced'

You can add this property to your Fusion:

Fusion (Sites/Vendor.Site/Resources/Private/Fusion/Root.fusion)

prototype(Vendor.Site:YourContentElementName) < prototype(Neos.Neos:Content) {
templatePath = 'resource://Vendor.Site/Private/Templates/FusionObjects/

→˓YourContentElementName.html'
headline = ${q(node).property('headline')}
subheadline = ${q(node).property('subheadline')}
hideSubheadline = ${q(node).property('hideSubheadline')}
text = ${q(node).property('text')}
image = ${q(node).property('image')}

}

And you can use it in your Fluid template:

HTML (Vendor.Site/Private/Templates/FusionObjects/YourContentElementName.html)

{namespace neos=Neos\Neos\ViewHelpers}
<neos:contentElement node="{node}">

<article>
<header>

<h2><neos:contentElement.editable property="headline">{headline -> f:format.
→˓raw()}</neos:contentElement></h2>

<f:if condition="{hideSubheadline}">
<f:else>
<h3><neos:contentElement.editable property="subheadline">{subheadline ->

→˓f:format.raw()}</neos:contentElement></h3>
</f:else>

</f:if>
(continues on next page)

110 Chapter 4. Extending Neos

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

</header>
...

</article>
</neos:contentElement>

4.10.2 Add a simple selectbox element

The second example is about adding a selector to change the class of the article element:

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml)

'Vendor.Site:YourContentElementName':
ui:
inspector:

groups:
advanced:
label: 'Advanced'
position: 2
icon: 'icon-fort-awesome'

properties:
articleType:

type: string
defaultValue: ''
ui:

label: 'Article Type'
reloadIfChanged: TRUE
inspector:
group: 'advanced'
editor: Content/Inspector/Editors/SelectBoxEditor
editorOptions:
placeholder: 'What kind of article ...'
values:
'':
label: ''

announcement:
label: 'Announcement'

casestudy:
label: 'Case Study'

event:
label: 'Event'

Fusion (Sites/Vendor.Site/Resources/Private/Fusion/Root.fusion)

prototype(Vendor.Site:YourContentElementName) < prototype(Neos.Fusion:Template) {
templatePath = 'resource://Vendor.Site/Private/Templates/FusionObjects/

→˓YourContentElementName.html'
headline = ${q(node).property('headline')}
subheadline = ${q(node).property('subheadline')}
articleType = ${q(node).property('articleType')}
text = ${q(node).property('text')}
image = ${q(node).property('image')}

}

HTML (Vendor.Site/Private/Templates/FusionObjects/YourContentElementName.html)

{namespace neos=Neos\Neos\ViewHelpers}
<neos:contentElement node="{node}">

<article{f:if(condition:articleType,then:' class="{articleType}"')}>
...

(continues on next page)

4.10. Customizing the Inspector 111

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

</article>
</neos:contentElement>

4.10.3 Select multiple options in a selectbox element

For selecting more than one item with a slect box the type of the property has to be set to array.

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml):

'Vendor.Site:YourContentElementName':
properties:
tags:

type: array
...
ui:

inspector:
...
editor: Content/Inspector/Editors/SelectBoxEditor
editorOptions:

multiple: TRUE
allowEmpty: FALSE
values:
...

4.10.4 Use custom DataSources for a selectbox element

To add custom selectbox-options, Neos uses data sources for the inspector that can be implemented in PHP. See
Data sources for more details.

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml):

'Vendor.Site:YourContentElementName':
properties:
articleType:
ui:

inspector:
editor: Content/Inspector/Editors/SelectBoxEditor
editorOptions:
dataSourceIdentifier: 'acme-yourpackage-test'

4.10.5 Remove fields from an existing Node Type

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml):

'Neos.Neos:Plugin':
properties:
package: []
subpackage: []
controller: []
action: []

4.10.6 Remove a selectbox option from an existing Node Type

Removing a selectbox option, can be done by simply edition your NodeTypes.yaml.

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml):

112 Chapter 4. Extending Neos

Neos CMS Documentation, Release 4.0.0

'Neos.Neos:Shortcut':
properties:
targetMode:

ui:
inspector:
editorOptions:

values:
parentNode: ~

It is also possible to add Custom Editors and use Custom Validators.

4.11 Data sources

Data sources allow easy integration of data source end points, to provide data to the editing interface without
having to define routes, policies, controller.

Data sources can be used for various purposes, however the return format is restricted to JSON. An example of
their usage is as a data provider for the inspector SelectBoxEditor (see Property Type: string / array<string>
SelectBoxEditor – Dropdown Select Editor for details).

A data source is defined by an identifier and this identifier has to be unique.

To implement a data source, create a class that implements Neos\Neos\Service\DataSource\DataSourceInterface,
preferably by extending Neos\Neos\Service\DataSource\AbstractDataSource. Then set
the static protected property identifier to a string. Make sure you use a unique identifier, e.g.
acme-demo-available-dates.

Then implement the getData method, with the following signature:

/**
* Get data

*
* The return value must be JSON serializable data structure.

*
* @param NodeInterface $node The node that is currently edited (optional)

* @param array $arguments Additional arguments (key / value)

* @return mixed JSON serializable data

* @api

*/
public function getData(NodeInterface $node = null, array $arguments);

The return value of the method will be JSON encoded.

Data sources are available with the following URI pattern /neos/service/data-source/
<identifier>, which can be linked to using the follow parameters:

• @package: ‘Neos.Neos’

• @subpackage: ‘Service’

• @controller: ‘DataSource’

• @action: ‘index

• @format: ‘json’

• dataSourceIdentifier: ‘<identifier>’

Arbitrary additional arguments are allowed. Additionally the routing only accepts GET requests.

If additional arguments are provided then they will automatically be available in the $arguments parameter of
the getData method. Additional arguments will not be property mapped, meaning they will contain their plain
value. However if an argument with the key node is provided, it will automatically be converted into a node.

4.11. Data sources 113

Neos CMS Documentation, Release 4.0.0

Provide a valid node path to use this, and keep in mind that the node argument is restricted to this use-case. This
is done to make working with nodes easy.

The dataSourceIdentifier will automatically be removed from the arguments parameter.

Note: Data sources are restricted to only be accessible for users with the Neos.Neos:Backend.
DataSource privilege, which is included in the Neos.Neos:Editor role. This means that a user has to
have access to the backend to be able to access a data point.

Example TestDataSource.php:

<?php
namespace Acme\YourPackage\DataSource;

use Neos\Neos\Service\DataSource\AbstractDataSource;
use Neos\ContentRepository\Domain\Model\NodeInterface;

class TestDataSource extends AbstractDataSource {

/**
* @var string

*/
static protected $identifier = 'acme-yourpackage-test';

/**
* Get data

*
* @param NodeInterface $node The node that is currently edited (optional)

* @param array $arguments Additional arguments (key / value)

* @return array JSON serializable data

*/
public function getData(NodeInterface $node = NULL, array $arguments)
{

return isset($arguments['integers']) ? array(1, 2, 3) : array('a', 'b', 'c
→˓');

}
}

4.12 Interaction with the Neos backend

Note: For the list of events of the legacy Ember version of the user interface, refer to the older versions of the
documentation. The events documented here exist mostly for backwards-compatibility reasons, as the current
React UI provides a much more powerful extensibility layer. See Neos User Interface Extensibility API for the
detailed information on the topic.

4.12.1 JavaScript events

Some sites will rely on JavaScript initialization when the page is rendered, typically on DocumentReady. The
Neos backend will however often reload the page via Ajax whenever a node property is changed, and this might
break functionality on sites relying on custom JavaScript being executed on DocumentReady.

To fix this, the Neos backend will dispatch an event when the node is added or removed from the page via ajax, and
site specific JavaScript can listen on this event to trigger whatever code is needed to render the content correctly.

114 Chapter 4. Extending Neos

Neos CMS Documentation, Release 4.0.0

document.addEventListener('Neos.NodeCreated', function(event) {
// Do stuff

}, false);

The event object given, will always have the message and time set on event.detail. Some events might have more
attributes set.

The Neos backend will dispatch events that can be listened on when the following events occur:

• Neos.NodeCreated When a new node was added to the document. The event has a reference to the DOM
element in event.detail.element. Additional information can be fetched through the element’s
attributes.

• Neos.NodeRemoved When a new node was removed from the document. The event has a reference to
the DOM element in event.detail.element. Additional information can be fetched through the
element’s attributes.

• Neos.NodeSelected When a node existing on the page is selected. The event has a reference to the DOM el-
ement in event.detail.element and the node model object in event.detail.node. Additional
information can be fetched through the node model.

Example of interacting with the selected node element using the NodeSelected event.

document.addEventListener('Neos.NodeSelected', function (event) {
const node = event.detail.node;
if (node.get('nodeType') === 'Acme:Demo') {

console.log(node.get('properties.title'));
}

}, false);

Example of listening for the LayoutChanged event.

4.13 Rendering special formats (CSV, JSON, XML, . . .)

Rendering an RSS feed as XML or a document in a different format than HTML is possible by configuring a new
route and adding a Fusion path that renders the format.

Let’s have a look at an example that introduce a vcard format to render an imaginary Person document node
type.

4.13.1 Routing

Configuration/Routes.yaml in your site package:

-
name: 'Neos :: Frontend :: Document node with vCard format'
uriPattern: '{node}.vcf'
defaults:

'@package': Neos.Neos
'@controller': Frontend\Node
'@action': show
'@format': vcard

routeParts:
node:

handler:
→˓Neos\Neos\Routing\FrontendNodeRoutePartHandlerInterface

appendExceedingArguments: true

This will register a new route to nodes with the vcard format. URIs with that format will get an .vcf extension.

Global Configuration/Routes.yaml (before the Neos subroutes):

4.13. Rendering special formats (CSV, JSON, XML, . . .) 115

Neos CMS Documentation, Release 4.0.0

##
Site package subroutes

-
name: 'MyPackage'
uriPattern: '<MyPackageSubroutes>'
subRoutes:

'MyPackageSubroutes':
package: 'My.Package'

##
Neos subroutes
...

This will add the new route from the site package before the Neos subroutes.

4.13.2 Fusion

The root case in the default Fusion will render every format that is different from html by rendering a path with
the format value.

Root.fusion:

Define a path for rendering the vcard format
vcard = Neos.Fusion:Case {

person {
condition = ${q(node).is('[instanceof My.Package:Person]')}
type = 'My.Package:Person.Vcard'

}
}

Define a prototype to render a Person document as a vcard
prototype(My.Package:Person.Vcard) < prototype(Neos.Fusion:Http.Message) {

Set the Content-Type header
httpResponseHead {

headers.Content-Type = 'text/x-vcard;charset=utf-8'
}
content = My.Package:Person {

templatePath = 'resource://My.Package/Private/Templates/NodeTypes/
→˓Person.Vcard.html'

Set additional variables for the template
}

}

4.14 Neos User Interface Extensibility API

At the heart of the Neos UI lies the system of registries – key-value stores that contain system components.
The registries are populated through the manifest API command that is exposed through the neos-ui-extensibility
package.

4.14.1 Inspector-specific Registries

Editors

Way to retrieve:

116 Chapter 4. Extending Neos

Neos CMS Documentation, Release 4.0.0

globalRegistry.get('inspector').get('editors')

Contains all inspector editors. The key is an editor name (such as Neos.Neos/Inspector/Editors/SelectBoxEditor),
and the values are objects of the following form:

{
component: TextInput // the React editor component to use. Required
hasOwnLabel: true|false // whether the component renders the label internally or

→˓not
}

Component Wiring

Every component gets the following properties (see EditorEnvelope/index.js)

• identifier: an identifier which can be used for HTML ID generation

• label: the label

• value: the value to display

• propertyName: name of the node property to edit

• options: additional editor options

• commit: a callback function when the content changes.

– 1st argument: the new value

– 2nd argument (optional): an object whose keys are saveHooks to be triggered, the values are hook-
specific options. Example: {'Neos.UI:Hook.BeforeSave.CreateImageVariant':
nextImage}

• renderSecondaryInspector:

– 1st argument: a string identifier of the second inspector; used to implement toggling of the inspector
when calling this method twice.

– 2nd argument: a callback function which can be used to render the secondary
inspector. The callback function should return the secondary inspector con-
tent itself; or “undefined/null” to close the secondary inspector. Example us-
age: props.renderSecondaryInspector('IMAGE_CROPPING', () =>
<MySecondaryInspectorContent />)

Secondary Editors

Way to retrieve:

globalRegistry.get('inspector').get('editors')

Contains all secondary inspector editors, which can be used to provide additional, more complex functionality that
needs more space of the UI than the inspector panel can provide itself.

Use it like the registry for editors.

Views

Way to retrieve:

globalRegistry.get('inspector').get('views')

4.14. Neos User Interface Extensibility API 117

Neos CMS Documentation, Release 4.0.0

Contains all inspector views.

Use it like the registry for editors.

Save Hooks

Way to retrieve:

globalRegistry.get('inspector').get('saveHooks')

Sometimes, it is needed to run code when the user presses “Apply” inside the Inspector.

Example: When the user cropped a new image, on “Apply”, a new imageVariant must be created on the server,
and then the identity of the new imageVariant must be stored inside the value of the image.

The process is as follows:

• When an editor wants its value to be post-processed, it calls props.commit(newValue,
{hookName: hookOptions})

• Then, when pressing “Apply” in the UI, the hookNames are resolved inside this saveHooks registry.

Hook Definitions

Every entry inside this registry is a function of the following signature:

(valueSoFar, hookOptions) => {
return new value; // can also return a new Promise.

}

4.14.2 Validators

Way to retrieve:

globalRegistry.get('validators')

Contains all server feedback handlers.

The key is the server-feedback-handler-type, and the value is a function with the following signature:

(feedback, store) => {
// do whatever you like here

}

4.14.3 Frontend Configuration

Any settings under Neos.Neos.Ui.frontendConfiguration would be available here.

Might be used also for third-party packages to deliver own settings to the UI, but this is still experimental.

Settings from each package should be prefixed to avoid collisions (unprefixed settings are reserved for the core UI
itself), e.g.:

Neos:
Neos:
Ui:

frontendConfiguration:
'Your.Own:Package':
someKey: someValue

118 Chapter 4. Extending Neos

Neos CMS Documentation, Release 4.0.0

Then it may be accessed as:

globalRegistry.get('frontendConfiguration').get('Your.Own:Package').someKey

4.14.4 Inline Editors

Way to retrieve:

globalRegistry.get('inlineEditors')

Each key in this registry should be a unique identifier for an inline editor, that can be referenced in a node type
configuration.

Each entry in this registry is supposed to consist of an object with the following structure:

{
bootstrap: myBootstrapFunction,
createInlineEditor: myInlineEditorFactoryFunction

}

bootstrap is called only once during the global initialization of the guest frame. It is not required to do anything
in this function, but it is possible to prepare the guest frame environment, if any global variables must be defined
or other initialization routines must be run in order for the inline editor to work.

bootstrap will receive an API Object as its first parameter, with the following methods:

• setFormattingUnderCursor: Will dispatch the respective action from the @neos-project/neos-ui-redux-store
package (actions.UI.ContentCanvas.setFormattingUnderCursor)

• setCurrentlyEditedPropertyName: Will dispatch the respective action from the @neos-project/neos-ui-
redux-store package (actions.UI.ContentCanvas.setCurrentlyEditedPropertyName)

createInlineEditor is called on every DOM node in the guest frame that represents an editable property. It is
supposed to handle the initialization and display of an inline editor.

createInlineEditor will receive an object as its first parameter, with the following properties:

• propertyDomNode: The DOM node associated with the editable property

• propertyName: The name of the editable property

• contextPath: The contextPath of the associated node

• nodeType: The nodeType of the associated node

• editorOptions: The configuration for this inline editor

• globalRegistry: The global registry

• persistChange: Will dispatch the respective action from @neos-project/neos-ui-redux-store package (ac-
tions.Changes.persistChanges)

4.14.5 CKEditor5-specific registries

The integration of CKeditor5 is dead simple and tries to introduce a minimal amount of abstractions on top of
CKeditor5. There are only two registries involved in configuring it: config and richtextToolbar

Configuration of CKeditor5

Way to retrieve:

globalRegistry.get('ckEditor5').get('config')

4.14. Neos User Interface Extensibility API 119

Neos CMS Documentation, Release 4.0.0

In CKE all things are configured via a single configuration object: plugins, custom configs, etc (@see https:
//docs.ckeditor.com/ckeditor5/latest/builds/guides/integration/configuration.html)

This registry allows to register a custom configuration processor that takes a configuration object, modifies it and
returns a new one. Example:

config.set('doSomethingWithConfig' (ckeConfig, editorOptions) => {
ckeConfig.mySetting = true;
return ckeConfig;

})

That is all you need to know about configuring CKE in Neos, Refer to CKeditor5 documentation for more details
on what you can do with it: https://docs.ckeditor.com/ckeditor5/latest/index.html

Richtext Toolbar

Way to retrieve:

globalRegistry.get('ckEditor5').get('richtextToolbar')

Contains the Rich Text Editing Toolbar components.

Buttons in the Rich Text Editing Toolbar are just plain React components.

The only way for these components to communicate with CKE is via its commands mechanism (@see https:
//docs.ckeditor.com/ckeditor5/latest/framework/guides/architecture/core-editor-architecture.html#commands)

Some commands may take arguments. Commands also contain state that is serialized into formattingUnderCursor
redux state. Commands are provided and handled by CKE plugins, which may be registered via the configuration
registry explained above.

The values are objects of the following form:

{
commandName: 'bold' // A CKE command that gets dispatched
commandArgs: [arg1, arg2] // Additional arguments passed together with a

→˓command
component: Button // the React component being used for rendering
isVisible: (editorOptions, formattingUnderCursor) => true // A function that

→˓decides is the button should be visible or not
isActive: (formattingUnderCursor, editorOptions) => true // A function that

→˓decides is the button should be active or not
callbackPropName: 'onClick' // Name of the callback prop of the Component

→˓which is
fired when the component's value changes.

// all other properties are directly passed on to the component.
}

4.14.6 CKEditor4-specific registries

Formatting rules

Way to retrieve:

globalRegistry.get('ckEditor').get('formattingRules')

Contains the possible styles for CKEditor.

120 Chapter 4. Extending Neos

https://docs.ckeditor.com/ckeditor5/latest/builds/guides/integration/configuration.html
https://docs.ckeditor.com/ckeditor5/latest/builds/guides/integration/configuration.html
https://docs.ckeditor.com/ckeditor5/latest/index.html
https://docs.ckeditor.com/ckeditor5/latest/framework/guides/architecture/core-editor-architecture.html#commands
https://docs.ckeditor.com/ckeditor5/latest/framework/guides/architecture/core-editor-architecture.html#commands

Neos CMS Documentation, Release 4.0.0

Enabled Styles

The actual enabled styles are determined by the NodeTypes configuration of the property. This means, that if the
node is configured in NodeTypes.yaml using:

properties:
[propertyName]:
ui:

inline:
editorOptions:
formatting:

strong: true

then the “strong” key inside this registry is actually enabled for the editor.

For backwards compatibility reasons, the formatting-and-styling-registry KEYS must match the “pre-React” UI, if
they existed beforehand.

Configuration of CKEditor

With this config, CKEditor itself is controlled:

• the Advanced Content Filter (ACF) is configured, thus determining which markup is allowed in the editors

• which effect a button action actually has.

Currently, there exist three possible effects:

• triggering a command

• setting a style

• executing arbitrary code

Configuration Format

NOTE: one of “command” or “style” must be specified in all cases.

• command (string, optional). If specified, this CKEditor command is triggered; so the command
string is known by CKEditor in the “commands” section: http://docs.ckeditor.com/#!/api/CKEDITOR.
editor-method-getCommand

• style (object, optional). If specified, this CKEditor style is applied. Expects a style description adhering to
CKEDITOR.style(. . .), so for example: { style: {element: ‘h1’}

• config (function, optional): This function needs to adjust the CKEditor config to e.g. configure ACF cor-
rectly. The function gets passed in the config so-far, AND the configuration from the node type under-
neath ui.inline.editorOptions.formatting.[formatingRuleName] and needs to return the modified config. See
“CKEditor Configuration Helpers” below for helper functions.

• extractCurrentFormatFn (function, optional): If specified, this function will extract the current format. The
function gets passed the currend “editor” and “CKEDITOR”.

• applyStyleFn (function, optional): This function applies a style to CKEditor. Arguments: formattingOp-
tions, editor, CKEDITOR.

CKEditor Configuration Helpers

• config: registry.ckEditor.formattingRules.config.addToFormatTags(‘h1’): adds the passed-in tag to the for-
mat_tags configuration option of CKEditor.

4.14. Neos User Interface Extensibility API 121

http://docs.ckeditor.com/#!/api/CKEDITOR.editor-method-getCommand
http://docs.ckeditor.com/#!/api/CKEDITOR.editor-method-getCommand

Neos CMS Documentation, Release 4.0.0

• registry.ckEditor.formattingRules.config.add(‘Strong’): adds the passed-in Button Definition Name to the
ACF configuration (automatic mode). This means the button names are standard CKEditor config buttons,
like “Cut,Copy,Paste,Undo,Redo,Anchor”.

Richtext Toolbar

Contains the Rich Text Editing Toolbar components.

The values are objects of the following form:

{
formattingRule: 'h1' // References a key inside "formattingRules"
component: Button // the React component being used for rendering
callbackPropName: 'onClick' // Name of the callback prop of the Component which

→˓is fired when the component's value changes.

// all other properties are directly passed on to the component.
}

Component wiring

• Each toolbar component receives all properties except “formattingRule” and “component” directly as props.

• Furthermore, the “isActive” property is bound, which is a boolean flag defining whether the text style
referenced by “formatting” is currently active or not.

• Furthermore, the callback specified in “callbackPropName” is wired, which toggles the value.

For advanced use-cases; also the “formattingRule” is bound to the component; containing a
formatting-rule identifier (string). If you need this, you’ll most likely need to listen to selec-
tors.UI.ContentCanvas.formattingUnderCursor and extract your relevant information manually.

Plugins

Way to retrieve:

globalRegistry.get('ckEditor').get('plugins')

Contains custom plugins for CkEditor.

plugins.set('plugin_key', {
initFn: pluginInitFunction

});

pluginInitFunction is passed from CKEDITOR as the first argument. In that function you may register your plugin
with CKEditor via its API (CKEDITOR.plugins.add). Take custom plugins as examples.

4.14.7 Data Loaders

Way to retrieve:

globalRegistry.get('dataLoaders')

A “Data Loader” controls asynchronous loading of secondary data, which is used in all kinds of Select / List boxes
in the backend.

Example of data which is loaded through a data loader:

• Link Labels (in the inline link editor)

122 Chapter 4. Extending Neos

Neos CMS Documentation, Release 4.0.0

• Reference / References editor

• Data Sources in the Select Editor

Each Data Loader can have a slightly different API, so check the “description” field of each data loader when
using it. It is up to the data loaders to implement caching internally.

Normally, each data loader exposes the following methods:

resolveValue(options, identifier) {
// "options" is a DataLoader-specific object.
// returns Promise with [{identifier, label}, ...] list; where "identifier" was

→˓resolved to the actual object represented by "identifier".
}

search(options, searchTerm) {
// "options" is a DataLoader-specific object.
// returns Promise with [{identifier, label}, ...] list; these are the objects

→˓displayed in the selection dropdown.
}

4.14.8 Containers

Way to retrieve:

globalRegistry.get('containers')

The whole user interface is built around container components. They are registered through the containers registry.
Below you will find an example on how to replace the PageTree container with your custom container:

manifest('Example', {}, globalRegistry => {
const containerRegistry = globalRegistry.get('containers');
containerRegistry.set('LeftSideBar/Top/PageTreeToolbar', () => null);
containerRegistry.set('LeftSideBar/Top/PageTreeSearchbar', () => null);
containerRegistry.set('LeftSideBar/Top/PageTree', FlatNavContainer);

});

4.14.9 Server Feedback Handlers

Way to retrieve:

globalRegistry.get('serverFeedbackHandlers')

Contains all server feedback handlers.

The key is the server-feedback-handler-type, and the value is a function with the following signature:

(feedback, store) => {
// do whatever you like here :-)

}

4.14.10 Reducers

Way to retrieve:

globalRegistry.get('reducers')

Allows to register custom reducers for your plugin. It is probably a bad idea to override any of the existing
reducers.

4.14. Neos User Interface Extensibility API 123

Neos CMS Documentation, Release 4.0.0

4.14.11 Sagas

Way to retrieve:

globalRegistry.get('sagas')

Allows to register custom sagas for your plugin. It is probably a bad idea to override any of the existing reducers.

Example:

function* watchNodeFocus() {
yield takeLatest(actionTypes.CR.Nodes.FOCUS, function* (action) {
yield put(actions.UI.FlashMessages.add(

'testMessage',
'Focused: ' + action.payload.contextPath,
'success'

));
});

}
manifest('The.Demo:Focus', {}, globalRegistry => {

const sagasRegistry = globalRegistry.get('sagas');
sagasRegistry.set('The.Demo/watchNodeFocus', {saga: watchNodeFocus});

});

4.15 Writing Tests For Neos

Testing and quality assurance documentation for Neos.

4.15.1 Behat tests for Neos

Setting up Neos for running Behat tests

The Neos package contains a growing suite of Behat tests which you should take into account while fixing bugs
or adding new features. Please note that running these tests require that the Neos demo site package (Neos.Demo)
is installed and activated.

Install Behat for the base distribution

Behat is installed in a separate folder and has a custom composer root file. To install Behat run the following
composer command in FLOW_ROOT/Build/Behat:

cd Build/Behat
composer install

A special package Neos.Behat is used to integrate Flow with Behat and is installed if the base distribution was
installed with composer install –dev.

Create configuration for subcontexts

Behat needs two special Flow contexts, Development/Behat and Testing/Behat.

• The context Development/Behat should be mounted as a separate virtual host and is used by Behat to do the
actual HTTP requests.

• The context Testing/Behat is used inside the Behat feature context to set up test data and reset the database
after each scenario.

124 Chapter 4. Extending Neos

Neos CMS Documentation, Release 4.0.0

These contexts should share the same database to work properly. Make sure to create a new database for the Behat
tests since all the data will be removed after each scenario.

FLOW_ROOT/Configuration/Development/Behat/Settings.yaml:

Neos:
Flow:
persistence:

backendOptions:
dbname: 'neos_testing_behat'

FLOW_ROOT/Configuration/Testing/Behat/Settings.yaml:

Neos:
Flow:
persistence:

backendOptions:
dbname: 'neos_testing_behat'
driver: pdo_mysql
user: ''
password: ''

Example virtual host configuration for Apache:

<VirtualHost *:80>
DocumentRoot "FLOW_ROOT/Web"
ServerName neos.behat.test
SetEnv FLOW_CONTEXT Development/Behat

</VirtualHost>

Configure Behat

The Behat tests for Neos are shipped inside the Neos.Neos package in the folder Tests/Behavior. Behat uses a
configuration file distributed with Neos, behat.yml.dist, or a local version, behat.yml. To run the tests, Behat needs
a base URI pointing to the special virtual host running with the Development/Behat context. To set a custom base
URI the default file should be copied and customized:

cd Packages/Application/Neos.Neos/Tests/Behavior
cp behat.yml.dist behat.yml
Edit file behat.yml

Customized behat.yml:

default:
paths:
features: Features
bootstrap: %behat.paths.features%/Bootstrap

extensions:
Behat\MinkExtension\Extension:

files_path: features/Resources
show_cmd: 'open %s'
goutte: ~
selenium2: ~

base_url: http://neos.behat.test/

Selenium

Some tests require a running Selenium server for testing browser advanced interaction and JavaScript. Selenium
Server can be downloaded at http://docs.seleniumhq.org/download/ and started with:

4.15. Writing Tests For Neos 125

http://docs.seleniumhq.org/download/

Neos CMS Documentation, Release 4.0.0

java -jar selenium-server-standalone-2.x.0.jar

If using Saucelabs, you do not need your own Selenium setup.

Running Behat tests

Behat tests can be run from the Flow root folder with the bin/behat command by specifying the Behat configuration
file:

bin/behat -c Packages/Application/Neos.Neos/Tests/Behavior/behat.yml

In case the executable file bin/behat is missing, create a symlink by running the following command in
FLOW_ROOT/bin:

ln -s ../Build/Behat/vendor/behat/behat/bin/behat

Tip: You might want to warmup the cache before you start the test. Otherwise the tests might fail due to a
timeout. You can do that with FLOW_CONTEXT=Development/Behat ./flow flow:cache:warmup.

Debugging

• Make sure to use a new database and configure the same databse for Development/Behat and Testing/Behat

• Run Behat with the -v option to get more information about errors and failed tests

• A failed step can be inspected by inserting “Then show last response” in the .feature definition

Run Behat tests on several browsers using Saucelabs

Note: Make sure that your Behat version is uptodate. Otherwise the saucelabs connection won’t work. The
behat/mink-extension need to be at least version 1.3.

Saucelabs (http://saucelabs.com) provides a VM infrastructure you can use to run your selenium tests on.

Using this infrastructure you can run the @javascript tagged tests on several Browsers and OSs autmatically
without setting up your own selenium infrastructure.

To run Neos Behat tests with saucelabs you need to do the following steps.

Configure Behat

To talk to saucelabs you need to uncomment the following lines in the behat.yml and add your saucelabs username
and access_key:

javascript_session: saucelabs
saucelabs:
username: <username>
access_key: <access_key>

Tip: Saucelabs provides unlimited video time for Neos core development. If you want to contribute to Neos by
writing tests ask Christian Müller.

126 Chapter 4. Extending Neos

http://saucelabs.com

Neos CMS Documentation, Release 4.0.0

To make tests with more browsers than the default browser you need to tell saucelabs which browser, version
and OS you want to test on. You can add several browsers, each in its own profile. There are a lot of browsers
configured already in the saucelabsBrowsers.yml file. You can include that into your behat configuration:

imports:
- saucelabsBrowsers.yml

Open a tunnel to saucelabs

If you want to run the tests on your local machine you need to open a tunnel to saucelabs. This can be easily done
by downloading Sauce Connect at https://docs.saucelabs.com/reference/sauce-connect/ and follow the instructions
to setup and start it.

Run Behat tests

A test with Internet Explorer 10 on Windows8 would look like this then:

bin/behat -c Packages/Application/Neos.Neos/Tests/Behavior/behat.yml --profile
→˓windows8-ie-10

You might just want to run the tests that need javascript on different browsers (all other tests won’t use a browser
anyways). Limit the tests to the @javascript tagged to do so:

bin/behat -c Packages/Application/Neos.Neos/Tests/Behavior/behat.yml --tags
→˓javascript --profile windows8-ie-10

Note: The possible configuration settings for browsers can be found at https://saucelabs.com/docs/platforms.
Choose “WebDriver” and “php” and click on the platform/browser combination you are interested in.

4.15. Writing Tests For Neos 127

https://docs.saucelabs.com/reference/sauce-connect/
https://saucelabs.com/docs/platforms

Neos CMS Documentation, Release 4.0.0

128 Chapter 4. Extending Neos

CHAPTER 5

Inside of Neos

5.1 User Interface Development

These are the user interface development guidelines of Neos.

5.1.1 General User Interface Principles

The following principles serve as general guiding concepts throughout the whole Neos product.

Overall User Interface Goals

We have set up the following goals to strive for UI-wise:

• Reliable editing

• Predictable UI Behavior

• Immediate feedback for the user

• Built with the web - for the web

UI concepts should be evaluated against the above goals.

Technical guidelines / Goals

When implementing the user interface, we should follow these guidelines on a technical side:

• Take the pragmatic approach

• Augment the frontend website

• No iFrame in the content module, generally no iFrames except for bigger modal dialogs

• Browser support >= IE9; in the prototyping phase focus on Chrome / Firefox

• No polling of data from the server!

• A reload should always take you back to a safe state

129

Neos CMS Documentation, Release 4.0.0

CSS Guidelines

Overall Goal:

• Be pragmatic! We strive for solutions which work out-of-the-box in 95% of the cases; and tell the integrator
how to solve the other 5%. Thus, the integrator has to care to make his CSS work with Neos; we do not use
a sandbox.

Implementation notes:

• All CSS selectors should be fully lowercase, with - as separator. Example: neos-menu,
neos-inspector

• We use the neos- prefix

• The integrator is never allowed to override neos-, typo3- and aloha-

• The main UI elements have an ID, and a partial reset is used to give us predictable behavior inside them.

• We use sass. To install, use +gem install sass compass+. Then, before modifying CSS, go to css/ and run
+sass –compass –watch style.scss:style.css+. This will update style.css at every modification of style.scss.

• We use r.js for generating the Includes-built.css file. The command used by the built server is r.js -o
cssIn=Includes.css out=Includes-built.css

Z-Indexes

The Neos UI uses Z-Indexes starting at 10000.

Warning: TODO: Formulate some more about the usage of z-indexes.

5.1.2 Content Module Principles

In the Content Module, we directly render the frontend of the website, and then augment it with the Neos Content
Editing User Interface.

Because of this, we do not control all CSS or javaScript which is included on the page; so we need some special
guidelines to deal with that. These are listed on this page.

Naming of main UI parts

The following image shows the main UI parts of the content module and the names we use for them.

Content Module Architecture

The whole Content Module is built around the Aloha Blocks. Blocks are un-editable elements of a website, which
are managed by Aloha. They can appear inside or outside editables, can be nested, and can appear either as inline
element () or as block-level element(<div>).

Only one block is active at any given time. When a block is active, then all its parent blocks are selected. The
block selection contains the active block as first element and all other selected blocks from innermost to outermost.

Most of the UI changes depending on the current block selection.

130 Chapter 5. Inside of Neos

Neos CMS Documentation, Release 4.0.0

Fig. 1: UI parts of the content module

Fig. 2: UI Updates on selection change

5.1. User Interface Development 131

Neos CMS Documentation, Release 4.0.0

User Interface Updates on Selection Change

The following diagram shows how the UI is changing when the block selection changes:

1. The neosintegration Aloha Plugin (located in alohaplugins/neosintegration/lib/
neosintegration-plugin.js) hooks into the Aloha event which is triggered whenever the block
selection changes. Whenever this event is triggered, it calls T3.Content.Model.BlockSelection.
updateSelection().

2. We need to wrap each Aloha Block with a Ember.js Block (later only called Block), so we can attach event
listeners to it. This wrapping is done by the BlockManager

3. The BlockManager either returns existing Ember.js Blocks (if the given Aloha Block has already been
wrapped), or creates a new one.

4. Then, the BlockSelection sets its content property, which the UI is bound to. Thus, all UI elements
which depend on the current block selection are refreshed.

User Interface Updates updates on property change

When an attribute is modified through the property panel, the following happens:

Fig. 3: How attributes are modified

WARNING: TODO: Document what happens when an editable is modified

Node Property Naming Conventions

TODO write some intro text

1. Normal properties

132 Chapter 5. Inside of Neos

Neos CMS Documentation, Release 4.0.0

Those properties contain normal values like a title, date or other value. Serverside setting of the property is
done using Neos ContentRepository Node::setProperty()

2. Visibility / lifecycle properties

These properties are prefixed using an underscore, like ‘_hidden’. Serverside setting of the property is done
using Neos ContentRepository Node::set<UpperCamelCasePropertyname>()

3. Neos internal properties

These properties are prefixed with a double underscore, like __workspacename TODO: internal

Saving content

Saving is triggered using T3.Content.Model.Changes.save() and is very straight-forward. For now, we
use ExtDirect to send things back to the server.

Displaying Modal Dialogs

WARNING: TODO - write this

• REST architectural style

• HTML snippets loaded via fixed URLs from server side

• Return Commands ()

REST Server Side API

Most backend services which are currently used in the user interface are not RESTful. The goal is to migrate
them, step by step, to a clean REST architecture.

Two services have been – partially – migrated: Nodes and ContentDimensions. We provide an HTML and a
JSON based interface, roughly following HATEOAS concepts. Both formats a not yet part of the public API and
we expect them to change as we gain more experience with the pros and cons of their structure.

URL /neos/service/nodes URL /neos/service/contentdimensions

Inspect the HTML output and the controller / template code for more information about the currently supported
operations and arguments.

5.1.3 Backend Module Principles

For backend modules (that is, every module except the content area), we use the following guiding principles in
addition to the already-existing principles:

• It should be possible to write backend modules only with PHP, without JavaScript involved

• Some features might be only available to the user if he has JavaScript enabled

• In order to introduce rich behavior, use the technique of progressive enhancement

Progressive Enhancement

As we want to use progressive enhancement heavily, we need to define some rules as a basis for that.

First, you should always think about the non-javascript functionality, and develop the feature without JavaScript
enabled. This helps to get the client-server communication function correctly.

For most parts, you should not rely at all on any server state, but instead use URI parameters to encode required
state. This makes the server-side code a lot easier and progressive enhancement more predictable.

5.1. User Interface Development 133

Neos CMS Documentation, Release 4.0.0

Furthermore, if you reload certain parts of the user interface using AJAX, make sure to always update the
browser’s URI using History Management: In case there is an error, the user can just re-load the page and will get
pretty much the same User Interface state. This fulfills our UI goal of “predictable UI behavior”.

Connecting JavaScript code to the HTML content

In order to connect JavaScript code to HTML content, we (of course) rely on CSS selectors for finding the correct
DOM nodes. However, we do not want to use CSS class attributes, as they change more frequently. Instead, we’d
like to use special data-attributes to connect the JavaScript code to the user interface.

Note: In a nutshell:

• CSS classes are used for the visible styling only

• HTML5 Data Attributes are used for connecting the JavaScript code to HTML

We use the following data attributes for that:

• data-area is used to search for DOM nodes, for later usage in JavaScript.

As an example, use <div class="foo" data-area="actionBar"></div> in the HTML and
match it using $('[data-area=actionBar]') in JavaScript.

• data-json is used for transferring server-side state to the JavaScript as JSON.

Example: We need the full URI parameters which have been used for the current rendering as ar-
ray/object on the client side. Thus, the server side stores them inside <div style="display:none"
data-json="uriParameters">{foo: 'bar'}</div>.

The JavaScript code then accesses them at a central place using JSON.
parse($('[data-json=uriParameters]').text()) and makes them available using
some public API.

• data-type is used to mark that certain parts of the website contain a client-side template language like
handlebars.

As an example for the action bar, we use the following code here:

<button>
Edit

{{#if multipleSelectionActive}} {{numberOfSelectedElements}} elements{
→˓{/if}}

</button>

Then, on the client side in JavaScript, we use the handlebars template
→˓accordingly.

Adjusting the UI if JavaScript is (in-)active

Often, you want to hide or show some controls depending on whether JavaScript is enabled or disabled. By
default, every DOM element is visible no matter whether JavaScript is enabled or not.

If you want to show a DOM element only if JavaScript is enabled, use the CSS class js.

If you want to show a DOM element only if JavaScript is disabled, use the CSS class nojs.

134 Chapter 5. Inside of Neos

Neos CMS Documentation, Release 4.0.0

5.1.4 JavaScript Style Guide

Code Conventions

• We use only the TAB character for indentation.

• We use UpperCamelCase for class names, and lowerCamelCase for method and property names.

• Methods and properties that begin with an underscore (_) are private.

• Variables which contain jQuery elements should be named like $element, starting with a $. If it is a
private jQuery element, prefix it with _$

• We use that as a name for a closure reference to this, but try to avoid it if there’s the possibility of scope
binding. Unfortunately jQuery’s event handlers do not allow easy scope binding.

Code Documentation

TODO: still determine this.

RequireJS module skeleton

All JavaScript files are RequireJS modules. They should follow this structure:

WARNING: still has to be done and discussed

<javascript> TODO </javascript>

Public API, Private methods and attributes

All methods and properties which are public API are marked with @api. The public API is supported for a longer
period, and when a public API changes, this is clearly communicated in the Release Notes of a version.

On the contrary, we prefix private methods and attributes with an underscore. The user of an API should never
override or call methods private methods as they are not meant for him to be overridden.

There’s also a type in between: methods which are not private but do not have a @api annotation. They
can be safely overridden by the user, and he should not experience any unwanted behavior. Still, the names or
functionality of these methods can change without notice between releases. In the long run, all of these methods
should become part of the public API, as soon as they are proven in real life.

To sum it up, we have three types of methods/properties:

• @api methods: Public API, the user of the object can rely on the functionality to be stable, changes in @api
are clearly communicated

• non-@api but also not private: The user can use it, but needs to be aware the method might still change.

• private (prefixed with _): The user should never ever call or access this. Very strange things might happen.

Note: It is allowed to observe or bind to private properties within the Neos javascript code. This is because the
property is not just meant as private object property, but as a non-api property.

When to use a new file

JavaScript files can become pretty large, so there should be a point to create a new file. Having just one class per
file would be too much though, as this would end up in possibly hundreds of files, from which a lot will just have
20 lines of code.

5.1. User Interface Development 135

Neos CMS Documentation, Release 4.0.0

As we use requirejs for loading dependencies we came up with the following guidelines for creating a new file:

• Classes using a template include using the !text plugin should be in a separate file

• If a class is extended by another class, then it should be in a separate file so it can be easily loaded as
dependency

• If a class is huge, and affecting readability of the definition file, then it should be moved to a single file

• It has preference to keep classes grouped together, so classes with just a few lines stay grouped together, so
if none of the above is true the classes stays in the main file.

5.1.5 Ember.JS Tips & Tricks

Dealing with classes and objects

• Always extend from Ember.Object (or a subclass)

• Extension is done using Ember.Object.extend({...})

• Never use new to instantiate new objects. Instead, use TheObject.create(...)

• All objects have generic set(key, value) and get(key) methods, which should be used under all
circumstances!

The following example shows this:

var Foo = Ember.Object.extend({
someValue: 'hello',
myMethod: function() {

alert(this.get('someValue'));
}

});

var fooInstance = Foo.create({
someValue: 'world'

});
fooInstance.myMethod(); // outputs "world"

Inheritance can be used just as in PHP, since Emberjs binds a special ._super() function for every method
call (in fact the function is wrapped to create this special _super method). So calling the current method of the
superclass can be done without specifying the superclass and method name.

var Foo = Ember.Object.extend({
greet: function(name) {

return 'Hello, ' + name;
}

});
var Bar = Foo.extend({

greet: function(name) {
return 'Aloha and ' + this._super(name);

}
});

Bar.create().greet('Neos'); // outputs "Aloha and Hello, Neos"

Data Binding tips and tricks

To create a computed property, implement it as function and append +.property()+:

136 Chapter 5. Inside of Neos

Neos CMS Documentation, Release 4.0.0

var Foo = Ember.Object.extend({
someComputedValue: function() {

return "myMethod";
}.property()

});

If your computed property reads other values, specify the dependent values as parameters to property(). If the
computed property is deterministic and depends only on the dependant values, it should be marked further with
.cacheable().

var Foo = Ember.Object.extend({
name: 'world',
greeting: function() {

return "Hello " + this.attr('name');
}.property('name').cacheable()

});

Now, every time name changes, the system re-evaluates greeting.

Note: Forgetting .cacheable() can have severe performance penalties and result in circular loops, in worst
case freezing the browser completely.

You can also use a getter / setter on a property, if you do this it’s extremely important to return the value of the
property in the setter method.

var Foo = Ember.Object.extend({
firstName: null,
lastName: null,

fullName: function(key, value) {
if (arguments.length === 1) {

return this.get('firstName') + ' ' + this.get('lastName');
} else {

var parts = value.split(' ');
this.set('firstName', parts[0]);
this.set('lastName', parts[1]);

return value;
}

}.property('firstName', 'lastName').cacheable()
});

Observe changes

To react on changes of properties in models or views (or any other class extending Ember.Observable), a
method marked as an observer can be used. Call .observes('propertyName') on a private method to be
notified whenever a property changes.

var Foo = Ember.Object.extend({
name: 'world',
_nameDidChange: function() {

console.log('name changed to', this.get('name'));
}.observes('name')

});

5.1.6 Translating the user interface

5.1. User Interface Development 137

Neos CMS Documentation, Release 4.0.0

Default Language

The availableLanguages are defined in Packages/Application/Neos.Neos/Configuration/
Settings.yaml.

You may override the default language of your installation in Configuration/Settings.yaml:

Neos:
Neos:
userInterface:

defaultLanguage: 'en'

Label Scrambling

To help you find labels in the Neos editor interface that you still need to translate, you can use the language label
scrambling setting in your yaml file. This will replace all translations by a string consisting of only # characters
with the same length as the actual translated label. With this setting enabled every still readable string in the
backend is either content or non-translated.

Neos:
Neos:
userInterface:

scrambleTranslatedLabels: TRUE

Note: The translation labels used in the javascript ui are parsed to a big json file. While changing xliff files this
cached should be flushed, but still it can turn out useful to disable this cache. You can do so by using the following
snippet in your Caches.yaml

Neos_Neos_XliffToJsonTranslations:
backend: Neos\Flow\Cache\Backend\NullBackend

138 Chapter 5. Inside of Neos

CHAPTER 6

References

Mostly autogenerated documentation for ViewHelpers, EelHelpers, Fusion etc. from all Packages that are in a
default (Demo Package) setup.

6.1 Property Editor Reference

For each property which is defined in NodeTypes.yaml, the editor inside the Neos inspector can be customized
using various options. Here follows the reference for each property type.

Note: All NodeType inspector configuration values are dynamically evaluated on the client-side, see Dynamic
Client-side Configuration Processing for more details.

6.1.1 Property Type: boolean BooleanEditor – Checkbox editor

A boolean value is rendered using a checkbox in the inspector:

'isActive'
type: boolean
ui:
label: 'is active'
inspector:

group: 'document'

Options Reference:

disabled (boolean) HTML disabled property. If true, disable this checkbox.

6.1.2 Property Type: string TextFieldEditor – Single-line Text Editor (default)

Example:

139

Neos CMS Documentation, Release 4.0.0

subtitle:
type: string
ui:
label: 'Subtitle'
help:

message: 'Enter some help text for the editors here. The text will be shown
→˓via click.'

inspector:
group: 'document'
editorOptions:

placeholder: 'Enter subtitle here'
maxlength: 20

Options Reference:

placeholder (string) HTML5 placeholder property, which is shown if the text field is empty.

disabled (boolean) HTML disabled property. If true, disable this textfield.

maxlength (integer) HTML maxlength property. Maximum number of characters allowed to be entered.

readonly (boolean) HTML readonly property. If true, this field is cannot be written to.

form (optional) HTML5 form property.

selectionDirection (optional) HTML5 selectionDirection property.

spellcheck (optional) HTML5 spellcheck property.

required (boolean) HTML5 required property. If true, input is required.

title (boolean) HTML title property.

autocapitalize (boolean) Custom HTML autocapitalize property.

autocorrect (boolean) Custom HTML autocorrect property.

6.1.3 Property Type: string TextAreaEditor – Multi-line Text Editor

In case the text input should span multiple lines, a TextAreaEditor should be used as follows:

'description':
type: 'string'
ui:

label: 'Description'
inspector:

group: 'document'
editor: 'Neos.Neos/Inspector/Editors/TextAreaEditor'
editorOptions:
rows: 7

Options Reference:

rows (integer) Number of lines this textarea should have; Default 5.

** and all options from Text Field Editor – see above**

6.1.4 Property Type: string CodeEditor – Full-Screen Code Editor

In case a lot of space is needed for the text (f.e. for HTML source code), a CodeEditor can be used:

140 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

'source':
type: 'string'
ui:

label: 'Source'
inspector:

group: 'document'
editor: 'Neos.Neos/Inspector/Editors/CodeEditor'

Furthermore, the button label can be adjusted by specifying buttonLabel. Furthermore, the highlighting mode
can be customized, which is helpful for editing markdown and similar contents:

'markdown':
type: 'string'
ui:

label: 'Markdown'
inspector:

group: 'document'
editor: 'Neos.Neos/Inspector/Editors/CodeEditor'
editorOptions:
buttonLabel: 'Edit Markdown'
highlightingMode: 'text/plain'

Options Reference:

buttonLabel (string) label of the button which is used to open the full-screen editor. Default Edit code.

highlightingMode (string) CodeMirror highlighting mode to use. These formats are support by default:
text/plain, text/xml, text/html, text/css, text/javascript. If other highlighting
modes shall be used, they must be loaded beforehand using custom JS code. Default text/html.

disabled (boolean) If true, disables the CodeEditor.

6.1.5 Property Type: string / array<string> SelectBoxEditor – Dropdown Se-
lect Editor

In case only fixed entries are allowed to be chosen a select box can be used - multiple selection is supported as
well. The data for populating the select box can be fetched from a fixed set of entries defined in YAML or a
datasource. The most important option is called values, containing the choices which can be made. If wanted,
an icon can be displayed for each choice by setting the icon class appropriately.

Basic Example – simple select box:

targetMode:
type: string
defaultValue: 'firstChildNode'
ui:
label: 'Target mode'
inspector:

group: 'document'
editor: 'Neos.Neos/Inspector/Editors/SelectBoxEditor'
editorOptions:

values:
firstChildNode:

label: 'First child node'
icon: 'icon-legal'

parentNode:
label: 'Parent node'
icon: 'icon-fire'

selectedTarget:
label: 'Selected target'

If the selection list should be grouped, this can be done by setting the group key of each individual value:

6.1. Property Editor Reference 141

Neos CMS Documentation, Release 4.0.0

country:
type: string
ui:
label: 'Country'
inspector:

group: 'document'
editor: 'Neos.Neos/Inspector/Editors/SelectBoxEditor'
editorOptions:

values:
italy:

label: 'Italy'
group: 'Southern Europe'

austria:
label: 'Austria'
group: 'Central Europe'

germany:
label: 'Germany'
group: 'Central Europe'

Furthermore, multiple selection is also possible, by setting multiple to true, which is automatically set for
properties of type array. If an empty value is allowed as well, allowEmpty should be set to true and
placeholder should be set to a helpful text:

styleOptions:
type: array
ui:
label: 'Styling Options'
inspector:

group: 'document'
editor: 'Neos.Neos/Inspector/Editors/SelectBoxEditor'
editorOptions:

The next line is set automatically for type array
multiple: true

allowEmpty: true
placeholder: 'Select Styling Options'

values:
leftColumn:

label: 'Show Left Column'
rightColumn:

label: 'Show Right Column'

Because selection options shall be fetched from server-side code frequently, the Select Box Editor contains support
for so-called data sources, by setting a dataSourceIdentifier, or optionally a dataSourceUri. This
helps to provide data to the editing interface without having to define routes, policies or a controller. You can
provide an array of dataSourceAdditionalData that will be sent to the data source with each request, the
key/value pairs can be accessed in the $arguments array passed to getData().

questions:
ui:
inspector:
editor: 'Content/Inspector/Editors/SelectBoxEditor'
editorOptions:
dataSourceIdentifier: 'questions'
alternatively using a custom uri:
dataSourceUri: 'custom-route/end-point'
dataSourceAdditionalData:
apiKey: 'foo-bar-baz'

See Data sources for more details on implementing a data source based on Neos conventions. If you are using a

142 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

data source to populate SelectBoxEditor instances it has to be matching the values option. Make sure you sort
by group first, if using the grouping option.

Example for returning compatible data:

return array(
array('value' => 'key', 'label' => 'Foo', 'group' => 'A', 'icon' => 'icon-key

→˓'),
array('value' => 'fire', 'label' => 'Fire', 'group' => 'A', 'icon' => 'icon-

→˓fire'),
array('value' => 'legal', 'label' => 'Legal', 'group' => 'B', 'icon' => 'icon-

→˓legal')
);

If you use the dataSourceUri option to connect to an arbitrary service, make sure the output of the data
source is a JSON formatted array matching the following structure. Make sure you sort by group first, if using the
grouping option.

Example for compatible data:

[{
"value": "key",
"label": "Key",
"group": "A",
"icon": "icon-key"

},
{

"value": "fire",
"label": "Fire",
"group": "A",
"icon": "icon-fire"

},
{

"value": "legal",
"label": "Legal",
"group": "B",
"icon": "icon-legal"

}]

Options Reference:

values (required array) the list of values which can be chosen from

[valueKey]

label (required string) label of this value.

group (string) group of this value.

icon (string) CSS icon class for this value.

allowEmpty (boolean) if true, it is allowed to choose an empty value.

placeholder (string) placeholder text which is shown if nothing is selected. Only works if allowEmpty is
true. Default Choose.

multiple (boolean) If true, multi-selection is allowed. Default FALSE.

minimumResultsForSearch (integer) The minimum amount of items in the select before showing a search
box, if set to -1 the search box will never be shown.

dataSourceUri (string) If set, this URI will be called for loading the options of the select field.

dataSourceIdentifier (string) If set, a server-side data source will be called for loading the possible
options of the select field.

dataSourceAdditionalData (array) Key/value pairs that will be sent to the server-side data source with
every request.

6.1. Property Editor Reference 143

Neos CMS Documentation, Release 4.0.0

disabled (boolean) If true, disables the SelectBoxEditor.

6.1.6 Property Type: string LinkEditor – Link Editor for internal, external and
asset links

If internal links to other nodes, external links or asset links shall be editable at some point, the LinkEditor can
be used to edit a link:

myLink:
type: string
ui:
inspector:

editor: 'Neos.Neos/Inspector/Editors/LinkEditor'

The searchbox will accept:

• node document titles

• asset titles and tags

• valid URLs

• valid email addresses

By default, links to generic Neos.Neos:Document nodes are allowed; but by setting the nodeTypes option,
this can be further restricted (like with the reference editor). Additionally, links to assets can be disabled by
setting assets to FALSE. Links to external URLs are always possible. If you need a reference towards only an
asset, use the asset property type; for a reference to another node, use the reference node type. Furthermore,
the placeholder text can be customized by setting the placeholder option:

myExternalLink:
type: string
ui:
inspector:

group: 'document'
editor: 'Neos.Neos/Inspector/Editors/LinkEditor'
editorOptions:

assets: FALSE
nodeTypes: ['Neos.Neos:Shortcut']
placeholder: 'Paste a link, or type to search for nodes'

Options Reference:

disabled (boolean) If true, disables the LinkEditor.

6.1.7 Property Type: integer TextFieldEditor

Example:

cropAfterCharacters:
type: integer
ui:
label: 'Crop after characters'
inspector:

group: 'document'

Options Reference:

all TextFieldEditor options apply

144 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

6.1.8 Property Type: reference / references ReferenceEditor /
ReferencesEditor – Reference Selection Editors

The most important option for the property type reference and references is nodeTypes, which allows
to restrict the type of the target nodes which can be selected in the editor.

Example:

authors:
type: references
ui:
label: 'Article Authors'
inspector:

group: 'document'
editorOptions:

nodeTypes: ['My.Website:Author']

Options Reference:

nodeTypes (array of strings) List of node types which are allowed to be selected. By default, is set to Neos.
Neos:Document, allowing only to choose other document nodes.

placeholder (string) Placeholder text to be shown if nothing is selected

startingPoint (string) The starting point (node path) for finding possible nodes to create a reference. This
allows to search for nodes outside the current site. If not given, nodes will be searched for in the current
site. For all nodes outside the current site the node path is shown instead of the url path.

threshold (number) Minimum amount of characters which trigger a search. Default is set to 2.

createNew (array) It is also possible to create new selectable nodes directly from the reference editor. This
can come in handy for example if you reference tag nodes and want to add new tags on the fly.

The given string is passed to the title property of the new node.

path (string) The path to the node in which the new nodes should be created.

type (string) The type of the nodes to be created.

tags:
type: references
ui:

label: 'Tags'
inspector:
group: document
editorOptions:
nodeTypes: ['My.Website:Tag']
createNew:

path: /sites/yoursite/tags
type: 'My.Website:Tag'

disabled (boolean) If true, disables the Reference(s)Editor.

6.1.9 Property Type: DateTime DateTimeEditor – Date & Time Selection Editor

The most important option for DateTime properties is the format, which is configured like in PHP, as the
following examples show:

• d-m-Y: 05-12-2014 – allows to set only the date

• d-m-Y H:i: 05-12-2014 17:07 – allows to set date and time

• H:i: 17:07 – allows to set only the time

Example:

6.1. Property Editor Reference 145

Neos CMS Documentation, Release 4.0.0

publishingDate:
type: DateTime
defaultValue: 'today midnight'
ui:
label: 'Publishing Date'
inspector:

group: 'document'
position: 10
editorOptions:

format: 'd.m.Y'

Options Reference:

format (required string) The date format, a combination of y, Y, F, m, M, n, t, d, D, j, l, N, S, w, a, A, g, G, h,
H, i, s. Default d-m-Y.

defaultValue (string) Sets property value, when the node is created. Accepted values are whatever
strtotime() can parse, but it works best with relative formats like tomorrow 09:00 etc. Use now
to set current date and time.

placeholder (string) The placeholder shown when no date is selected

minuteStep (integer) The granularity on which a time can be selected. Example: If set to 30, only half-hour
increments of time can be chosen. Default 5 minutes.

For the date format, these are the available placeholders:

• year

– y: A two digit representation of a year - Examples: 99 or 03

– Y: A full numeric representation of a year, 4 digits - Examples: 1999 or 2003

• month

– F: A full textual representation of a month, such as January or March - January through December

– m: Numeric representation of a month, with leading zeros - 01 through 12

– M: A short textual representation of a month, three letters - Jan through Dec

– n: Numeric representation of a month, without leading zeros - 1 through 12

– t: Number of days in the given month - 28 through 31

• day

– d: Day of the month, 2 digits with leading zeros - 01 to 31

– D: A textual representation of a day, three letters - Mon through Sun

– j: Day of the month without leading zeros - 1 to 31

– l: A full textual representation of the day of the week - Sunday through Saturday

– N: ISO-8601 numeric representation of the day of the week - 1 (for Monday) through 7 (for
Sunday)

– S: English ordinal suffix for the day of the month, 2 characters - st, nd, rd or th.

– w: Numeric representation of the day of the week - 0 (for Sunday) through 6 (for Saturday)

• hour

– a: Lowercase Ante meridiem and Post meridiem - am or pm

– A: Uppercase Ante meridiem and Post meridiem - AM or PM

– g: hour without leading zeros - 12-hour format - 1 through 12

– G: hour without leading zeros - 24-hour format - 0 through 23

146 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

– h: 12-hour format of an hour with leading zeros - 01 through 12

– H: 24-hour format of an hour with leading zeros - 00 through 23

• minute

– i: minutes, 2 digits with leading zeros - 00 to 59

• second

– s: seconds, 2 digits with leading zeros - 00 through 59

disabled (boolean) If true, disables the DateTimeEditor.

6.1.10 Property Type: image (Neos\Media\Domain\Model\ImageInterface)
ImageEditor – Image Selection/Upload Editor

For properties of type Neos\Media\Domain\Model\ImageInterface, an image editor is rendered. If
you want cropping and resizing functionality, you need to set features.crop and features.resize to
true, as in the following example:

'teaserImage'
type: 'Neos\Media\Domain\Model\ImageInterface'
ui:
label: 'Teaser Image'
inspector:

group: 'document'
editorOptions:

features:
crop: true
resize: true

If cropping is enabled, you might want to enforce a certain aspect ratio, which can be done by setting crop.
aspectRatio.locked.width and crop.aspectRatio.locked.height. To show the crop dialog
automatically on image upload, configure the crop.aspectRatio.forceCrop option. In the following
example, the image format must be 16:9:

'teaserImage'
type: 'Neos\Media\Domain\Model\ImageInterface'
ui:
label: 'Teaser Image'
inspector:

group: 'document'
editorOptions:

accept: 'image/png'
features:
crop: true

crop:
aspectRatio:
forceCrop: true
locked:
width: 16
height: 9

If not locking the cropping to a specific ratio, a set of predefined ratios can be chosen by the user. Elements can be
added or removed from this list underneath crop.aspectRatio.options. If the aspect ratio of the original
image shall be added to the list, crop.aspectRatio.enableOriginal must be set to true. If the user
should be allowed to choose a custom aspect ratio, set crop.aspectRatio.allowCustom to true:

'teaserImage'
type: 'Neos\Media\Domain\Model\ImageInterface'
ui:

(continues on next page)

6.1. Property Editor Reference 147

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

label: 'Teaser Image'
inspector:

group: 'document'
editorOptions:

accept: 'image/png'
features:
crop: true

crop:
aspectRatio:
options:
square:
width: 1
height: 1
label: 'Square'

fourFive:
width: 4
height: 5

disable this ratio (if it was defined in a supertype)
fiveSeven: ~

enableOriginal: true
allowCustom: true

Options Reference:

maximumFileSize (string) Set the maximum allowed file size to be uploaded. Accepts numeric or format-
ted string values, e.g. “204800” or “204800b” or “2kb”. Defaults to the maximum allowed upload size
configured in php.ini

accept (string) Set the accepted mime type for this editor. If non is given it falls back to image/*.

features

crop (boolean) If true, enable image cropping. Default true.

upload (boolean) If true, enable Upload button, allowing new files to be uploaded directly in the
editor. Default true.

mediaBrowser (boolean) If true, enable Media Browser button. Default true.

resize (boolean) If true, enable image resizing. Default FALSE.

crop

crop-related options. Only relevant if features.crop is enabled.

aspectRatio

forceCrop Show the crop dialog on image upload

locked Locks the aspect ratio to a specific width/height ratio

width (integer) width of the aspect ratio which shall be enforced

height (integer) height of the aspect ratio which shall be enforced

options aspect-ratio presets. Only effective if locked is not set.

[presetIdentifier]

width (required integer) the width of the aspect ratio preset

height (required integer) the height of the aspect ratio preset

label (string) a human-readable name of the aspect ratio preset

enableOriginal (boolean) If true, the image ratio of the original image can be chosen
in the selector. Only effective if locked is not set. Default true.

148 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

allowCustom (boolean) If true, a completely custom image ratio can be chosen. Only
effective if locked is not set. Default true.

defaultOption (string) default aspect ratio option to be chosen if no cropping has been
applied already.

disabled (boolean) If true, disables the ImageEditor.

6.1.11 Property Type: asset (Neos\Media\Domain\Model\Asset / ar-
ray<Neos\Media\Domain\Model\Asset>) AssetEditor – File Selection
Editor

If an asset, i.e. Neos\Media\Domain\Model\Asset, shall be uploaded or selected, the following configu-
ration is an example:

'caseStudyPdf'
type: 'Neos\Media\Domain\Model\Asset'
ui:
label: 'Case Study PDF'
inspector:

group: 'document'

Conversely, if multiple assets shall be uploaded, use array<Neos\Media\Domain\Model\Asset> as
type:

'caseStudies'
type: 'array<Neos\Media\Domain\Model\Asset>'
ui:
label: 'Case Study PDF'
inspector:

group: 'document'

Options Reference:

accept Set the accepted mime type for this editor. If non is given all files are allowed.

features

upload (boolean) If true, enable Upload button, allowing new files to be uploaded directly in the
editor. Default true.

mediaBrowser (boolean) If true, enable Media Browser button. Default true.

disabled (boolean) If true, disables the AssetEditor.

Property Validation

The validators that can be assigned to properties in the node type configuration are used on properties that are
edited via the inspector and are applied on the client-side only. The available validators can be found in the Neos
package in Resources/Public/JavaScript/Shared/Validation:

• AlphanumericValidator

• CountValidator

• DateTimeRangeValidator

• DateTimeValidator

• EmailAddressValidator

• FloatValidator

• IntegerValidator

6.1. Property Editor Reference 149

Neos CMS Documentation, Release 4.0.0

• LabelValidator

• NotEmptyValidator

• NumberRangeValidator

• RegularExpressionValidator

• StringLengthValidator

• StringValidator

• TextValidator

• UuidValidator

The options are in sync with the Flow validators, so feel free to check the Flow documentation for details.

To apply options, just specify them like this:

someProperty:
validation:
'Neos.Neos/Validation/StringLengthValidator':

minimum: 1
maximum: 255

Extensibility

It is also possible to add Custom Editors and use Custom Validators.

6.2 View Helper Reference

6.2.1 Content Repository ViewHelper Reference

This reference was automatically generated from code on 2018-08-10

PaginateViewHelper

This ViewHelper renders a Pagination of nodes.

Implementation Neos\ContentRepository\ViewHelpers\Widget\PaginateViewHelper

Arguments

• as (string): Variable name for the result set

• parentNode (NeosContentRepositoryDomainModelNodeInterface, optional): The parent node of the
child nodes to show (instead of specifying the specific node set)

• nodes (array, optional): The specific collection of nodes to use for this paginator (instead of specifying the
parentNode)

• nodeTypeFilter (string, optional): A node type (or more complex filter) to filter for in the results

• configuration (array, optional): Additional configuration

• widgetId (string, optional): Unique identifier of the widget instance

6.2.2 FluidAdaptor ViewHelper Reference

This reference was automatically generated from code on 2018-08-10

150 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

f:debug

View helper that outputs its child nodes with NeosFlowvar_dump()

Implementation Neos\FluidAdaptor\ViewHelpers\DebugViewHelper

Arguments

• title (string, optional): The title

• typeOnly (boolean, optional): Whether only the type should be returned instead of the whole chain.

Examples

inline notation and custom title:

{object -> f:debug(title: 'Custom title')}

Expected result:

all properties of {object} nicely highlighted (with custom title)

only output the type:

{object -> f:debug(typeOnly: true)}

Expected result:

the type or class name of {object}

f:flashMessages

View helper which renders the flash messages (if there are any) as an unsorted list.

Implementation Neos\FluidAdaptor\ViewHelpers\FlashMessagesViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

6.2. View Helper Reference 151

Neos CMS Documentation, Release 4.0.0

• as (string, optional): The name of the current flashMessage variable for rendering inside

• severity (string, optional): severity of the messages (One of the NeosErrorMessagesMes-
sage::SEVERITY_* constants)

Examples

Simple:

<f:flashMessages />

Expected result:

<li class="flashmessages-ok">Some Default Message
<li class="flashmessages-warning">Some Warning Message

Output with css class:

<f:flashMessages class="specialClass" />

Expected result:

<ul class="specialClass">
<li class="specialClass-ok">Default Message
<li class="specialClass-notice"><h3>Some notice message</h3>With message title</

→˓li>

Output flash messages as a list, with arguments and filtered by a severity:

<f:flashMessages severity="Warning" as="flashMessages">
<dl class="messages">
<f:for each="{flashMessages}" as="flashMessage">

<dt>{flashMessage.code}</dt>
<dd>{flashMessage}</dd>

</f:for>
</dl>

</f:flashMessages>

Expected result:

<dl class="messages">
<dt>1013</dt>
<dd>Some Warning Message.</dd>

</dl>

f:form

Used to output an HTML <form> tag which is targeted at the specified action, in the current controller and
package.

Implementation Neos\FluidAdaptor\ViewHelpers\FormViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

152 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• enctype (string, optional): MIME type with which the form is submitted

• method (string, optional): Transfer type (GET or POST)

• name (string, optional): Name of form

• onreset (string, optional): JavaScript: On reset of the form

• onsubmit (string, optional): JavaScript: On submit of the form

• action (string, optional): Target action

• arguments (array, optional): Arguments

• controller (string, optional): Target controller. If NULL current controllerName is used

• package (string, optional): Target package. if NULL current package is used

• subpackage (string, optional): Target subpackage. if NULL current subpackage is used

• object (mixed, optional): object to use for the form. Use in conjunction with the “property” attribute on
the sub tags

• section (string, optional): The anchor to be added to the URI

• format (string, optional): The requested format, e.g. “.html”

• additionalParams (array, optional): additional query parameters that won’t be prefixed like $argu-
ments (overrule $arguments)

• absolute (boolean, optional): If set, an absolute action URI is rendered (only active if $actionUri is not
set)

• addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI

• argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the
URI. Only active if $addQueryString = TRUE

• fieldNamePrefix (string, optional): Prefix that will be added to all field names within this form

• actionUri (string, optional): can be used to overwrite the “action” attribute of the form tag

• objectName (string, optional): name of the object that is bound to this form. If this argument is not
specified, the name attribute of this form is used to determine the FormObjectName

• useParentRequest (boolean, optional): If set, the parent Request will be used instead ob the current
one

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

6.2. View Helper Reference 153

Neos CMS Documentation, Release 4.0.0

Examples

Basic usage, POST method:

<f:form action="...">...</f:form>

Expected result:

<form action="...">...</form>

Basic usage, GET method:

<f:form action="..." method="get">...</f:form>

Expected result:

<form method="GET" action="...">...</form>

Form with a sepcified encoding type:

<f:form action=".." controller="..." package="..." enctype="multipart/form-data">..
→˓.</f:form>

Expected result:

<form enctype="multipart/form-data" action="...">...</form>

Binding a domain object to a form:

<f:form action="..." name="customer" object="{customer}">
<f:form.hidden property="id" />
<f:form.textfield property="name" />

</f:form>

Expected result:

A form where the value of {customer.name} is automatically inserted inside the
→˓textbox; the name of the textbox is
set to match the property name.

f:form.button

Creates a button.

Implementation Neos\FluidAdaptor\ViewHelpers\Form\ButtonViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• name (string, optional): Name of input tag

• value (mixed, optional): Value of input tag

• property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”. . . ”>,
“name” and “value” properties will be ignored.

• autofocus (string, optional): Specifies that a button should automatically get focus when the page loads

154 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

• disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

• form (string, optional): Specifies one or more forms the button belongs to

• formaction (string, optional): Specifies where to send the form-data when a form is submitted. Only for
type=”submit”

• formenctype (string, optional): Specifies how form-data should be encoded before sending it to a server.
Only for type=”submit” (e.g. “application/x-www-form-urlencoded”, “multipart/form-data” or “text/plain”)

• formmethod (string, optional): Specifies how to send the form-data (which HTTP method to use). Only
for type=”submit” (e.g. “get” or “post”)

• formnovalidate (string, optional): Specifies that the form-data should not be validated on submission.
Only for type=”submit”

• formtarget (string, optional): Specifies where to display the response after submitting the form. Only
for type=”submit” (e.g. “_blank”, “_self”, “_parent”, “_top”, “framename”)

• type (string, optional): Specifies the type of button (e.g. “button”, “reset” or “submit”)

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Defaults:

<f:form.button>Send Mail</f:form.button>

Expected result:

<button type="submit" name="" value="">Send Mail</button>

Disabled cancel button with some HTML5 attributes:

<f:form.button type="reset" name="buttonName" value="buttonValue" disabled=
→˓"disabled" formmethod="post" formnovalidate="formnovalidate">Cancel</f:form.
→˓button>

Expected result:

<button disabled="disabled" formmethod="post" formnovalidate="formnovalidate" type=
→˓"reset" name="myForm[buttonName]" value="buttonValue">Cancel</button>

f:form.checkbox

View Helper which creates a simple checkbox (<input type=”checkbox”>).

Implementation Neos\FluidAdaptor\ViewHelpers\Form\CheckboxViewHelper

6.2. View Helper Reference 155

Neos CMS Documentation, Release 4.0.0

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• name (string, optional): Name of input tag

• value (mixed): Value of input tag. Required for checkboxes

• property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”. . . ”>,
“name” and “value” properties will be ignored.

• disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

• errorClass (string, optional): CSS class to set if there are errors for this view helper

• checked (boolean, optional): Specifies that the input element should be preselected

• multiple (boolean, optional): Specifies whether this checkbox belongs to a multivalue (is part of a
checkbox group)

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Example:

<f:form.checkbox name="myCheckBox" value="someValue" />

Expected result:

<input type="checkbox" name="myCheckBox" value="someValue" />

Preselect:

<f:form.checkbox name="myCheckBox" value="someValue" checked="{object.value} == 5"
→˓/>

Expected result:

<input type="checkbox" name="myCheckBox" value="someValue" checked="checked" />
(depending on $object)

Bind to object property:

<f:form.checkbox property="interests" value="TYPO3" />

Expected result:

156 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

<input type="checkbox" name="user[interests][]" value="TYPO3" checked="checked" />
(depending on property "interests")

f:form.hidden

Renders an <input type=”hidden” . . . > tag.

Implementation Neos\FluidAdaptor\ViewHelpers\Form\HiddenViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• name (string, optional): Name of input tag

• value (mixed, optional): Value of input tag

• property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”. . . ”>,
“name” and “value” properties will be ignored.

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Example:

<f:form.hidden name="myHiddenValue" value="42" />

Expected result:

<input type="hidden" name="myHiddenValue" value="42" />

f:form.password

View Helper which creates a simple Password Text Box (<input type=”password”>).

Implementation Neos\FluidAdaptor\ViewHelpers\Form\PasswordViewHelper

6.2. View Helper Reference 157

Neos CMS Documentation, Release 4.0.0

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• name (string, optional): Name of input tag

• value (mixed, optional): Value of input tag

• property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”. . . ”>,
“name” and “value” properties will be ignored.

• disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

• required (boolean, optional): Specifies that the input element requires a entry pre submit

• maxlength (int, optional): The maxlength attribute of the input field (will not be validated)

• readonly (string, optional): The readonly attribute of the input field

• size (int, optional): The size of the input field

• placeholder (string, optional): The placeholder of the input field

• errorClass (string, optional): CSS class to set if there are errors for this view helper

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Example:

<f:form.password name="myPassword" />

Expected result:

<input type="password" name="myPassword" value="default value" />

f:form.radio

View Helper which creates a simple radio button (<input type=”radio”>).

Implementation Neos\FluidAdaptor\ViewHelpers\Form\RadioViewHelper

158 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• name (string, optional): Name of input tag

• value (mixed): Value of input tag. Required for radio buttons

• property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”. . . ”>,
“name” and “value” properties will be ignored.

• disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

• errorClass (string, optional): CSS class to set if there are errors for this view helper

• checked (boolean, optional): Specifies that the input element should be preselected

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Example:

<f:form.radio name="myRadioButton" value="someValue" />

Expected result:

<input type="radio" name="myRadioButton" value="someValue" />

Preselect:

<f:form.radio name="myRadioButton" value="someValue" checked="{object.value} == 5"
→˓/>

Expected result:

<input type="radio" name="myRadioButton" value="someValue" checked="checked" />
(depending on $object)

Bind to object property:

<f:form.radio property="newsletter" value="1" /> yes
<f:form.radio property="newsletter" value="0" /> no

Expected result:

6.2. View Helper Reference 159

Neos CMS Documentation, Release 4.0.0

<input type="radio" name="user[newsletter]" value="1" checked="checked" /> yes
<input type="radio" name="user[newsletter]" value="0" /> no
(depending on property "newsletter")

f:form.select

This ViewHelper generates a <select> dropdown list for the use with a form.

Basic usage

The most straightforward way is to supply an associative array as the “options” parameter. The array key is used
as option key, and the array value is used as human-readable name.

To pre-select a value, set “value” to the option key which should be selected. If the select box is a multi-select box
(multiple=”true”), then “value” can be an array as well.

Usage on domain objects

If you want to output domain objects, you can just pass them as array into the “options” parameter. To define
what domain object value should be used as option key, use the “optionValueField” variable. Same goes for
optionLabelField. If neither is given, the Identifier (UUID/uid) and the __toString() method are tried as fallbacks.

If the optionValueField variable is set, the getter named after that value is used to retrieve the option key. If the
optionLabelField variable is set, the getter named after that value is used to retrieve the option value.

If the prependOptionLabel variable is set, an option item is added in first position, bearing an empty string or - if
specified - the value of the prependOptionValue variable as value.

In the example below, the userArray is an array of “User” domain objects, with no array key specified. Thus the
method $user->getId() is called to retrieve the key, and $user->getFirstName() to retrieve the displayed value of
each entry. The “value” property now expects a domain object, and tests for object equivalence.

Translation of select content

The ViewHelper can be given a “translate” argument with configuration on how to translate option labels. The
array can have the following keys: - “by” defines if translation by message id or original label is to be used (“id”
or “label”) - “using” defines if the option tag’s “value” or “label” should be used as translation input, defaults
to “value” - “locale” defines the locale identifier to use, optional, defaults to current locale - “source” defines
the translation source name, optional, defaults to “Main” - “package” defines the package key of the translation
source, optional, defaults to current package - “prefix” defines a prefix to use for the message id – only works in
combination with “by id”

Implementation Neos\FluidAdaptor\ViewHelpers\Form\SelectViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• name (string, optional): Name of input tag

• value (mixed, optional): Value of input tag

• property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”. . . ”>,
“name” and “value” properties will be ignored.

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

160 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

• multiple (string, optional): if set, multiple select field

• size (string, optional): Size of input field

• disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

• required (boolean, optional): Specifies that the select element requires at least one selected option

• options (array): Associative array with internal IDs as key, and the values are displayed in the select box

• optionValueField (string, optional): If specified, will call the appropriate getter on each object to
determine the value.

• optionLabelField (string, optional): If specified, will call the appropriate getter on each object to
determine the label.

• sortByOptionLabel (boolean, optional): If true, List will be sorted by label.

• selectAllByDefault (boolean, optional): If specified options are selected if none was set before.

• errorClass (string, optional): CSS class to set if there are errors for this ViewHelper

• translate (array, optional): Configures translation of ViewHelper output.

• prependOptionLabel (string, optional): If specified, will provide an option at first position with the
specified label.

• prependOptionValue (string, optional): If specified, will provide an option at first position with the
specified value. This argument is only respected if prependOptionLabel is set.

Examples

Basic usage:

<f:form.select name="paymentOptions" options="{payPal: 'PayPal International
→˓Services', visa: 'VISA Card'}" />

Expected result:

<select name="paymentOptions">
<option value="payPal">PayPal International Services</option>
<option value="visa">VISA Card</option>

</select>

Preselect a default value:

<f:form.select name="paymentOptions" options="{payPal: 'PayPal International
→˓Services', visa: 'VISA Card'}" value="visa" />

Expected result:

(Generates a dropdown box like above, except that "VISA Card" is selected.)

Use with domain objects:

6.2. View Helper Reference 161

Neos CMS Documentation, Release 4.0.0

<f:form.select name="users" options="{userArray}" optionValueField="id"
→˓optionLabelField="firstName" />

Expected result:

(Generates a dropdown box, using ids and first names of the User instances.)

Prepend a fixed option:

<f:form.select property="salutation" options="{salutations}" prependOptionLabel="-
→˓select one -" />

Expected result:

<select name="salutation">
<option value="">- select one -</option>
<option value="Mr">Mr</option>
<option value="Mrs">Mrs</option>
<option value="Ms">Ms</option>

</select>
(depending on variable "salutations")

Label translation:

<f:form.select name="paymentOption" options="{payPal: 'PayPal International
→˓Services', visa: 'VISA Card'}" translate="{by: 'id'}" />

Expected result:

(Generates a dropdown box and uses the values "payPal" and "visa" to look up
translations for those ids in the current package's "Main" XLIFF file.)

Label translation usign a prefix:

<f:form.select name="paymentOption" options="{payPal: 'PayPal International
→˓Services', visa: 'VISA Card'}" translate="{by: 'id', prefix: 'shop.
→˓paymentOptions.'}" />

Expected result:

(Generates a dropdown box and uses the values "shop.paymentOptions.payPal"
and "shop.paymentOptions.visa" to look up translations for those ids in the
current package's "Main" XLIFF file.)

f:form.submit

Creates a submit button.

Implementation Neos\FluidAdaptor\ViewHelpers\Form\SubmitViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• name (string, optional): Name of input tag

• value (mixed, optional): Value of input tag

162 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

• property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”. . . ”>,
“name” and “value” properties will be ignored.

• disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Defaults:

<f:form.submit value="Send Mail" />

Expected result:

<input type="submit" />

Dummy content for template preview:

<f:form.submit name="mySubmit" value="Send Mail"><button>dummy button</button></
→˓f:form.submit>

Expected result:

<input type="submit" name="mySubmit" value="Send Mail" />

f:form.textarea

Textarea view helper. The value of the text area needs to be set via the “value” attribute, as with all other form
ViewHelpers.

Implementation Neos\FluidAdaptor\ViewHelpers\Form\TextareaViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• name (string, optional): Name of input tag

• value (mixed, optional): Value of input tag

• property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”. . . ”>,
“name” and “value” properties will be ignored.

6.2. View Helper Reference 163

Neos CMS Documentation, Release 4.0.0

• rows (int, optional): The number of rows of a text area

• cols (int, optional): The number of columns of a text area

• disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

• required (boolean, optional): If the field should be marked as required or not

• placeholder (string, optional): The placeholder of the textarea

• autofocus (string, optional): Specifies that a text area should automatically get focus when the page
loads

• errorClass (string, optional): CSS class to set if there are errors for this view helper

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Example:

<f:form.textarea name="myTextArea" value="This is shown inside the textarea" />

Expected result:

<textarea name="myTextArea">This is shown inside the textarea</textarea>

f:form.textfield

View Helper which creates a text field (<input type=”text”>).

Implementation Neos\FluidAdaptor\ViewHelpers\Form\TextfieldViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• name (string, optional): Name of input tag

• value (mixed, optional): Value of input tag

• property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”. . . ”>,
“name” and “value” properties will be ignored.

• disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

164 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

• required (boolean, optional): If the field should be marked as required or not

• maxlength (int, optional): The maxlength attribute of the input field (will not be validated)

• readonly (string, optional): The readonly attribute of the input field

• size (int, optional): The size of the input field

• placeholder (string, optional): The placeholder of the input field

• autofocus (string, optional): Specifies that a input field should automatically get focus when the page
loads

• type (string, optional): The field type, e.g. “text”, “email”, “url” etc.

• errorClass (string, optional): CSS class to set if there are errors for this view helper

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Example:

<f:form.textfield name="myTextBox" value="default value" />

Expected result:

<input type="text" name="myTextBox" value="default value" />

f:form.upload

A view helper which generates an <input type=”file”> HTML element. Make sure to set enctype=”multipart/form-
data” on the form!

If a file has been uploaded successfully and the form is re-displayed due to validation errors, this ViewHelper will
render hidden fields that contain the previously generated resource so you won’t have to upload the file again.

You can use a separate ViewHelper to display previously uploaded resources in order to remove/replace them.

Implementation Neos\FluidAdaptor\ViewHelpers\Form\UploadViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• name (string, optional): Name of input tag

6.2. View Helper Reference 165

Neos CMS Documentation, Release 4.0.0

• value (mixed, optional): Value of input tag

• property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”. . . ”>,
“name” and “value” properties will be ignored.

• disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

• errorClass (string, optional): CSS class to set if there are errors for this view helper

• collection (string, optional): Name of the resource collection this file should be uploaded to

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Example:

<f:form.upload name="file" />

Expected result:

<input type="file" name="file" />

Multiple Uploads:

<f:form.upload property="attachments.0.originalResource" />
<f:form.upload property="attachments.1.originalResource" />

Expected result:

<input type="file" name="formObject[attachments][0][originalResource]">
<input type="file" name="formObject[attachments][0][originalResource]">

Default resource:

<f:form.upload name="file" value="{someDefaultResource}" />

Expected result:

<input type="hidden" name="file[originallySubmittedResource][__identity]" value="
→˓<someDefaultResource-UUID>" />
<input type="file" name="file" />

Specifying the resource collection for the new resource:

<f:form.upload name="file" collection="invoices"/>

Expected result:

166 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

<input type="file" name="yourInvoice" />
<input type="hidden" name="yourInvoice[__collectionName]" value="invoices" />

f:format.base64Decode

Applies base64_decode to the input

Implementation Neos\FluidAdaptor\ViewHelpers\Format\Base64DecodeViewHelper

Arguments

• value (string, optional): string to format

f:format.bytes

Formats an integer with a byte count into human-readable form.

Implementation Neos\FluidAdaptor\ViewHelpers\Format\BytesViewHelper

Arguments

• value (integer, optional): The incoming data to convert, or NULL if VH children should be used

• decimals (integer, optional): The number of digits after the decimal point

• decimalSeparator (string, optional): The decimal point character

• thousandsSeparator (string, optional): The character for grouping the thousand digits

Examples

Defaults:

{fileSize -> f:format.bytes()}

Expected result:

123 KB
// depending on the value of {fileSize}

Defaults:

{fileSize -> f:format.bytes(decimals: 2, decimalSeparator: ',',
→˓thousandsSeparator: ',')}

Expected result:

1,023.00 B
// depending on the value of {fileSize}

f:format.case

Modifies the case of an input string to upper- or lowercase or capitalization. The default transformation will be
uppercase as in mb_convert_case [1].

Possible modes are:

6.2. View Helper Reference 167

Neos CMS Documentation, Release 4.0.0

lower Transforms the input string to its lowercase representation

upper Transforms the input string to its uppercase representation

capital Transforms the input string to its first letter upper-cased, i.e. capitalization

uncapital Transforms the input string to its first letter lower-cased, i.e. uncapitalization

capitalWords Transforms the input string to each containing word being capitalized

Note that the behavior will be the same as in the appropriate PHP function mb_convert_case [1]; especially
regarding locale and multibyte behavior.

Implementation Neos\FluidAdaptor\ViewHelpers\Format\CaseViewHelper

Arguments

• value (string, optional): The input value. If not given, the evaluated child nodes will be used

• mode (string, optional): The case to apply, must be one of this’ CASE_* constants. Defaults to uppercase
application

f:format.crop

Use this view helper to crop the text between its opening and closing tags.

Implementation Neos\FluidAdaptor\ViewHelpers\Format\CropViewHelper

Arguments

• maxCharacters (integer): Place where to truncate the string

• append (string, optional): What to append, if truncation happened

• value (string, optional): The input value which should be cropped. If not set, the evaluated contents of the
child nodes will be used

Examples

Defaults:

<f:format.crop maxCharacters="10">This is some very long text</f:format.crop>

Expected result:

This is so...

Custom suffix:

<f:format.crop maxCharacters="17" append=" [more]">This is some very long text</
→˓f:format.crop>

Expected result:

This is some very [more]

Inline notation:

 f:format.crop(maxCharacters: '12')}">John Doe
→˓

168 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Expected result:

John Doe

f:format.currency

Formats a given float to a currency representation.

Implementation Neos\FluidAdaptor\ViewHelpers\Format\CurrencyViewHelper

Arguments

• forceLocale (mixed, optional): Whether if, and what, Locale should be used. May be boolean, string
or NeosFlowI18nLocale

• currencySign (string, optional): (optional) The currency sign, eg $ or C.

• decimalSeparator (string, optional): (optional) The separator for the decimal point.

• thousandsSeparator (string, optional): (optional) The thousands separator.

• prependCurrency (boolean, optional): (optional) Indicates if currency symbol should be placed before
or after the numeric value.

• separateCurrency (boolean, optional): (optional) Indicates if a space character should be placed be-
tween the number and the currency sign.

• decimals (integer, optional): (optional) The number of decimal places.

• currencyCode (string, optional): (optional) The ISO 4217 currency code of the currency to format. Used
to set decimal places and rounding.

Examples

Defaults:

<f:format.currency>123.456</f:format.currency>

Expected result:

123,46

All parameters:

<f:format.currency currencySign="$" decimalSeparator="." thousandsSeparator=","
→˓prependCurrency="false", separateCurrency="true", decimals="2">54321</f:format.
→˓currency>

Expected result:

54,321.00 $

Inline notation:

{someNumber -> f:format.currency(thousandsSeparator: ',', currencySign: 'C')}

Expected result:

54,321,00 C
(depending on the value of {someNumber})

6.2. View Helper Reference 169

Neos CMS Documentation, Release 4.0.0

Inline notation with current locale used:

{someNumber -> f:format.currency(currencySign: 'C', forceLocale: true)}

Expected result:

54.321,00 C
(depending on the value of {someNumber} and the current locale)

Inline notation with specific locale used:

{someNumber -> f:format.currency(currencySign: 'EUR', forceLocale: 'de_DE')}

Expected result:

54.321,00 EUR
(depending on the value of {someNumber})

Inline notation with different position for the currency sign:

{someNumber -> f:format.currency(currencySign: 'C', prependCurrency: 'true')}

Expected result:

C 54.321,00
(depending on the value of {someNumber})

Inline notation with no space between the currency and no decimal places:

{someNumber -> f:format.currency(currencySign: 'C', separateCurrency: 'false',
→˓decimals: '0')}

Expected result:

54.321C
(depending on the value of {someNumber})

f:format.date

Formats a DateTime object.

Implementation Neos\FluidAdaptor\ViewHelpers\Format\DateViewHelper

Arguments

• forceLocale (mixed, optional): Whether if, and what, Locale should be used. May be boolean, string
or NeosFlowI18nLocale

• date (mixed, optional): either a DateTime object or a string that is accepted by DateTime constructor

• format (string, optional): Format String which is taken to format the Date/Time if none of the locale
options are set.

• localeFormatType (string, optional): Whether to format (according to locale set in $forceLocale) date,
time or datetime. Must be one of NeosFlowI18nCldrReaderDatesReader::FORMAT_TYPE_*’s constants.

• localeFormatLength (string, optional): Format length if locale set in $forceLocale. Must be one of
NeosFlowI18nCldrReaderDatesReader::FORMAT_LENGTH_*’s constants.

• cldrFormat (string, optional): Format string in CLDR format (see http://cldr.unicode.org/translation/
date-time)

170 Chapter 6. References

http://cldr.unicode.org/translation/date-time
http://cldr.unicode.org/translation/date-time

Neos CMS Documentation, Release 4.0.0

Examples

Defaults:

<f:format.date>{dateObject}</f:format.date>

Expected result:

1980-12-13
(depending on the current date)

Custom date format:

<f:format.date format="H:i">{dateObject}</f:format.date>

Expected result:

01:23
(depending on the current time)

strtotime string:

<f:format.date format="d.m.Y - H:i:s">+1 week 2 days 4 hours 2 seconds</f:format.
→˓date>

Expected result:

13.12.1980 - 21:03:42
(depending on the current time, see http://www.php.net/manual/en/function.
→˓strtotime.php)

output date from unix timestamp:

<f:format.date format="d.m.Y - H:i:s">@{someTimestamp}</f:format.date>

Expected result:

13.12.1980 - 21:03:42
(depending on the current time. Don't forget the "@" in front of the timestamp see
→˓http://www.php.net/manual/en/function.strtotime.php)

Inline notation:

{f:format.date(date: dateObject)}

Expected result:

1980-12-13
(depending on the value of {dateObject})

Inline notation (2nd variant):

{dateObject -> f:format.date()}

Expected result:

1980-12-13
(depending on the value of {dateObject})

Inline notation, outputting date only, using current locale:

6.2. View Helper Reference 171

Neos CMS Documentation, Release 4.0.0

{dateObject -> f:format.date(localeFormatType: 'date', forceLocale: true)}

Expected result:

13.12.1980
(depending on the value of {dateObject} and the current locale)

Inline notation with specific locale used:

{dateObject -> f:format.date(forceLocale: 'de_DE')}

Expected result:

13.12.1980 11:15:42
(depending on the value of {dateObject})

f:format.htmlentities

Applies htmlentities() escaping to a value

Implementation Neos\FluidAdaptor\ViewHelpers\Format\HtmlentitiesViewHelper

Arguments

• value (string, optional): string to format

• keepQuotes (boolean, optional): if TRUE, single and double quotes won’t be replaced (sets
ENT_NOQUOTES flag)

• encoding (string, optional): the encoding format

• doubleEncode (string, optional): If FALSE existing html entities won’t be encoded, the default is to
convert everything.

f:format.htmlentitiesDecode

Applies html_entity_decode() to a value

Implementation Neos\FluidAdaptor\ViewHelpers\Format\HtmlentitiesDecodeViewHelper

Arguments

• value (string, optional): string to format

• keepQuotes (boolean, optional): if TRUE, single and double quotes won’t be replaced (sets
ENT_NOQUOTES flag)

• encoding (string, optional): the encoding format

f:format.identifier

This ViewHelper renders the identifier of a persisted object (if it has an identity). Usually the identifier is the
UUID of the object, but it could be an array of the identity properties, too.

Implementation Neos\FluidAdaptor\ViewHelpers\Format\IdentifierViewHelper

172 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Arguments

• value (object, optional): the object to render the identifier for, or NULL if VH children should be used

f:format.json

Wrapper for PHPs json_encode function.

Implementation Neos\FluidAdaptor\ViewHelpers\Format\JsonViewHelper

Arguments

• value (mixed, optional): The incoming data to convert, or NULL if VH children should be used

• forceObject (boolean, optional): Outputs an JSON object rather than an array

Examples

encoding a view variable:

{someArray -> f:format.json()}

Expected result:

["array","values"]
// depending on the value of {someArray}

associative array:

{f:format.json(value: {foo: 'bar', bar: 'baz'})}

Expected result:

{"foo":"bar","bar":"baz"}

non-associative array with forced object:

{f:format.json(value: {0: 'bar', 1: 'baz'}, forceObject: true)}

Expected result:

{"0":"bar","1":"baz"}

f:format.nl2br

Wrapper for PHPs nl2br function.

Implementation Neos\FluidAdaptor\ViewHelpers\Format\Nl2brViewHelper

Arguments

• value (string, optional): string to format

6.2. View Helper Reference 173

Neos CMS Documentation, Release 4.0.0

f:format.number

Formats a number with custom precision, decimal point and grouped thousands.

Implementation Neos\FluidAdaptor\ViewHelpers\Format\NumberViewHelper

Arguments

• forceLocale (mixed, optional): Whether if, and what, Locale should be used. May be boolean, string
or NeosFlowI18nLocale

• decimals (integer, optional): The number of digits after the decimal point

• decimalSeparator (string, optional): The decimal point character

• thousandsSeparator (string, optional): The character for grouping the thousand digits

• localeFormatLength (string, optional): Format length if locale set in $forceLocale. Must be one of
NeosFlowI18nCldrReaderNumbersReader::FORMAT_LENGTH_*’s constants.

f:format.padding

Formats a string using PHPs str_pad function.

Implementation Neos\FluidAdaptor\ViewHelpers\Format\PaddingViewHelper

Arguments

• padLength (integer): Length of the resulting string. If the value of pad_length is negative or less than the
length of the input string, no padding takes place.

• padString (string, optional): The padding string

• padType (string, optional): Append the padding at this site (Possible values: right,left,both. Default:
right)

• value (string, optional): string to format

f:format.stripTags

Removes tags from the given string (applying PHPs strip_tags() function)

Implementation Neos\FluidAdaptor\ViewHelpers\Format\StripTagsViewHelper

Arguments

• value (string, optional): string to format

f:format.urlencode

Encodes the given string according to http://www.faqs.org/rfcs/rfc3986.html (applying PHPs rawurlencode() func-
tion)

Implementation Neos\FluidAdaptor\ViewHelpers\Format\UrlencodeViewHelper

Arguments

• value (string, optional): string to format

174 Chapter 6. References

http://www.faqs.org/rfcs/rfc3986.html

Neos CMS Documentation, Release 4.0.0

f:link.action

A view helper for creating links to actions.

Implementation Neos\FluidAdaptor\ViewHelpers\Link\ActionViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

• name (string, optional): Specifies the name of an anchor

• rel (string, optional): Specifies the relationship between the current document and the linked document

• rev (string, optional): Specifies the relationship between the linked document and the current document

• target (string, optional): Specifies where to open the linked document

• action (string): Target action

• arguments (array, optional): Arguments

• controller (string, optional): Target controller. If NULL current controllerName is used

• package (string, optional): Target package. if NULL current package is used

• subpackage (string, optional): Target subpackage. if NULL current subpackage is used

• section (string, optional): The anchor to be added to the URI

• format (string, optional): The requested format, e.g. “.html”

• additionalParams (array, optional): additional query parameters that won’t be prefixed like $argu-
ments (overrule $arguments)

• addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI

• argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the
URI. Only active if $addQueryString = TRUE

• useParentRequest (boolean, optional): If set, the parent Request will be used instead of the current
one. Note: using this argument can be a sign of undesired tight coupling, use with care

• absolute (boolean, optional): By default this ViewHelper renders links with absolute URIs. If this is
FALSE, a relative URI is created instead

• useMainRequest (boolean, optional): If set, the main Request will be used instead of the current one.
Note: using this argument can be a sign of undesired tight coupling, use with care

6.2. View Helper Reference 175

Neos CMS Documentation, Release 4.0.0

Examples

Defaults:

<f:link.action>some link</f:link.action>

Expected result:

some link
(depending on routing setup and current package/controller/action)

Additional arguments:

<f:link.action action="myAction" controller="MyController" package=
→˓"YourCompanyName.MyPackage" subpackage="YourCompanyName.MySubpackage" arguments="
→˓{key1: 'value1', key2: 'value2'}">some link</f:link.action>

Expected result:

→˓some link
(depending on routing setup)

f:link.email

Email link view helper. Generates an email link.

Implementation Neos\FluidAdaptor\ViewHelpers\Link\EmailViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

• name (string, optional): Specifies the name of an anchor

• rel (string, optional): Specifies the relationship between the current document and the linked document

• rev (string, optional): Specifies the relationship between the linked document and the current document

• target (string, optional): Specifies where to open the linked document

• email (string): The email address to be turned into a link.

176 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Examples

basic email link:

<f:link.email email="foo@bar.tld" />

Expected result:

foo@bar.tld

Email link with custom linktext:

<f:link.email email="foo@bar.tld">some custom content</f:link.email>

Expected result:

some custom content

f:link.external

A view helper for creating links to external targets.

Implementation Neos\FluidAdaptor\ViewHelpers\Link\ExternalViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

• name (string, optional): Specifies the name of an anchor

• rel (string, optional): Specifies the relationship between the current document and the linked document

• rev (string, optional): Specifies the relationship between the linked document and the current document

• target (string, optional): Specifies where to open the linked document

• uri (string): the URI that will be put in the href attribute of the rendered link tag

• defaultScheme (string, optional): scheme the href attribute will be prefixed with if specified $uri does
not contain a scheme already

6.2. View Helper Reference 177

Neos CMS Documentation, Release 4.0.0

Examples

custom default scheme:

<f:link.external uri="neos.io" defaultScheme="sftp">external ftp link</f:link.
→˓external>

Expected result:

external ftp link

f:renderChildren

Render the inner parts of a Widget. This ViewHelper can only be used in a template which belongs to a Widget
Controller.

It renders everything inside the Widget ViewHelper, and you can pass additional arguments.

Implementation Neos\FluidAdaptor\ViewHelpers\RenderChildrenViewHelper

Arguments

• arguments (array, optional)

Examples

Basic usage:

<!-- in the widget template -->
Header
<f:renderChildren arguments="{foo: 'bar'}" />
Footer

<-- in the outer template, using the widget -->

<x:widget.someWidget>
Foo: {foo}

</x:widget.someWidget>

Expected result:

Header
Foo: bar
Footer

f:security.csrfToken

ViewHelper that outputs a CSRF token which is required for “unsafe” requests (e.g. POST, PUT, DELETE, . . .).

Note: You won’t need this ViewHelper if you use the Form ViewHelper, because that creates a hidden field with
the CSRF token for unsafe requests automatically. This ViewHelper is mainly useful in conjunction with AJAX.

Implementation Neos\FluidAdaptor\ViewHelpers\Security\CsrfTokenViewHelper

178 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

f:security.ifAccess

This view helper implements an ifAccess/else condition.

Implementation Neos\FluidAdaptor\ViewHelpers\Security\IfAccessViewHelper

Arguments

• then (mixed, optional): Value to be returned if the condition if met.

• else (mixed, optional): Value to be returned if the condition if not met.

• condition (boolean, optional): Condition expression conforming to Fluid boolean rules

• privilegeTarget (string): Condition expression conforming to Fluid boolean rules

• parameters (array, optional): Condition expression conforming to Fluid boolean rules

f:security.ifAuthenticated

This view helper implements an ifAuthenticated/else condition.

Implementation Neos\FluidAdaptor\ViewHelpers\Security\IfAuthenticatedViewHelper

Arguments

• then (mixed, optional): Value to be returned if the condition if met.

• else (mixed, optional): Value to be returned if the condition if not met.

• condition (boolean, optional): Condition expression conforming to Fluid boolean rules

f:security.ifHasRole

This view helper implements an ifHasRole/else condition.

Implementation Neos\FluidAdaptor\ViewHelpers\Security\IfHasRoleViewHelper

Arguments

• then (mixed, optional): Value to be returned if the condition if met.

• else (mixed, optional): Value to be returned if the condition if not met.

• condition (boolean, optional): Condition expression conforming to Fluid boolean rules

• role (mixed): The role or role identifier.

• packageKey (string, optional): PackageKey of the package defining the role.

• account (NeosFlowSecurityAccount, optional): If specified, this subject of this check is the given Ac-
count instead of the currently authenticated account

f:translate

Returns translated message using source message or key ID.

Also replaces all placeholders with formatted versions of provided values.

Implementation Neos\FluidAdaptor\ViewHelpers\TranslateViewHelper

6.2. View Helper Reference 179

Neos CMS Documentation, Release 4.0.0

Arguments

• id (string, optional): Id to use for finding translation (trans-unit id in XLIFF)

• value (string, optional): If $key is not specified or could not be resolved, this value is used. If this
argument is not set, child nodes will be used to render the default

• arguments (array, optional): Numerically indexed array of values to be inserted into placeholders

• source (string, optional): Name of file with translations (use / as a directory separator)

• package (string, optional): Target package key. If not set, the current package key will be used

• quantity (mixed, optional): A number to find plural form for (float or int), NULL to not use plural forms

• locale (string, optional): An identifier of locale to use (NULL for use the default locale)

Examples

Translation by id:

<f:translate id="user.unregistered">Unregistered User</f:translate>

Expected result:

translation of label with the id "user.unregistered" and a fallback to
→˓"Unregistered User"

Inline notation:

{f:translate(id: 'some.label.id', value: 'fallback result')}

Expected result:

translation of label with the id "some.label.id" and a fallback to "fallback result
→˓"

Custom source and locale:

<f:translate id="some.label.id" source="LabelsCatalog" locale="de_DE"/>

Expected result:

translation from custom source "SomeLabelsCatalog" for locale "de_DE"

Custom source from other package:

<f:translate id="some.label.id" source="LabelsCatalog" package="OtherPackage"/>

Expected result:

translation from custom source "LabelsCatalog" in "OtherPackage"

Arguments:

<f:translate arguments="{0: 'foo', 1: '99.9'}"><![CDATA[Untranslated {0} and {1,
→˓number}]]></f:translate>

Expected result:

translation of the label "Untranslated foo and 99.9"

Translation by label:

180 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

<f:translate>Untranslated label</f:translate>

Expected result:

translation of the label "Untranslated label"

f:uri.action

A view helper for creating URIs to actions.

Implementation Neos\FluidAdaptor\ViewHelpers\Uri\ActionViewHelper

Arguments

• action (string): Target action

• arguments (array, optional): Arguments

• controller (string, optional): Target controller. If NULL current controllerName is used

• package (string, optional): Target package. if NULL current package is used

• subpackage (string, optional): Target subpackage. if NULL current subpackage is used

• section (string, optional): The anchor to be added to the URI

• format (string, optional): The requested format, e.g. “.html”

• additionalParams (array, optional): additional query parameters that won’t be prefixed like $argu-
ments (overrule $arguments)

• absolute (boolean, optional): By default this ViewHelper renders links with absolute URIs. If this is
FALSE, a relative URI is created instead

• addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI

• argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the
URI. Only active if $addQueryString = TRUE

• useParentRequest (boolean, optional): If set, the parent Request will be used instead of the current
one. Note: using this argument can be a sign of undesired tight coupling, use with care

• useMainRequest (boolean, optional): If set, the main Request will be used instead of the current one.
Note: using this argument can be a sign of undesired tight coupling, use with care

Examples

Defaults:

<f:uri.action>some link</f:uri.action>

Expected result:

currentpackage/currentcontroller
(depending on routing setup and current package/controller/action)

Additional arguments:

<f:uri.action action="myAction" controller="MyController" package="YourCompanyName.
→˓MyPackage" subpackage="YourCompanyName.MySubpackage" arguments="{key1: 'value1',
→˓key2: 'value2'}">some link</f:uri.action>

6.2. View Helper Reference 181

Neos CMS Documentation, Release 4.0.0

Expected result:

mypackage/mycontroller/mysubpackage/myaction?key1=value1&key2=value2
(depending on routing setup)

f:uri.email

Email uri view helper. Currently the specified email is simply prepended by “mailto:” but we might add spam
protection.

Implementation Neos\FluidAdaptor\ViewHelpers\Uri\EmailViewHelper

Arguments

• email (string): The email address to be turned into a mailto uri.

Examples

basic email uri:

<f:uri.email email="foo@bar.tld" />

Expected result:

mailto:foo@bar.tld

f:uri.external

A view helper for creating URIs to external targets. Currently the specified URI is simply passed through.

Implementation Neos\FluidAdaptor\ViewHelpers\Uri\ExternalViewHelper

Arguments

• uri (string): target URI

• defaultScheme (string, optional): target URI

Examples

custom default scheme:

<f:uri.external uri="neos.io" defaultScheme="sftp" />

Expected result:

sftp://neos.io

f:uri.resource

A view helper for creating URIs to resources.

Implementation Neos\FluidAdaptor\ViewHelpers\Uri\ResourceViewHelper

182 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Arguments

• path (string, optional): Location of the resource, can be either a path relative to the Public resource
directory of the package or a resource://. . . URI

• package (string, optional): Target package key. If not set, the current package key will be used

• resource (NeosFlowResourceManagementPersistentResource, optional): If specified, this resource ob-
ject is used instead of the path and package information

• localize (bool, optional): Whether resource localization should be attempted or not.

Examples

Defaults:

<link href="{f:uri.resource(path: 'CSS/Stylesheet.css')}" rel="stylesheet" />

Expected result:

<link href="http://yourdomain.tld/_Resources/Static/YourPackage/CSS/Stylesheet.css
→˓" rel="stylesheet" />
(depending on current package)

Other package resource:

{f:uri.resource(path: 'gfx/SomeImage.png', package: 'DifferentPackage')}

Expected result:

http://yourdomain.tld/_Resources/Static/DifferentPackage/gfx/SomeImage.png
(depending on domain)

Static resource URI:

{f:uri.resource(path: 'resource://DifferentPackage/Public/gfx/SomeImage.png')}

Expected result:

http://yourdomain.tld/_Resources/Static/DifferentPackage/gfx/SomeImage.png
(depending on domain)

Persistent resource object:

Expected result:

<img src="http://yourdomain.tld/_Resources/Persistent/
→˓69e73da3ce0ad08c717b7b9f1c759182d6650944.jpg" />
(depending on your resource object)

f:validation.ifHasErrors

This view helper allows to check whether validation errors adhere to the current request.

Implementation Neos\FluidAdaptor\ViewHelpers\Validation\IfHasErrorsViewHelper

6.2. View Helper Reference 183

Neos CMS Documentation, Release 4.0.0

Arguments

• then (mixed, optional): Value to be returned if the condition if met.

• else (mixed, optional): Value to be returned if the condition if not met.

• for (string, optional): The argument or property name or path to check for error(s). If not set any validation
error leads to the “then child” to be rendered

f:validation.results

Validation results view helper

Implementation Neos\FluidAdaptor\ViewHelpers\Validation\ResultsViewHelper

Arguments

• for (string, optional): The name of the error name (e.g. argument name or property name). This can also
be a property path (like blog.title), and will then only display the validation errors of that property.

• as (string, optional): The name of the variable to store the current error

Examples

Output error messages as a list:

<f:validation.results>
<f:if condition="{validationResults.flattenedErrors}">
<ul class="errors">

<f:for each="{validationResults.flattenedErrors}" as="errors" key=
→˓"propertyPath">

{propertyPath}

<f:for each="{errors}" as="error">

{error.code}: {error}
</f:for>

</f:for>

</f:if>

</f:validation.results>

Expected result:

<ul class="errors">
1234567890: Validation errors for argument "newBlog"

Output error messages for a single property:

<f:validation.results for="someProperty">
<f:if condition="{validationResults.flattenedErrors}">
<ul class="errors">

<f:for each="{validationResults.errors}" as="error">
{error.code}: {error}

</f:for>

</f:if>
</f:validation.results>

184 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Expected result:

<ul class="errors">
1234567890: Some error message

f:widget.autocomplete

Usage: <f:input id=”name” . . . /> <f:widget.autocomplete for=”name” objects=”{posts}” searchProp-
erty=”author”>

Make sure to include jQuery and jQuery UI in the HTML, like that: <script type=”text/javascript”
src=”http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js”></script> <script
type=”text/javascript” src=”http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.4/jquery-ui.min.js”></script>
<link rel=”stylesheet” href=”http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.3/themes/base/jquery-ui.
css” type=”text/css” media=”all” /> <link rel=”stylesheet” href=”http://static.jquery.com/ui/css/
demo-docs-theme/ui.theme.css” type=”text/css” media=”all” />

Implementation Neos\FluidAdaptor\ViewHelpers\Widget\AutocompleteViewHelper

Arguments

• objects (NeosFlowPersistenceQueryResultInterface)

• for (string)

• searchProperty (string)

• configuration (array, optional)

• widgetId (string, optional): Unique identifier of the widget instance

f:widget.link

widget.link ViewHelper This ViewHelper can be used inside widget templates in order to render links pointing to
widget actions

Implementation Neos\FluidAdaptor\ViewHelpers\Widget\LinkViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• action (string, optional): Target action

• arguments (array, optional): Arguments

• section (string, optional): The anchor to be added to the URI

• format (string, optional): The requested format, e.g. “.html

• ajax (boolean, optional): TRUE if the URI should be to an AJAX widget, FALSE otherwise.

• includeWidgetContext (boolean, optional): TRUE if the URI should contain the serialized widget
context (only useful for stateless AJAX widgets)

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

6.2. View Helper Reference 185

http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js
http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.4/jquery-ui.min.js
http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.3/themes/base/jquery-ui.css
http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.3/themes/base/jquery-ui.css
http://static.jquery.com/ui/css/demo-docs-theme/ui.theme.css
http://static.jquery.com/ui/css/demo-docs-theme/ui.theme.css

Neos CMS Documentation, Release 4.0.0

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

• name (string, optional): Specifies the name of an anchor

• rel (string, optional): Specifies the relationship between the current document and the linked document

• rev (string, optional): Specifies the relationship between the linked document and the current document

• target (string, optional): Specifies where to open the linked document

f:widget.paginate

This ViewHelper renders a Pagination of objects.

Implementation Neos\FluidAdaptor\ViewHelpers\Widget\PaginateViewHelper

Arguments

• objects (NeosFlowPersistenceQueryResultInterface)

• as (string)

• configuration (array, optional)

• widgetId (string, optional): Unique identifier of the widget instance

f:widget.uri

widget.uri ViewHelper This ViewHelper can be used inside widget templates in order to render URIs pointing to
widget actions

Implementation Neos\FluidAdaptor\ViewHelpers\Widget\UriViewHelper

Arguments

• action (string, optional): Target action

• arguments (array, optional): Arguments

• section (string, optional): The anchor to be added to the URI

• format (string, optional): The requested format, e.g. “.html

• ajax (boolean, optional): TRUE if the URI should be to an AJAX widget, FALSE otherwise.

• includeWidgetContext (boolean, optional): TRUE if the URI should contain the serialized widget
context (only useful for stateless AJAX widgets)

6.2.3 Form ViewHelper Reference

This reference was automatically generated from code on 2018-08-10

186 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

neos.form:form

Custom form ViewHelper that renders the form state instead of referrer fields

Implementation Neos\Form\ViewHelpers\FormViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• enctype (string, optional): MIME type with which the form is submitted

• method (string, optional): Transfer type (GET or POST)

• name (string, optional): Name of form

• onreset (string, optional): JavaScript: On reset of the form

• onsubmit (string, optional): JavaScript: On submit of the form

• action (string, optional): Target action

• arguments (array, optional): Arguments

• controller (string, optional): Target controller. If NULL current controllerName is used

• package (string, optional): Target package. if NULL current package is used

• subpackage (string, optional): Target subpackage. if NULL current subpackage is used

• object (mixed, optional): object to use for the form. Use in conjunction with the “property” attribute on
the sub tags

• section (string, optional): The anchor to be added to the URI

• format (string, optional): The requested format, e.g. “.html”

• additionalParams (array, optional): additional query parameters that won’t be prefixed like $argu-
ments (overrule $arguments)

• absolute (boolean, optional): If set, an absolute action URI is rendered (only active if $actionUri is not
set)

• addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI

• argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the
URI. Only active if $addQueryString = TRUE

• fieldNamePrefix (string, optional): Prefix that will be added to all field names within this form

• actionUri (string, optional): can be used to overwrite the “action” attribute of the form tag

• objectName (string, optional): name of the object that is bound to this form. If this argument is not
specified, the name attribute of this form is used to determine the FormObjectName

• useParentRequest (boolean, optional): If set, the parent Request will be used instead ob the current
one

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

6.2. View Helper Reference 187

Neos CMS Documentation, Release 4.0.0

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

neos.form:form.datePicker

Display a jQuery date picker.

Note: Requires jQuery UI to be included on the page.

Implementation Neos\Form\ViewHelpers\Form\DatePickerViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• dateFormat (string, optional)

• enableDatePicker (boolean, optional)

• name (string, optional): Name of input tag

• value (mixed, optional): Value of input tag

• property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”. . . ”>,
“name” and “value” properties will be ignored.

• size (int, optional): The size of the input field

• placeholder (string, optional): Specifies a short hint that describes the expected value of an input
element

• errorClass (string, optional): CSS class to set if there are errors for this view helper

• initialDate (string, optional): Initial date (@see http://www.php.net/manual/en/datetime.formats.php
for supported formats)

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

neos.form:form.formElementRootlinePath

Form Element Rootline Path

Implementation Neos\Form\ViewHelpers\Form\FormElementRootlinePathViewHelper

188 Chapter 6. References

http://www.php.net/manual/en/datetime.formats.php

Neos CMS Documentation, Release 4.0.0

Arguments

• renderable (NeosFormCoreModelRenderableRenderableInterface)

neos.form:form.timePicker

Displays two select-boxes for hour and minute selection.

Implementation Neos\Form\ViewHelpers\Form\TimePickerViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• name (string, optional): Name of input tag

• value (mixed, optional): Value of input tag

• property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”. . . ”>,
“name” and “value” properties will be ignored.

• size (int, optional): The size of the select field

• placeholder (string, optional): Specifies a short hint that describes the expected value of an input
element

• disabled (string, optional): Specifies that the select element should be disabled when the page loads

• errorClass (string, optional): CSS class to set if there are errors for this view helper

• initialDate (string, optional): Initial time (@see http://www.php.net/manual/en/datetime.formats.php
for supported formats)

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

neos.form:form.uploadedImage

This ViewHelper makes the specified Image object available for its childNodes. In case the form is redisplayed
because of validation errors, a previously uploaded image will be correctly used.

Implementation Neos\Form\ViewHelpers\Form\UploadedImageViewHelper

6.2. View Helper Reference 189

http://www.php.net/manual/en/datetime.formats.php

Neos CMS Documentation, Release 4.0.0

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• as (string, optional)

• name (string, optional): Name of input tag

• value (mixed, optional): Value of input tag

• property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”. . . ”>,
“name” and “value” properties will be ignored.

Examples

Example:

<f:form.upload property="image" />
<c:form.uploadedImage property="image" as="theImage">
Link to image resource</

→˓a>
</c:form.uploadedImage>

Expected result:

Link to image resource

neos.form:form.uploadedResource

This ViewHelper makes the specified PersistentResource available for its childNodes. If no resource object was
found at the specified position, the child nodes are not rendered.

In case the form is redisplayed because of validation errors, a previously uploaded resource will be correctly used.

Implementation Neos\Form\ViewHelpers\Form\UploadedResourceViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• as (string, optional)

• name (string, optional): Name of input tag

• value (mixed, optional): Value of input tag

• property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”. . . ”>,
“name” and “value” properties will be ignored.

Examples

Example:

190 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

<f:form.upload property="file" />
<c:form.uploadedResource property="file" as="theResource">
Link to resource

</c:form.uploadedResource>

Expected result:

Link to resource

neos.form:render

Main Entry Point to render a Form into a Fluid Template

<pre> {namespace form=NeosFormViewHelpers} <form:render factoryClass=”NameOfYourCustomFactoryClass”
/> </pre>

The factory class must implement {@link NeosFormFactoryFormFactoryInterface}.

Implementation Neos\Form\ViewHelpers\RenderViewHelper

Arguments

• persistenceIdentifier (string, optional): the persistence identifier for the form.

• factoryClass (string, optional): The fully qualified class name of the factory (which has to implement
NeosFormFactoryFormFactoryInterface)

• presetName (string, optional): name of the preset to use

• overrideConfiguration (array, optional): factory specific configuration

neos.form:renderHead

Output the configured stylesheets and JavaScript include tags for a given preset

Implementation Neos\Form\ViewHelpers\RenderHeadViewHelper

Arguments

• presetName (string, optional): name of the preset to use

neos.form:renderRenderable

Render a renderable

Implementation Neos\Form\ViewHelpers\RenderRenderableViewHelper

Arguments

• renderable (NeosFormCoreModelRenderableRenderableInterface)

neos.form:renderValues

Renders the values of a form

Implementation Neos\Form\ViewHelpers\RenderValuesViewHelper

6.2. View Helper Reference 191

mailto:\protect \T1\textbraceleft @link

Neos CMS Documentation, Release 4.0.0

Arguments

• renderable (NeosFormCoreModelRenderableRootRenderableInterface, optional): If specified, only the
values of the given renderable are rendered, otherwise all form elements are rendered

• formRuntime (NeosFormCoreRuntimeFormRuntime, optional): If not set, the Form Runtime will be
fetched from the View, which only works within the FluidFormRenderer

• as (string, optional)

neos.form:translateElementProperty

ViewHelper to translate the property of a given form element based on its rendering options

Implementation Neos\Form\ViewHelpers\TranslateElementPropertyViewHelper

Arguments

• property (string)

• element (NeosFormCoreModelFormElementInterface, optional)

6.2.4 Fusion ViewHelper Reference

This reference was automatically generated from code on 2018-08-10

fusion:render

Render a Fusion object with a relative Fusion path, optionally pushing new variables onto the Fusion context.

Implementation Neos\Fusion\ViewHelpers\RenderViewHelper

Arguments

• path (string): Relative Fusion path to be rendered

• context (array, optional): Additional context variables to be set.

• fusionPackageKey (string, optional): The key of the package to load Fusion from, if not from the
current context.

• fusionFilePathPattern (string, optional): Resource pattern to load Fusion from. Defaults to: re-
source://@package/Private/Fusion/

Examples

Simple:

Fusion:
some.given {

path = Neos.Fusion:Template
...

}
ViewHelper:
<ts:render path="some.given.path" />

Expected result:

192 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

(the evaluated Fusion, depending on the given path)

Fusion from a foreign package:

<ts:render path="some.given.path" fusionPackageKey="Acme.Bookstore" />

Expected result:

(the evaluated Fusion, depending on the given path)

6.2.5 Media ViewHelper Reference

This reference was automatically generated from code on 2018-08-10

neos.media:fileTypeIcon

Renders an HTML tag for a file type icon for a given Neos.Media’s asset instance

Implementation Neos\Media\ViewHelpers\FileTypeIconViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• file (mixed, optional): The Asset object. DEPRECATED, use $asset instead!

• asset (mixed, optional): An Asset object to determine the file type icon for. Alternatively $filename can
be specified.

• filename (string, optional): A filename to determine the file type icon for. Alternatively $asset can be
specified.

• width (mixed, optional)

• height (mixed, optional)

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

6.2. View Helper Reference 193

Neos CMS Documentation, Release 4.0.0

Examples

Rendering an asset file type icon:

<neos.media:fileTypeIcon asset="{assetObject}" height="16" />

Expected result:

(depending on the asset, no scaling applied)
<img src="_Resources/Static/Packages/Neos/Media/Icons/16px/jpg.png" height="16"
→˓alt="file type alt text" />

Rendering a file type icon by given filename:

<neos.media:fileTypeIcon filename="{someFilename}" height="16" />

Expected result:

(depending on the asset, no scaling applied)
<img src="_Resources/Static/Packages/Neos/Media/Icons/16px/jpg.png" height="16"
→˓alt="file type alt text" />

neos.media:form.checkbox

View Helper which creates a simple checkbox (<input type=”checkbox”>).

Implementation Neos\Media\ViewHelpers\Form\CheckboxViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• checked (boolean, optional): Specifies that the input element should be preselected

• multiple (boolean, optional): Specifies whether this checkbox belongs to a multivalue (is part of a
checkbox group)

• name (string, optional): Name of input tag

• value (mixed): Value of input tag. Required for checkboxes

• property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”. . . ”>,
“name” and “value” properties will be ignored.

• disabled (string, optional): Specifies that the input element should be disabled when the page loads

• errorClass (string, optional): CSS class to set if there are errors for this view helper

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

194 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Example:

<neos.media:form.checkbox name="myCheckBox" value="someValue" />

Expected result:

<input type="checkbox" name="myCheckBox" value="someValue" />

Preselect:

<neos.media:form.checkbox name="myCheckBox" value="someValue" checked="{object.
→˓value} == 5" />

Expected result:

<input type="checkbox" name="myCheckBox" value="someValue" checked="checked" />
(depending on $object)

Bind to object property:

<neos.media:form.checkbox property="interests" value="TYPO3" />

Expected result:

<input type="checkbox" name="user[interests][]" value="TYPO3" checked="checked" />
(depending on property "interests")

neos.media:format.relativeDate

Renders a DateTime formatted relative to the current date

Implementation Neos\Media\ViewHelpers\Format\RelativeDateViewHelper

Arguments

• date (DateTime, optional)

neos.media:image

Renders an HTML tag from a given Neos.Media’s image instance

Implementation Neos\Media\ViewHelpers\ImageViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• image (NeosMediaDomainModelImageInterface, optional): The image to be rendered as an image

6.2. View Helper Reference 195

Neos CMS Documentation, Release 4.0.0

• width (integer, optional): Desired width of the image

• maximumWidth (integer, optional): Desired maximum width of the image

• height (integer, optional): Desired height of the image

• maximumHeight (integer, optional): Desired maximum height of the image

• allowCropping (boolean, optional): Whether the image should be cropped if the given sizes would hurt
the aspect ratio

• allowUpScaling (boolean, optional): Whether the resulting image size might exceed the size of the
original image

• async (boolean, optional): Return asynchronous image URI in case the requested image does not exist
already

• preset (string, optional): Preset used to determine image configuration

• quality (integer, optional): Quality of the image

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

• alt (string): Specifies an alternate text for an image

• ismap (string, optional): Specifies an image as a server-side image-map. Rarely used. Look at usemap
instead

• usemap (string, optional): Specifies an image as a client-side image-map

Examples

Rendering an image as-is:

<neos.media:image image="{imageObject}" alt="a sample image without scaling" />

Expected result:

(depending on the image, no scaling applied)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="120" height="180" alt="a
→˓sample image without scaling" />

Rendering an image with scaling at a given width only:

<neos.media:image image="{imageObject}" maximumWidth="80" alt="sample" />

Expected result:

(depending on the image; scaled down to a maximum width of 80 pixels, keeping the
→˓aspect ratio)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="80" height="120" alt=
→˓"sample" /> (continues on next page)

196 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

Rendering an image with scaling at given width and height, keeping aspect ratio:

<neos.media:image image="{imageObject}" maximumWidth="80" maximumHeight="80" alt=
→˓"sample" />

Expected result:

(depending on the image; scaled down to a maximum width and height of 80 pixels,
→˓keeping the aspect ratio)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="53" height="80" alt=
→˓"sample" />

Rendering an image with crop-scaling at given width and height:

<neos.media:image image="{imageObject}" maximumWidth="80" maximumHeight="80"
→˓allowCropping="true" alt="sample" />

Expected result:

(depending on the image; scaled down to a width and height of 80 pixels, possibly
→˓changing aspect ratio)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="80" height="80" alt=
→˓"sample" />

Rendering an image with allowed up-scaling at given width and height:

<neos.media:image image="{imageObject}" maximumWidth="5000" allowUpScaling="true"
→˓alt="sample" />

Expected result:

(depending on the image; scaled up or down to a width 5000 pixels, keeping aspect
→˓ratio)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="80" height="80" alt=
→˓"sample" />

neos.media:thumbnail

Renders an HTML tag from a given Neos.Media’s asset instance

Implementation Neos\Media\ViewHelpers\ThumbnailViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• asset (NeosMediaDomainModelAssetInterface, optional): The asset to be rendered as a thumbnail

• width (integer, optional): Desired width of the thumbnail

• maximumWidth (integer, optional): Desired maximum width of the thumbnail

• height (integer, optional): Desired height of the thumbnail

• maximumHeight (integer, optional): Desired maximum height of the thumbnail

6.2. View Helper Reference 197

Neos CMS Documentation, Release 4.0.0

• allowCropping (boolean, optional): Whether the thumbnail should be cropped if the given sizes would
hurt the aspect ratio

• allowUpScaling (boolean, optional): Whether the resulting thumbnail size might exceed the size of the
original asset

• async (boolean, optional): Return asynchronous image URI in case the requested image does not exist
already

• preset (string, optional): Preset used to determine image configuration

• quality (integer, optional): Quality of the image

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

• alt (string): Specifies an alternate text for an asset

Examples

Rendering an asset thumbnail:

<neos.media:thumbnail asset="{assetObject}" alt="a sample asset without scaling" />

Expected result:

(depending on the asset, no scaling applied)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="120" height="180" alt="a
→˓sample asset without scaling" />

Rendering an asset thumbnail with scaling at a given width only:

<neos.media:thumbnail asset="{assetObject}" maximumWidth="80" alt="sample" />

Expected result:

(depending on the asset; scaled down to a maximum width of 80 pixels, keeping the
→˓aspect ratio)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="80" height="120" alt=
→˓"sample" />

Rendering an asset thumbnail with scaling at given width and height, keeping aspect ratio:

<neos.media:thumbnail asset="{assetObject}" maximumWidth="80" maximumHeight="80"
→˓alt="sample" />

Expected result:

198 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

(depending on the asset; scaled down to a maximum width and height of 80 pixels,
→˓keeping the aspect ratio)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="53" height="80" alt=
→˓"sample" />

Rendering an asset thumbnail with crop-scaling at given width and height:

<neos.media:thumbnail asset="{assetObject}" maximumWidth="80" maximumHeight="80"
→˓allowCropping="true" alt="sample" />

Expected result:

(depending on the asset; scaled down to a width and height of 80 pixels, possibly
→˓changing aspect ratio)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="80" height="80" alt=
→˓"sample" />

Rendering an asset thumbnail with allowed up-scaling at given width and height:

<neos.media:thumbnail asset="{assetObject}" maximumWidth="5000" allowUpScaling=
→˓"true" alt="sample" />

Expected result:

(depending on the asset; scaled up or down to a width 5000 pixels, keeping aspect
→˓ratio)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="80" height="80" alt=
→˓"sample" />

neos.media:uri.image

Renders the src path of a thumbnail image of a given Neos.Media image instance

Implementation Neos\Media\ViewHelpers\Uri\ImageViewHelper

Arguments

• image (NeosMediaDomainModelImageInterface, optional): The image to retrieve the path from

• width (integer, optional): Desired width of the image

• maximumWidth (integer, optional): Desired maximum width of the image

• height (integer, optional): Desired height of the image

• maximumHeight (integer, optional): Desired maximum height of the image

• allowCropping (boolean, optional): Whether the image should be cropped if the given sizes would hurt
the aspect ratio

• allowUpScaling (boolean, optional): Whether the resulting image size might exceed the size of the
original image

• async (boolean, optional): Return asynchronous image URI in case the requested image does not exist
already

• preset (string, optional): Preset used to determine image configuration

• quality (integer, optional): Quality of the image

6.2. View Helper Reference 199

Neos CMS Documentation, Release 4.0.0

Examples

Rendering an image path as-is:

{neos.media:uri.image(image: imageObject)}

Expected result:

(depending on the image)
_Resources/Persistent/b29[...]95d.jpeg

Rendering an image path with scaling at a given width only:

{neos.media:uri.image(image: imageObject, maximumWidth: 80)}

Expected result:

(depending on the image; has scaled keeping the aspect ratio)
_Resources/Persistent/b29[...]95d.jpeg

neos.media:uri.thumbnail

Renders the src path of a thumbnail image of a given Neos.Media asset instance

Implementation Neos\Media\ViewHelpers\Uri\ThumbnailViewHelper

Arguments

• asset (NeosMediaDomainModelAssetInterface, optional)

• width (integer, optional): Desired width of the thumbnail

• maximumWidth (integer, optional): Desired maximum width of the thumbnail

• height (integer, optional): Desired height of the thumbnail

• maximumHeight (integer, optional): Desired maximum height of the thumbnail

• allowCropping (boolean, optional): Whether the thumbnail should be cropped if the given sizes would
hurt the aspect ratio

• allowUpScaling (boolean, optional): Whether the resulting thumbnail size might exceed the size of the
original asset

• async (boolean, optional): Return asynchronous image URI in case the requested image does not exist
already

• preset (string, optional): Preset used to determine image configuration

• quality (integer, optional): Quality of the image

Examples

Rendering an asset thumbnail path as-is:

{neos.media:uri.thumbnail(asset: assetObject)}

Expected result:

(depending on the asset)
_Resources/Persistent/b29[...]95d.jpeg

200 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Rendering an asset thumbnail path with scaling at a given width only:

{neos.media:uri.thumbnail(asset: assetObject, maximumWidth: 80)}

Expected result:

(depending on the asset; has scaled keeping the aspect ratio)
_Resources/Persistent/b29[...]95d.jpeg

6.2.6 Neos ViewHelper Reference

This reference was automatically generated from code on 2018-08-10

neos:backend.authenticationProviderLabel

Renders a label for the given authentication provider identifier

Implementation Neos\Neos\ViewHelpers\Backend\AuthenticationProviderLabelViewHelper

Arguments

• identifier (string)

neos:backend.changeStats

Displays a text-based “bar graph” giving an indication of the amount and type of changes done to something.
Created for use in workspace management.

Implementation Neos\Neos\ViewHelpers\Backend\ChangeStatsViewHelper

Arguments

• changeCounts (array): Expected keys: new, changed, removed

neos:backend.colorOfString

Generates a color code for a given string

Implementation Neos\Neos\ViewHelpers\Backend\ColorOfStringViewHelper

Arguments

• string (string, optional)

• minimalBrightness (integer, optional)

neos:backend.configurationCacheVersion

ViewHelper for rendering the current version identifier for the configuration cache.

Implementation Neos\Neos\ViewHelpers\Backend\ConfigurationCacheVersionViewHelper

6.2. View Helper Reference 201

Neos CMS Documentation, Release 4.0.0

neos:backend.configurationTree

Render HTML markup for the full configuration tree in the Neos Administration -> Configuration Module.

For performance reasons, this is done inside a ViewHelper instead of Fluid itself.

Implementation Neos\Neos\ViewHelpers\Backend\ConfigurationTreeViewHelper

Arguments

• configuration (array)

neos:backend.container

ViewHelper for the backend ‘container’. Renders the required HTML to integrate the Neos backend into a website.

Implementation Neos\Neos\ViewHelpers\Backend\ContainerViewHelper

Arguments

• node (NeosContentRepositoryDomainModelNodeInterface)

neos:backend.cssBuiltVersion

Returns a shortened md5 of the built CSS file

Implementation Neos\Neos\ViewHelpers\Backend\CssBuiltVersionViewHelper

neos:backend.documentBreadcrumbPath

Render a bread crumb path by using the labels of documents leading to the given node path

Implementation Neos\Neos\ViewHelpers\Backend\DocumentBreadcrumbPathViewHelper

Arguments

• node (NeosContentRepositoryDomainModelNodeInterface): A node

neos:backend.interfaceLanguage

ViewHelper for rendering the current backend users interface language.

Implementation Neos\Neos\ViewHelpers\Backend\InterfaceLanguageViewHelper

neos:backend.javascriptBuiltVersion

Returns a shortened md5 of the built JavaScript file

Implementation Neos\Neos\ViewHelpers\Backend\JavascriptBuiltVersionViewHelper

202 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

neos:backend.javascriptConfiguration

ViewHelper for the backend JavaScript configuration. Renders the required JS snippet to configure the Neos
backend.

Implementation Neos\Neos\ViewHelpers\Backend\JavascriptConfigurationViewHelper

neos:backend.shouldLoadMinifiedJavascript

Returns true if the minified Neos JavaScript sources should be loaded, false otherwise.

Implementation Neos\Neos\ViewHelpers\Backend\ShouldLoadMinifiedJavascriptViewHelper

neos:backend.translate

Returns translated message using source message or key ID. uses the selected backend language * Also replaces
all placeholders with formatted versions of provided values.

Implementation Neos\Neos\ViewHelpers\Backend\TranslateViewHelper

Arguments

• id (string, optional): Id to use for finding translation (trans-unit id in XLIFF)

• value (string, optional): If $key is not specified or could not be resolved, this value is used. If this
argument is not set, child nodes will be used to render the default

• arguments (array, optional): Numerically indexed array of values to be inserted into placeholders

• source (string, optional): Name of file with translations (use / as a directory separator)

• package (string, optional): Target package key. If not set, the current package key will be used

• quantity (mixed, optional): A number to find plural form for (float or int), NULL to not use plural forms

• locale (string, optional): An identifier of locale to use (NULL for use the default locale)

Examples

Translation by id:

<neos:backend.translate id="user.unregistered">Unregistered User</neos:backend.
→˓translate>

Expected result:

translation of label with the id "user.unregistered" and a fallback to
→˓"Unregistered User"

Inline notation:

{neos:backend.translate(id: 'some.label.id', value: 'fallback result')}

Expected result:

translation of label with the id "some.label.id" and a fallback to "fallback result
→˓"

Custom source and locale:

6.2. View Helper Reference 203

Neos CMS Documentation, Release 4.0.0

<neos:backend.translate id="some.label.id" source="SomeLabelsCatalog" locale="de_DE
→˓"/>

Expected result:

translation from custom source "SomeLabelsCatalog" for locale "de_DE"

Custom source from other package:

<neos:backend.translate id="some.label.id" source="LabelsCatalog" package=
→˓"OtherPackage"/>

Expected result:

translation from custom source "LabelsCatalog" in "OtherPackage"

Arguments:

<neos:backend.translate arguments="{0: 'foo', 1: '99.9'}"><![CDATA[Untranslated {0}
→˓ and {1,number}]]></neos:backend.translate>

Expected result:

translation of the label "Untranslated foo and 99.9"

Translation by label:

<neos:backend.translate>Untranslated label</neos:backend.translate>

Expected result:

translation of the label "Untranslated label"

neos:backend.userInitials

Render user initials for a given username

This ViewHelper is WORK IN PROGRESS and NOT STABLE YET

Implementation Neos\Neos\ViewHelpers\Backend\UserInitialsViewHelper

Arguments

• format (string, optional): Supported are “fullFirstName”, “initials” and “fullName

neos:backend.xliffCacheVersion

ViewHelper for rendering the current version identifier for the xliff cache.

Implementation Neos\Neos\ViewHelpers\Backend\XliffCacheVersionViewHelper

neos:contentElement.editable

Renders a wrapper around the inner contents of the tag to enable frontend editing.

The wrapper contains the property name which should be made editable, and is by default a “div” tag. The tag to
use can be given as tag argument to the ViewHelper.

204 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

In live workspace this just renders a tag with the specified $tag-name containing the value of the given $property.
For logged in users with access to the Backend this also adds required attributes for the RTE to work.

Note: when passing a node you have to make sure a metadata wrapper is used around this that matches the given
node (see contentElement.wrap - i.e. the WrapViewHelper).

Implementation Neos\Neos\ViewHelpers\ContentElement\EditableViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• property (string): Name of the property to render. Note: If this tag has child nodes, they overrule this
argument!

• tag (string, optional): The name of the tag that should be wrapped around the property. By default this is
a <div>

• node (NeosContentRepositoryDomainModelNodeInterface, optional): The node of the content element.
Optional, will be resolved from the Fusion context by default.

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

neos:contentElement.wrap

A view helper for manually wrapping content editables.

Note that using this view helper is usually not necessary as Neos will automatically wrap editables of content
elements.

By explicitly wrapping template parts with node meta data that is required for the backend to show properties in the
inspector, this ViewHelper enables usage of the contentElement.editable ViewHelper outside of content
element templates. This is useful if you want to make properties of a custom document node inline-editable.

Implementation Neos\Neos\ViewHelpers\ContentElement\WrapViewHelper

Arguments

• node (NeosContentRepositoryDomainModelNodeInterface, optional): The node of the content element.
Optional, will be resolved from the Fusion context by default.

6.2. View Helper Reference 205

Neos CMS Documentation, Release 4.0.0

neos:getType

View helper to check if a given value is an array.

Implementation Neos\Neos\ViewHelpers\GetTypeViewHelper

Arguments

• value (mixed, optional): The value to determine the type of

Examples

Basic usage:

{neos:getType(value: 'foo')}

Expected result:

string

Use with shorthand syntax:

{myValue -> neos:getType()}

Expected result:

string
(if myValue is a string)

neos:link.module

A view helper for creating links to modules.

Implementation Neos\Neos\ViewHelpers\Link\ModuleViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

• path (string): Target module path

• action (string, optional): Target module action

• arguments (array, optional): Arguments

• section (string, optional): The anchor to be added to the URI

• format (string, optional): The requested format, e.g. “.html

• additionalParams (array, optional): additional query parameters that won’t be prefixed like $argu-
ments (overrule $arguments)

• addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI

• argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the
URI. Only active if $addQueryString = true

• class (string, optional): CSS class(es) for this element

206 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

• name (string, optional): Specifies the name of an anchor

• rel (string, optional): Specifies the relationship between the current document and the linked document

• rev (string, optional): Specifies the relationship between the linked document and the current document

• target (string, optional): Specifies where to open the linked document

Examples

Defaults:

<neos:link.module path="system/useradmin">some link</neos:link.module>

Expected result:

some link

neos:link.node

A view helper for creating links with URIs pointing to nodes.

The target node can be provided as string or as a Node object; if not specified at all, the generated URI will refer
to the current document node inside the Fusion context.

When specifying the node argument as string, the following conventions apply:

‘‘node‘‘ starts with ‘‘/‘‘: The given path is an absolute node path and is treated as such. Example: /sites/
acmecom/home/about/us

‘‘node‘‘ does not start with ‘‘/‘‘: The given path is treated as a path relative to the current node. Examples:
given that the current node is /sites/acmecom/products/, stapler results in /sites/acmecom/
products/stapler, ../about results in /sites/acmecom/about/, ./neos/info results in /
sites/acmecom/products/neos/info.

‘‘node‘‘ starts with a tilde character (‘‘~‘‘): The given path is treated as a path relative to the current site node.
Example: given that the current node is /sites/acmecom/products/, ~/about/us results in /sites/
acmecom/about/us, ~ results in /sites/acmecom.

Implementation Neos\Neos\ViewHelpers\Link\NodeViewHelper

Arguments

• additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the
resulting HTML tag.

• data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

6.2. View Helper Reference 207

Neos CMS Documentation, Release 4.0.0

• node (mixed, optional): A node object, a string node path (absolute or relative), a string node://-uri or
NULL

• format (string, optional): Format to use for the URL, for example “html” or “json

• absolute (boolean, optional): If set, an absolute URI is rendered

• arguments (array, optional): Additional arguments to be passed to the UriBuilder (for example pagination
parameters)

• section (string, optional): The anchor to be added to the URI

• addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI

• argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the
URI. Only active if $addQueryString = true

• baseNodeName (string, optional): The variable the node will be assigned to for the rendered child content

• nodeVariableName (string, optional): The name of the base node inside the Fusion context to use for
the ContentContext or resolving relative paths

• resolveShortcuts (boolean, optional): INTERNAL Parameter - if false, shortcuts are not redirected
to their target. Only needed on rare backend occasions when we want to link to the shortcut itself.

• class (string, optional): CSS class(es) for this element

• dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl”
(right to left)

• id (string, optional): Unique (in this file) identifier for this HTML element.

• lang (string, optional): Language for this element. Use short names specified in RFC 1766

• style (string, optional): Individual CSS styles for this element

• title (string, optional): Tooltip text of element

• accesskey (string, optional): Keyboard shortcut to access this element

• tabindex (integer, optional): Specifies the tab order of this element

• onclick (string, optional): JavaScript evaluated for the onclick event

• name (string, optional): Specifies the name of an anchor

• rel (string, optional): Specifies the relationship between the current document and the linked document

• rev (string, optional): Specifies the relationship between the linked document and the current document

• target (string, optional): Specifies where to open the linked document

Examples

Defaults:

<neos:link.node>some link</neos:link.node>

Expected result:

some link
(depending on current node, format etc.)

Generating a link with an absolute URI:

<neos:link.node absolute="{true}">bookmark this page</neos:link.node>

Expected result:

208 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

bookmark this page
(depending on current workspace, current node, format, host etc.)

Target node given as absolute node path:

<neos:link.node node="/sites/exampleorg/contact/imprint">Corporate imprint</
→˓neos:link.node>

Expected result:

Corporate imprint
(depending on current workspace, current node, format etc.)

Target node given as node://-uri:

<neos:link.node node="node://30e893c1-caef-0ca5-b53d-e5699bb8e506">Corporate
→˓imprint</neos:link.node>

Expected result:

Corporate imprint
(depending on current workspace, current node, format etc.)

Target node given as relative node path:

<neos:link.node node="~/about/us">About us</neos:link.node>

Expected result:

About us
(depending on current workspace, current node, format etc.)

Node label as tag content:

<neos:link.node node="/sites/exampleorg/contact/imprint" />

Expected result:

Imprint
(depending on current workspace, current node, format etc.)

Dynamic tag content involving the linked node's properties:

<neos:link.node node="about-us">see our {linkedNode.label} page</
→˓neos:link.node>

Expected result:

see our About Us page
(depending on current workspace, current node, format etc.)

neos:node.closestDocument

ViewHelper to find the closest document node to a given node

Implementation Neos\Neos\ViewHelpers\Node\ClosestDocumentViewHelper

Arguments

• node (NeosContentRepositoryDomainModelNodeInterface)

6.2. View Helper Reference 209

Neos CMS Documentation, Release 4.0.0

neos:rendering.inBackend

ViewHelper to find out if Neos is rendering the backend.

Implementation Neos\Neos\ViewHelpers\Rendering\InBackendViewHelper

Arguments

• node (NeosContentRepositoryDomainModelNodeInterface, optional)

Examples

Basic usage:

<f:if condition="{neos:rendering.inBackend()}">
<f:then>
Shown in the backend.

</f:then>
<f:else>
Shown when not in backend.

</f:else>
</f:if>

Expected result:

Shown in the backend.

neos:rendering.inEditMode

ViewHelper to find out if Neos is rendering an edit mode.

Implementation Neos\Neos\ViewHelpers\Rendering\InEditModeViewHelper

Arguments

• node (NeosContentRepositoryDomainModelNodeInterface, optional): Optional Node to use context from

• mode (string, optional): Optional rendering mode name to check if this specific mode is active

Examples

Basic usage:

<f:if condition="{neos:rendering.inEditMode()}">
<f:then>
Shown for editing.

</f:then>
<f:else>
Shown elsewhere (preview mode or not in backend).

</f:else>
</f:if>

Expected result:

Shown for editing.

Advanced usage:

210 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

<f:if condition="{neos:rendering.inEditMode(mode: 'rawContent')}">
<f:then>
Shown just for rawContent editing mode.

</f:then>
<f:else>
Shown in all other cases.

</f:else>
</f:if>

Expected result:

Shown in all other cases.

neos:rendering.inPreviewMode

ViewHelper to find out if Neos is rendering a preview mode.

Implementation Neos\Neos\ViewHelpers\Rendering\InPreviewModeViewHelper

Arguments

• node (NeosContentRepositoryDomainModelNodeInterface, optional): Optional Node to use context from

• mode (string, optional): Optional rendering mode name to check if this specific mode is active

Examples

Basic usage:

<f:if condition="{neos:rendering.inPreviewMode()}">
<f:then>
Shown in preview.

</f:then>
<f:else>
Shown elsewhere (edit mode or not in backend).

</f:else>
</f:if>

Expected result:

Shown in preview.

Advanced usage:

<f:if condition="{neos:rendering.inPreviewMode(mode: 'print')}">
<f:then>
Shown just for print preview mode.

</f:then>
<f:else>
Shown in all other cases.

</f:else>
</f:if>

Expected result:

Shown in all other cases.

6.2. View Helper Reference 211

Neos CMS Documentation, Release 4.0.0

neos:rendering.live

ViewHelper to find out if Neos is rendering the live website. Make sure you either give a node from the current
context to the ViewHelper or have “node” set as template variable at least.

Implementation Neos\Neos\ViewHelpers\Rendering\LiveViewHelper

Arguments

• node (NeosContentRepositoryDomainModelNodeInterface, optional)

Examples

Basic usage:

<f:if condition="{neos:rendering.live()}">
<f:then>
Shown outside the backend.

</f:then>
<f:else>
Shown in the backend.

</f:else>
</f:if>

Expected result:

Shown in the backend.

neos:standaloneView

A View Helper to render a fluid template based on the given template path and filename.

This will just set up a standalone Fluid view and render the template found at the given path and filename. Any
arguments passed will be assigned to that template, the rendering result is returned.

Implementation Neos\Neos\ViewHelpers\StandaloneViewViewHelper

Arguments

• templatePathAndFilename (string): Path and filename of the template to render

• arguments (array, optional): Arguments to assign to the template before rendering

Examples

Basic usage:

<neos:standaloneView templatePathAndFilename="fancyTemplatePathAndFilename"
→˓arguments="{foo: bar, quux: baz}" />

Expected result:

<some><fancy/></html
(depending on template and arguments given)

212 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

neos:uri.module

A view helper for creating links to modules.

Implementation Neos\Neos\ViewHelpers\Uri\ModuleViewHelper

Arguments

• path (string): Target module path

• action (string, optional): Target module action

• arguments (array, optional): Arguments

• section (string, optional): The anchor to be added to the URI

• format (string, optional): The requested format, e.g. “.html

• additionalParams (array, optional): additional query parameters that won’t be prefixed like $argu-
ments (overrule $arguments)

• addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI

• argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the
URI. Only active if $addQueryString = true

Examples

Defaults:

<link rel="some-module" href="{neos:uri.module(path: 'system/useradmin')}" />

Expected result:

<link rel="some-module" href="neos/system/useradmin" />

neos:uri.node

A view helper for creating URIs pointing to nodes.

The target node can be provided as string or as a Node object; if not specified at all, the generated URI will refer
to the current document node inside the Fusion context.

When specifying the node argument as string, the following conventions apply:

‘‘node‘‘ starts with ‘‘/‘‘: The given path is an absolute node path and is treated as such. Example: /sites/
acmecom/home/about/us

‘‘node‘‘ does not start with ‘‘/‘‘: The given path is treated as a path relative to the current node. Examples:
given that the current node is /sites/acmecom/products/, stapler results in /sites/acmecom/
products/stapler, ../about results in /sites/acmecom/about/, ./neos/info results in /
sites/acmecom/products/neos/info.

‘‘node‘‘ starts with a tilde character (‘‘~‘‘): The given path is treated as a path relative to the current site node.
Example: given that the current node is /sites/acmecom/products/, ~/about/us results in /sites/
acmecom/about/us, ~ results in /sites/acmecom.

Implementation Neos\Neos\ViewHelpers\Uri\NodeViewHelper

6.2. View Helper Reference 213

Neos CMS Documentation, Release 4.0.0

Arguments

• node (mixed, optional): A node object, a string node path (absolute or relative), a string node://-uri or
NULL

• format (string, optional): Format to use for the URL, for example “html” or “json

• absolute (boolean, optional): If set, an absolute URI is rendered

• arguments (array, optional): Additional arguments to be passed to the UriBuilder (for example pagination
parameters)

• section (string, optional)

• addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI

• argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the
URI. Only active if $addQueryString = true

• baseNodeName (string, optional): The name of the base node inside the Fusion context to use for the
ContentContext or resolving relative paths

• resolveShortcuts (boolean, optional): INTERNAL Parameter - if false, shortcuts are not redirected
to their target. Only needed on rare backend occasions when we want to link to the shortcut itself.

Examples

Default:

<neos:uri.node />

Expected result:

homepage/about.html
(depending on current workspace, current node, format etc.)

Generating an absolute URI:

<neos:uri.node absolute="{true"} />

Expected result:

http://www.example.org/homepage/about.html
(depending on current workspace, current node, format, host etc.)

Target node given as absolute node path:

<neos:uri.node node="/sites/acmecom/about/us" />

Expected result:

about/us.html
(depending on current workspace, current node, format etc.)

Target node given as relative node path:

<neos:uri.node node="~/about/us" />

Expected result:

about/us.html
(depending on current workspace, current node, format etc.)

214 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Target node given as node://-uri:

<neos:uri.node node="node://30e893c1-caef-0ca5-b53d-e5699bb8e506" />

Expected result:

about/us.html
(depending on current workspace, current node, format etc.)

6.2.7 TYPO3 Fluid ViewHelper Reference

This reference was automatically generated from code on 2018-08-10

6.3 Fusion Reference

6.3.1 Neos.Fusion

This package contains general-purpose Fusion objects, which are usable both within Neos and standalone.

Neos.Fusion:Array

Render multiple nested definitions and concatenate the results.

[key] (string) A nested definition (simple value, expression or object) that evaluates to a string

[key].@ignoreProperties (array) A list of properties to ignore from being “rendered” during evalu-
ation

[key].@position (string/integer) Define the ordering of the nested definition

The order in which nested definitions are evaluated are specified using their @position meta property. For this
argument, the following sort order applies:

• start [priority] positions. The higher the priority, the earlier the object is added. If no priority is
given, the element is sorted after all start elements with a priority.

• [numeric ordering] positions, ordered ascending.

• end [priority] positions. The higher the priority, the later the element is added. If no priority is given,
the element is sorted before all end elements with a priority.

Furthermore, you can specify that an element should be inserted before or after a given other named element,
using before and after syntax as follows:

• before [namedElement] [optionalPriority]: add this element before namedElement;
the higher the priority the more in front of namedElement we will add it if multiple before
[namedElement] statements exist. Statements without [optionalPriority] are added the far-
thest before the element.

If [namedElement] does not exist, the element is added after all start positions.

• after [namedElement] [optionalPriority]: add this element after namedElement; the
higher the priority the more closely after namedElement we will add it if multiple after
[namedElement] statements exist. Statements without [optionalPriority] are added farthest
after the element.

If [namedElement] does not exist, the element is added before all all end positions.

Example Ordering:

6.3. Fusion Reference 215

Neos CMS Documentation, Release 4.0.0

in this example, we would not need to use any @position property;
as the default (document order) would then be used. However, the
order (o1 ... o9) is *always* fixed, no matter in which order the
individual statements are defined.

myArray = Neos.Fusion:Array {
o1 = Neos.NodeTypes:Text
o1.@position = 'start 12'
o2 = Neos.NodeTypes:Text
o2.@position = 'start 5'
o2 = Neos.NodeTypes:Text
o2.@position = 'start'

o3 = Neos.NodeTypes:Text
o3.@position = '10'
o4 = Neos.NodeTypes:Text
o4.@position = '20'

o5 = Neos.NodeTypes:Text
o5.@position = 'before o6'

o6 = Neos.NodeTypes:Text
o6.@position = 'end'
o7 = Neos.NodeTypes:Text
o7.@position = 'end 20'
o8 = Neos.NodeTypes:Text
o8.@position = 'end 30'

o9 = Neos.NodeTypes:Text
o9.@position = 'after o8'

}

If no @position property is defined, the array key is used. However, we suggest to use @position and
meaningful keys in your application, and not numeric ones.

Example of numeric keys (discouraged):

myArray = Neos.Fusion:Array {
10 = Neos.NodeTypes:Text
20 = Neos.NodeTypes:Text

}

Neos.Fusion:Collection

Render each item in collection using itemRenderer.

collection (array/Iterable, required) The array or iterable to iterate over

itemName (string, defaults to item) Context variable name for each item

itemKey (string, defaults to itemKey) Context variable name for each item key, when working with
array

iterationName (string, defaults to iterator) A context variable with iteration information will be
available under the given name: index (zero-based), cycle (1-based), isFirst, isLast

itemRenderer (string, required) The renderer definition (simple value, expression or object) will be
called once for every collection element, and its results will be concatenated

Example using an object itemRenderer:

216 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

myCollection = Neos.Fusion:Collection {
collection = ${[1, 2, 3]}
itemName = 'element'
itemRenderer = Neos.Fusion:Template {

templatePath = 'resource://...'
element = ${element}

}
}

Example using an expression itemRenderer:

myCollection = Neos.Fusion:Collection {
collection = ${[1, 2, 3]}
itemName = 'element'
itemRenderer = ${element * 2}

}

Neos.Fusion:RawCollection

Render each item in collection using itemRenderer and return the result as an array (opposed to string
for Neos.Fusion:Collection)

collection (array/Iterable, required) The array or iterable to iterate over

itemName (string, defaults to item) Context variable name for each item

itemKey (string, defaults to itemKey) Context variable name for each item key, when working with
array

iterationName (string, defaults to iterator) A context variable with iteration information will be
available under the given name: index (zero-based), cycle (1-based), isFirst, isLast

itemRenderer (string, required) The renderer definition (simple value, expression or object) will be
called once for every collection element

Neos.Fusion:Case

Conditionally evaluate nested definitions.

Evaluates all nested definitions until the first condition evaluates to TRUE. The Case object will evaluate to a
result using either renderer, renderPath or type on the matching definition.

[key] A matcher definition

[key].condition (boolean, required) A simple value, expression or object that will be used as a
condition for this matcher

[key].type (string) Object type to render (as string)

[key].element.* (mixed) Properties for the rendered object (when using type)

[key].renderPath (string) Relative or absolute path to render, overrules type

[key].renderer (mixed) Rendering definition (simple value, expression or object), overrules
renderPath and type

[key].@position (string/integer) Define the ordering of the nested definition

Simple Example:

myCase = Neos.Fusion:Case {
someCondition {

condition = ${q(node).is('[instanceof MyNamespace:My.Special.
→˓SuperType]')}

(continues on next page)

6.3. Fusion Reference 217

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

type = 'MyNamespace:My.Special.Type'
}

otherCondition {
@position = 'start'
condition = ${q(documentNode).property('layout') == 'special'}
renderer = ${'<marquee>' + q(node).property('content') + '</

→˓marquee>'}
}

fallback {
condition = ${true}
renderPath = '/myPath'

}
}

The ordering of matcher definitions can be specified with the @position property (see Neos.Fusion:Array).
Thus, the priority of existing matchers (e.g. the default Neos document rendering) can be changed by setting or
overriding the @position property.

Note: The internal Neos.Fusion:Matcher object type is used to evaluate the matcher definitions which is
based on the Neos.Fusion:Renderer.

Neos.Fusion:Renderer

The Renderer object will evaluate to a result using either renderer, renderPath or type from the configu-
ration.

type (string) Object type to render (as string)

element.* (mixed) Properties for the rendered object (when using type)

renderPath (string) Relative or absolute path to render, overrules type

renderer (mixed) Rendering definition (simple value, expression or object), overrules
renderPath and type

Simple Example:

myCase = Neos.Fusion:Renderer {
type = 'Neos.Fusion:Value'
element.value = 'hello World'

}

Note: This is especially handy if the prototype that should be rendered is determined via eel or passed via
@context.

Neos.Fusion:Debug

Shows the result of Fusion Expressions directly.

title (optional) Title for the debug output

plaintext (boolean) If set true, the result will be shown as plaintext

[key] (mixed) A nested definition (simple value, expression or object), [key] will be used as key
for the resulting output

218 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Example:

debugObject = Debug {
title = 'Debug of hello world'

If only the "value"-key is given it is debugged directly,
otherwise all keys except "title" and "plaintext" are debugged.
value = "hello neos world"

Additional values for debugging
documentTitle = ${q(documentNode).property('title')}
documentPath = ${documentNode.path}

}

the value of this object is the formatted debug output of all keys given to the
→˓object

Neos.Fusion:Component

Create a component that adds all properties to the props context and afterward evaluates the renderer.

renderer (mixed, required) The value which gets rendered

Example:

prototype(Vendor.Site:Component) < prototype(Neos.Fusion:Component) {
title = 'Hello World'
titleTagName = 'h1'
description = 'Description of the Neos World'
bold = false

renderer = Neos.Fusion:Tag {
attributes.class = Neos.Fusion:RawArray {

component = 'component'
bold = ${props.bold ? 'component--bold' : false}

}
content = Neos.Fusion:Array {

headline = Neos.Fusion:Tag {
tagName = ${props.titleTagName}
content = ${props.title}

}

description = Neos.Fusion:Tag {
content = ${props.description}

}
}

}
}

Neos.Fusion:Augmenter

Modify given html content and add attributes. The augmenter can be used as processor or as a standalone prototype

content (string) The content that shall be augmented

fallbackTagName (string, defaults to div) If no single tag that can be augmented is found the
content is wrapped into the fallback-tag before augmentation

[key] All other fusion properties are added to the html content as html attributes

Example as a standalone augmenter:

6.3. Fusion Reference 219

Neos CMS Documentation, Release 4.0.0

augmentedContent = Neos.Fusion:Augmenter {

content = Neos.Fusion:Array {
title = Neos.Fusion:Tag {

@if.hasContent = ${this.content}
tagName = 'h2'
content = ${q(node).property('title')}

}
text = Neos.Fusion:Tag {

@if.hasContent = ${this.content}
tagName = 'p'
content = ${q(node).property('text')}

}
}

fallbackTagName = 'header'

class = 'header'
data-foo = 'bar'

}

Example as a processor augmenter:

augmentedContent = Neos.Fusion:Tag {
tagName = 'h2'
content = 'Hello World'
@process.augment = Neos.Fusion:Augmenter {

class = 'header'
data-foo = 'bar'

}
}

Neos.Fusion:Template

Render a Fluid template specified by templatePath.

templatePath (string, required) Path and filename for the template to be rendered, often a
resource:// URI

partialRootPath (string) Path where partials are found on the file system

layoutRootPath (string) Path where layouts are found on the file system

sectionName (string) The Fluid <f:section> to be rendered, if given

[key] (mixed) All remaining properties are directly passed into the Fluid template as template vari-
ables

Example:

myTemplate = Neos.Fusion:Template {
templatePath = 'resource://My.Package/Private/Templates/FusionObjects/

→˓MyTemplate.html'
someDataAvailableInsideFluid = 'my data'

}

<div class="hero">
{someDataAvailableInsideFluid}

</div>

220 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Neos.Fusion:Value

Evaluate any value as a Fusion object

value (mixed, required) The value to evaluate

Example:

myValue = Neos.Fusion:Value {
value = 'Hello World'

}

Note: Most of the time this can be simplified by directly assigning the value instead of using the Value object.

Neos.Fusion:RawArray

Evaluate nested definitions as an array (opposed to string for Neos.Fusion:Array)

[key] (mixed) A nested definition (simple value, expression or object), [key] will be used for the
resulting array key

[key].@position (string/integer) Define the ordering of the nested definition

Tip: For simple cases an expression with an array literal ${[1, 2, 3]} might be easier to read

Neos.Fusion:Tag

Render an HTML tag with attributes and optional body

tagName (string) Tag name of the HTML element, defaults to div

omitClosingTag (boolean) Whether to render the element content and the closing tag, defaults to
FALSE

selfClosingTag (boolean) Whether the tag is a self-closing tag with no closing tag. Will be resolved
from tagName by default, so default HTML tags are treated correctly.

content (string) The inner content of the element, will only be rendered if the tag is not self-closing
and the closing tag is not omitted

attributes (Neos.Fusion:Attributes) Tag attributes

Example:

htmlTag = Neos.Fusion:Tag {
tagName = 'html'
omitClosingTag = TRUE

attributes {
version = 'HTML+RDFa 1.1'
xmlns = 'http://www.w3.org/1999/xhtml'

}
}

Evaluates to:

<html version="HTML+RDFa 1.1" xmlns="http://www.w3.org/1999/xhtml">

6.3. Fusion Reference 221

Neos CMS Documentation, Release 4.0.0

Neos.Fusion:Attributes

A Fusion object to render HTML tag attributes. This object is used by the Neos.Fusion:Tag object to render the
attributes of a tag. But it’s also useful standalone to render extensible attributes in a Fluid template.

[key] (string) A single attribute, array values are joined with whitespace. Boolean values will be
rendered as an empty or absent attribute.

@allowEmpty (boolean) Whether empty attributes (HTML5 syntax) should be used for empty, false
or null attribute values

Example:

attributes = Neos.Fusion:Attributes {
foo = 'bar'
class = Neos.Fusion:RawArray {

class1 = 'class1'
class2 = 'class2'

}
}

Evaluates to:

foo="bar" class="class1 class2"

Unsetting an attribute:

It’s possible to unset an attribute by assigning false or ${null} as a value. No attribute will be rendered for
this case.

Neos.Fusion:Http.Message

A prototype based on Neos.Fusion:Array for rendering an HTTP message (response). It should be used to render
documents since it generates a full HTTP response and allows to override the HTTP status code and headers.

httpResponseHead (Neos.Fusion:Http.ResponseHead) An HTTP response head with properties to
adjust the status and headers, the position in the Array defaults to the very beginning

[key] (string) A nested definition (see Neos.Fusion:Array)

Example:

// Page extends from Http.Message
//
// prototype(Neos.Neos:Page) < prototype(Neos.Fusion:Http.Message)
//
page = Neos.Neos:Page {

httpResponseHead.headers.Content-Type = 'application/json'
}

Neos.Fusion:Http.ResponseHead

A helper object to render the head of an HTTP response

statusCode (integer) The HTTP status code for the response, defaults to 200

222 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

headers.* (string) An HTTP header that should be set on the response, the property name (e.g.
headers.Content-Type) will be used for the header name

Neos.Fusion:UriBuilder

Built a URI to a controller action

package (string) The package key (e.g. 'My.Package')

subpackage (string) The subpackage, empty by default

controller (string) The controller name (e.g. 'Registration')

action (string) The action name (e.g. 'new')

arguments (array) Arguments to the action by named key

format (string) An optional request format (e.g. 'html')

section (string) An optional fragment (hash) for the URI

additionalParams (array) Additional URI query parameters by named key

addQueryString (boolean) Whether to keep the query parameters of the current URI

argumentsToBeExcludedFromQueryString (array) Query parameters to exclude for
addQueryString

absolute (boolean) Whether to create an absolute URI

Example:

uri = Neos.Fusion:UriBuilder {
package = 'My.Package'
controller = 'Registration'
action = 'new'

}

Neos.Fusion:ResourceUri

Build a URI to a static or persisted resource

path (string) Path to resource, either a path relative to Public and package or a resource://
URI

package (string) The package key (e.g. 'My.Package')

resource (Resource) A Resource object instead of path and package

localize (boolean) Whether resource localization should be used, defaults to true

Example:

scriptInclude = Neos.Fusion:Tag {
tagName = 'script'
attributes {

src = Neos.Fusion:ResourceUri {
path = 'resource://My.Package/Public/Scripts/App.js'

}
}

}

6.3. Fusion Reference 223

Neos CMS Documentation, Release 4.0.0

Neos.Fusion:CanRender

Check whether a Fusion prototype can be rendered. For being renderable a prototype must exist and have an
implementation class, or inherit from an existing renderable prototype. The implementation class can be defined
indirectly via base prototypes.

type (string) The prototype name that is checked

Example:

canRender = Neos.Fusion:CanRender {
type = 'My.Package:Prototype'

}

6.3.2 Neos.Neos Fusion Objects

The Fusion objects defined in the Neos package contain all Fusion objects which are needed to integrate a site.
Often, it contains generic Fusion objects which do not need a particular node type to work on.

Neos.Neos:Page

Subclass of Neos.Fusion:Http.Message, which is based on Neos.Fusion:Array. Main entry point into rendering a
page; responsible for rendering the <html> tag and everything inside.

doctype (string) Defaults to <!DOCTYPE html>

htmlTag (Neos.Fusion:Tag) The opening <html> tag

htmlTag.attributes (Neos.Fusion:Attributes) Attributes for the <html> tag

headTag (Neos.Fusion:Tag) The opening <head> tag

head (Neos.Fusion:Array) HTML markup for the <head> tag

head.titleTag (Neos.Fusion:Tag) The <title> tag

head.javascripts (Neos.Fusion:Array) Script includes in the head should go here

head.stylesheets (Neos.Fusion:Array) Link tags for stylesheets in the head should go here

body.templatePath (string) Path to a fluid template for the page body

bodyTag (Neos.Fusion:Tag) The opening <body> tag

bodyTag.attributes (Neos.Fusion:Attributes) Attributes for the <body> tag

body (Neos.Fusion:Template) HTML markup for the <body> tag

body.javascripts (Neos.Fusion:Array) Body footer JavaScript includes

body.[key] (mixed) Body template variables

Examples:

Rendering a simple page:

page = Page
page.body.templatePath = 'resource://My.Package/Private/MyTemplate.html'
// the following line is optional, but recommended for base CSS inclusions etc
page.body.sectionName = 'main'

224 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Rendering content in the body:

Fusion:

page.body {
sectionName = 'body'
content.main = PrimaryContent {

nodePath = 'main'
}

}

Fluid:

<html>
<body>

<f:section name="body">
<div class="container">

{content.main -> f:format.raw()}
</div>

</f:section>
</body>

</html

Including stylesheets from a template section in the head:

page.head.stylesheets.mySite = Neos.Fusion:Template {
templatePath = 'resource://My.Package/Private/MyTemplate.html'
sectionName = 'stylesheets'

}

Adding body attributes with bodyTag.attributes:

page.bodyTag.attributes.class = 'body-css-class1 body-css-class2'

Neos.Neos:ContentCollection

Render nested content from a ContentCollection node. Individual nodes are rendered using the
Neos.Neos:ContentCase object.

nodePath (string, required) The relative node path of the ContentCollection (e.g. 'main')

@context.node (Node) The content collection node, resolved from nodePath by default

tagName (string) Tag name for the wrapper element

attributes (Neos.Fusion:Attributes) Tag attributes for the wrapper element

Example:

page.body {
content {

main = Neos.Neos:PrimaryContent {
nodePath = 'main'

}
footer = Neos.Neos:ContentCollection {

nodePath = 'footer'
}

(continues on next page)

6.3. Fusion Reference 225

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

}
}

Neos.Neos:PrimaryContent

Primary content rendering, extends Neos.Fusion:Case. This is a prototype that can be used from packages to
extend the default content rendering (e.g. to handle specific document node types).

nodePath (string, required) The relative node path of the ContentCollection (e.g. 'main')

default Default matcher that renders a ContentCollection

[key] Additional matchers (see Neos.Fusion:Case)

Example for basic usage:

page.body {
content {

main = Neos.Neos:PrimaryContent {
nodePath = 'main'

}
}

}

Example for custom matcher:

prototype(Neos.Neos:PrimaryContent) {
myArticle {

condition = ${q(node).is('[instanceof My.Site:Article]')}
renderer = My.Site:ArticleRenderer

}
}

Neos.Neos:ContentCase

Render a content node, extends Neos.Fusion:Case. This is a prototype that is used by the default content rendering
(Neos.Neos:ContentCollection) and can be extended to add custom matchers.

default Default matcher that renders a prototype of the same name as the node type name

[key] Additional matchers (see Neos.Fusion:Case)

Neos.Neos:Content

Base type to render content nodes, extends Neos.Fusion:Template. This prototype is extended by the auto-
generated Fusion to define prototypes for each node type extending Neos.Neos:Content.

templatePath (string) The template path and filename, defaults to 'resource://
[packageKey]/Private/Templates/NodeTypes/[nodeType].html' (for
auto-generated prototypes)

[key] (mixed) Template variables, all node type properties are available by default (for auto-
generated prototypes)

attributes (Neos.Fusion:Attributes) Extensible attributes, used in the default templates

Example:

226 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

prototype(My.Package:MyContent) < prototype(Neos.Neos:Content) {
templatePath = 'resource://My.Package/Private/Templates/NodeTypes/

→˓MyContent.html'
Auto-generated for all node type properties
title = ${q(node).property('title')}

}

Neos.Neos:ContentComponent

Base type to render component based content-nodes, extends Neos.Fusion:Component.

renderer (mixed, required) The value which gets rendered

Neos.Neos:Editable

Create an editable tag for a property. In the frontend, only the content of the property gets rendered.

node (node) A node instance that should be used to read the property. Default to ${node}

property (string) The name of the property which should be accessed

block (boolean) Decides if the editable tag should be a block element (div) or an inline element
(span). Default to true

Example:

title = Neos.Neos:Editable {
property = 'title'
block = false

}

Neos.Neos:Plugin

Base type to render plugin content nodes or static plugins. A plugin is a Flow controller that can implement
arbitrary logic.

package (string, required) The package key (e.g. ‘My.Package’)

subpackage (string) The subpackage, defaults to empty

controller (array) The controller name (e.g. ‘Registration’)

action (string) The action name, defaults to ‘index’

argumentNamespace (string) Namespace for action arguments, will be resolved from node type by
default

[key] (mixed) Pass an internal argument to the controller action (access with argument name _key)

Example:

prototype(My.Site:Registration) < prototype(Neos.Neos:Plugin) {
package = 'My.Site'
controller = 'Registration'

}

Neos.Neos:Menu

Render a menu with items for nodes. Extends Neos.Fusion:Template.

templatePath (string) Override the template path

6.3. Fusion Reference 227

Neos CMS Documentation, Release 4.0.0

entryLevel (integer) Start the menu at the given depth

maximumLevels (integer) Restrict the maximum depth of items in the menu (relative to
entryLevel)

startingPoint (Node) The parent node of the first menu level (defaults to node context variable)

lastLevel (integer) Restrict the menu depth by node depth (relative to site node)

filter (string) Filter items by node type (e.g. '!My.Site:News,Neos.Neos:Document'),
defaults to 'Neos.Neos:Document'

renderHiddenInIndex (boolean) Whether nodes with hiddenInIndex should be rendered, de-
faults to false

itemCollection (array) Explicitly set the Node items for the menu (alternative to
startingPoints and levels)

attributes (Neos.Fusion:Attributes) Extensible attributes for the whole menu

normal.attributes (Neos.Fusion:Attributes) Attributes for normal state

active.attributes (Neos.Fusion:Attributes) Attributes for active state

current.attributes (Neos.Fusion:Attributes) Attributes for current state

Menu item properties:

node (Node) A node instance (with resolved shortcuts) that should be used to link to the item

originalNode (Node) Original node for the item

state (string) Menu state of the item: 'normal', 'current' (the current node) or 'active'
(ancestor of current node)

label (string) Full label of the node

menuLevel (integer) Menu level the item is rendered on

Examples:

Custom menu template:

menu = Neos.Neos:Menu {
entryLevel = 1
maximumLevels = 3
templatePath = 'resource://My.Site/Private/Templates/FusionObjects/MyMenu.

→˓html'
}

Menu including site node:

menu = Neos.Neos:Menu {
itemCollection = ${q(site).add(q(site).children('[instanceof Neos.

→˓Neos:Document]')).get()}
}

228 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Menu with custom starting point:

menu = Neos.Neos:Menu {
entryLevel = 2
maximumLevels = 1
startingPoint = ${q(site).children('[uriPathSegment="metamenu"]').get(0)}

}

Neos.Neos:BreadcrumbMenu

Render a breadcrumb (ancestor documents), based on Neos.Neos:Menu.

Example:

breadcrumb = Neos.Neos:BreadcrumbMenu

Neos.Neos:DimensionsMenu

Create links to other node variants (e.g. variants of the current node in other dimensions) by using this Fusion
object.

If the dimension setting is given, the menu will only include items for this dimension, with all other configured
dimension being set to the value(s) of the current node. Without any dimension being configured, all possible
variants will be included.

If no node variant exists for the preset combination, a NULL node will be included in the item with a state absent.

dimension (optional, string): name of the dimension which this menu should be based on. Example:
“language”.

presets (optional, array): If set, the presets rendered will be taken from this list of preset identifiers

includeAllPresets (boolean, default false) If TRUE, include all presets, not only allowed combina-
tions

renderHiddenInIndex (boolean, default true) If TRUE, render nodes which are marked as “hidded-
in-index”

In the template for the menu, each item has the following properties:

node (Node) A node instance (with resolved shortcuts) that should be used to link to the item

state (string) Menu state of the item: normal, current (the current node), absent

label (string) Label of the item (the dimension preset label)

menuLevel (integer) Menu level the item is rendered on

dimensions (array) Dimension values of the node, indexed by dimension name

targetDimensions (array) The target dimensions, indexed by dimension name and values being ar-
rays with value, label and isPinnedDimension

Note: The DimensionMenu is an alias to DimensionsMenu, available for compatibility reasons only.

Examples

Minimal Example, outputting a menu with all configured dimension combinations:

6.3. Fusion Reference 229

Neos CMS Documentation, Release 4.0.0

variantMenu = Neos.Neos:DimensionsMenu

This example will create two menus, one for the ‘language’ and one for the ‘country’ dimension:

languageMenu = Neos.Neos:DimensionsMenu {
dimension = 'language'

}
countryMenu = Neos.Neos:DimensionsMenu {

dimension = 'country'
}

If you only want to render a subset of the available presets or manually define a specific order for a menu, you can
override the “presets”:

languageMenu = Neos.Neos:DimensionsMenu {
dimension = 'language'
presets = ${['en_US', 'de_DE']} # no matter how many languages are defined,

→˓ only these two are displayed.
}

In some cases, it can be good to ignore the availability of variants when rendering a dimensions menu. Consider
a situation with two independent menus for country and language, where the following variants of a node exist
(language / country):

• english / Germany

• german / Germany

• english / UK

If the user selects UK, only english will be linked in the language selector. German is only available again, if the
user switches back to Germany first. This can be changed by setting the includeAllPresets option:

languageMenu = Neos.Neos:DimensionsMenu {
dimension = 'language'
includeAllPresets = true

}

Now the language menu will try to find nodes for all languages, if needed the menu items will point to a different
country than currently selected. The menu tries to find a node to link to by using the current preset for the language
(in this example) and the default presets for any other dimensions. So if fallback rules are in place and a node can
be found, it is used.

Note: The item.targetDimensions will contain the “intended” dimensions, so that information can be
used to inform the user about the potentially unexpected change of dimensions when following such a link.

Only if the current node is not available at all (even after considering default presets with their fallback rules), no
node be assigned (so no link will be created and the items will have the absent state.)

Neos.Neos:NodeUri

Build a URI to a node. Accepts the same arguments as the node link/uri view helpers.

node (string/Node) A node object or a node path (relative or absolute) or empty to resolve the current
document node

format (string) An optional request format (e.g. 'html')

section (string) An optional fragment (hash) for the URI

additionalParams (array) Additional URI query parameters.

230 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

argumentsToBeExcludedFromQueryString (array) Query parameters to exclude for
addQueryString

addQueryString (boolean) Whether to keep current query parameters, defaults to FALSE

absolute (boolean) Whether to create an absolute URI, defaults to FALSE

baseNodeName (string) Base node context variable name (for relative paths), defaults to
'documentNode'

Example:

nodeLink = Neos.Neos:NodeUri {
node = ${q(node).parent().get(0)}

}

Neos.Neos:ImageUri

Get a URI to a (thumbnail) image for an asset.

asset (Asset) An asset object (Image, ImageInterface or other AssetInterface)

width (integer) Desired width of the image

maximumWidth (integer) Desired maximum height of the image

height (integer) Desired height of the image

maximumHeight (integer) Desired maximum width of the image

allowCropping (boolean) Whether the image should be cropped if the given sizes would hurt the
aspect ratio, defaults to FALSE

allowUpScaling (boolean) Whether the resulting image size might exceed the size of the original
image, defaults to FALSE

async (boolean) Return asynchronous image URI in case the requested image does not exist already,
defaults to FALSE

preset (string) Preset used to determine image configuration, if set all other resize attributes will be
ignored

Example:

logoUri = Neos.Neos:ImageUri {
asset = ${q(node).property('image')}
width = 100
height = 100
allowCropping = TRUE
allowUpScaling = TRUE

}

Neos.Neos:ImageTag

Render an image tag for an asset.

* All Neos.Neos:ImageUri properties

attributes (Neos.Fusion:Attributes) Image tag attributes

Example:

6.3. Fusion Reference 231

Neos CMS Documentation, Release 4.0.0

logoImage = Neos.Neos:ImageTag {
asset = ${q(node).property('image')}
maximumWidth = 400
attributes.alt = 'A company logo'

}

Neos.Neos:ConvertUris

Convert internal node and asset URIs (node://... or asset://...) in a string to public URIs and allows
for overriding the target attribute for external links and resource links.

value (string) The string value, defaults to the value context variable to work as a processor by
default

node (Node) The current node as a reference, defaults to the node context variable

externalLinkTarget (string) Override the target attribute for external links, defaults to _blank.
Can be disabled with an empty value.

resourceLinkTarget (string) Override the target attribute for resource links, defaults to _blank.
Can be disabled with an empty value.

forceConversion (boolean) Whether to convert URIs in a non-live workspace, defaults to FALSE

absolute (boolean) Can be used to convert node URIs to absolute links, defaults to FALSE

setNoOpener (boolean) Sets the rel=”noopener” attribute to external links, which is good practice,
defaults to TRUE

Example:

prototype(My.Site:Special.Type) {
title.@process.convertUris = Neos.Neos:ConvertUris

}

Neos.Neos:ContentElementWrapping

Processor to augment rendered HTML code with node metadata that allows the Neos UI to select the node and
show node properties in the inspector. This is especially useful if your renderer prototype is not derived from
Neos.Neos:Content.

The processor expects being applied on HTML code with a single container tag that is augmented.

node (Node) The node of the content element. Optional, will use the Fusion context variable node
by default.

Example:

prototype(Vendor.Site:ExampleContent) {
value = '<div>Example</div>'

The following line must not be removed as it adds required meta data
to edit content elements in the backend
@process.contentElementWrapping = Neos.Neos:ContentElementWrapping {

@position = 'end'
}

}

232 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Neos.Neos:ContentElementEditable

Processor to augment an HTML tag with metadata for inline editing to make a rendered representation of a
property editable.

The processor expects beeing applied to an HTML tag with the content of the edited property.

node (Node) The node of the content element. Optional, will use the Fusion context variable node
by default.

property (string) Node property that should be editable

Example:

renderer = Neos.Fusion:Tag {
tagName = 'h1'
content = ${q(node).property('title')}
@process.contentElementEditableWrapping = Neos.Neos:ContentElementEditable

→˓{
property = 'title'

}
}

6.4 Eel Helpers Reference

This reference was automatically generated from code on 2018-08-10

6.4.1 Array

Array helpers for Eel contexts

The implementation uses the JavaScript specificiation where applicable, including EcmaScript 6 proposals.

See https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array for a documentation and
specification of the JavaScript implementation.

Implemented in: Neos\Eel\Helper\ArrayHelper

Array.concat(array1, array2, array_)

Concatenate arrays or values to a new array

• array1 (array|mixed) First array or value

• array2 (array|mixed) Second array or value

• array_ (array|mixed, optional) Optional variable list of additional arrays / values

Return (array) The array with concatenated arrays or values

Array.first(array)

Get the first element of an array

• array (array) The array

Return (mixed)

6.4. Eel Helpers Reference 233

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array

Neos CMS Documentation, Release 4.0.0

Array.flip(array)

Exchanges all keys with their associated values in an array

Note that the values of array need to be valid keys, i.e. they need to be either integer or string. If a value has
several occurrences, the latest key will be used as its value, and all others will be lost.

• array (array)

Return (array) The array with flipped keys and values

Array.indexOf(array, searchElement, fromIndex)

Returns the first index at which a given element can be found in the array, or -1 if it is not present

• array (array) The array

• searchElement (mixed) The element value to find

• fromIndex (int, optional) Position in the array to start the search.

Return (int)

Array.isEmpty(array)

Check if an array is empty

• array (array) The array

Return (boolean) TRUE if the array is empty

Array.join(array, separator)

Join values of an array with a separator

• array (array) Array with values to join

• separator (string, optional) A separator for the values

Return (string) A string with the joined values separated by the separator

Array.keys(array)

Get the array keys

• array (array) The array

Return (array)

Array.last(array)

Get the last element of an array

• array (array) The array

Return (mixed)

234 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Array.length(array)

Get the length of an array

• array (array) The array

Return (integer)

Array.pop(array)

Removes the last element from an array

Note: This differs from the JavaScript behavior of Array.pop which will return the popped element.

An empty array will result in an empty array again.

• array (array)

Return (array) The array without the last element

Array.push(array, element)

Insert one or more elements at the end of an array

Allows to push multiple elements at once:

Array.push(array, e1, e2)

• array (array)

• element (mixed)

Return (array) The array with the inserted elements

Array.random(array)

Picks a random element from the array

• array (array)

Return (mixed) A random entry or NULL if the array is empty

Array.range(start, end, step)

Create an array containing a range of elements

If a step value is given, it will be used as the increment between elements in the sequence. step should be given as
a positive number. If not specified, step will default to 1.

• start (mixed) First value of the sequence.

• end (mixed) The sequence is ended upon reaching the end value.

• step (integer, optional) The increment between items, will default to 1.

Return (array) Array of elements from start to end, inclusive.

Array.reverse(array)

Returns an array in reverse order

• array (array) The array

Return (array)

6.4. Eel Helpers Reference 235

Neos CMS Documentation, Release 4.0.0

Array.shift(array)

Remove the first element of an array

Note: This differs from the JavaScript behavior of Array.shift which will return the shifted element.

An empty array will result in an empty array again.

• array (array)

Return (array) The array without the first element

Array.shuffle(array, preserveKeys)

Shuffle an array

Randomizes entries an array with the option to preserve the existing keys. When this option is set to FALSE, all
keys will be replaced

• array (array)

• preserveKeys (boolean, optional) Wether to preserve the keys when shuffling the array

Return (array) The shuffled array

Array.slice(array, begin, end)

Extract a portion of an indexed array

• array (array) The array (with numeric indices)

• begin (string)

• end (string, optional)

Return (array)

Array.sort(array)

Sorts an array

The sorting is done first by numbers, then by characters.

Internally natsort() is used as it most closely resembles javascript’s sort(). Because there are no real associative
arrays in Javascript, keys of the array will be preserved.

• array (array)

Return (array) The sorted array

Array.splice(array, offset, length, replacements)

Replaces a range of an array by the given replacements

Allows to give multiple replacements at once:

Array.splice(array, 3, 2, 'a', 'b')

• array (array)

• offset (integer) Index of the first element to remove

• length (integer, optional) Number of elements to remove

• replacements (mixed, optional) Elements to insert instead of the removed range

236 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Return (array) The array with removed and replaced elements

Array.unshift(array, element)

Insert one or more elements at the beginning of an array

Allows to insert multiple elements at once:

Array.unshift(array, e1, e2)

• array (array)

• element (mixed)

Return (array) The array with the inserted elements

6.4.2 Configuration

Configuration helpers for Eel contexts

Implemented in: Neos\Eel\Helper\ConfigurationHelper

Configuration.setting(settingPath)

Return the specified settings

Examples:

Configuration.setting('Neos.Flow.core.context') == 'Production'

Configuration.setting('Acme.Demo.speedMode') == 'light speed'

• settingPath (string)

Return (mixed)

6.4.3 ContentDimensions

Implemented in: Neos\Neos\Ui\Fusion\Helper\ContentDimensionsHelper

ContentDimensions.allowedPresetsByName(dimensions)

• dimensions (array) Dimension values indexed by dimension name

Return (array) Allowed preset names for the given dimension combination indexed by dimension name

ContentDimensions.contentDimensionsByName()

Return (array) Dimensions indexed by name with presets indexed by name

6.4.4 Date

Date helpers for Eel contexts

Implemented in: Neos\Eel\Helper\DateHelper

6.4. Eel Helpers Reference 237

Neos CMS Documentation, Release 4.0.0

Date.add(date, interval)

Add an interval to a date and return a new DateTime object

• date (DateTime)

• interval (string|DateInterval)

Return (DateTime)

Date.create(time)

Get a date object by given date or time format

Examples:

Date.create('2018-12-04')
Date.create('first day of next year')

• time (String) A date/time string. For valid formats see http://php.net/manual/en/datetime.formats.php

Return (DateTime)

Date.dayOfMonth(dateTime)

Get the day of month of a date

• dateTime (DateTimeInterface)

Return (integer) The day of month of the given date

Date.diff(dateA, dateB)

Get the difference between two dates as a DateInterval object

• dateA (DateTime)

• dateB (DateTime)

Return (DateInterval)

Date.format(date, format)

Format a date (or interval) to a string with a given format

See formatting options as in PHP date()

• date (integer|string|DateTime|DateInterval)

• format (string)

Return (string)

Date.formatCldr(date, cldrFormat, locale)

Format a date to a string with a given cldr format

• date (integer|string|DateTime)

• cldrFormat (string) Format string in CLDR format (see http://cldr.unicode.org/translation/date-time)

• locale (null|string, optional) String locale - example (de|en|ru_RU)

Return (string)

238 Chapter 6. References

http://php.net/manual/en/datetime.formats.php
http://cldr.unicode.org/translation/date-time

Neos CMS Documentation, Release 4.0.0

Date.hour(dateTime)

Get the hour of a date (24 hour format)

• dateTime (DateTimeInterface)

Return (integer) The hour of the given date

Date.minute(dateTime)

Get the minute of a date

• dateTime (DateTimeInterface)

Return (integer) The minute of the given date

Date.month(dateTime)

Get the month of a date

• dateTime (DateTimeInterface)

Return (integer) The month of the given date

Date.now()

Get the current date and time

Examples:

Date.now().timestamp

Return (DateTime)

Date.parse(string, format)

Parse a date from string with a format to a DateTime object

• string (string)

• format (string)

Return (DateTime)

Date.second(dateTime)

Get the second of a date

• dateTime (DateTimeInterface)

Return (integer) The second of the given date

Date.subtract(date, interval)

Subtract an interval from a date and return a new DateTime object

• date (DateTime)

• interval (string|DateInterval)

Return (DateTime)

6.4. Eel Helpers Reference 239

Neos CMS Documentation, Release 4.0.0

Date.today()

Get the current date

Return (DateTime)

Date.year(dateTime)

Get the year of a date

• dateTime (DateTimeInterface)

Return (integer) The year of the given date

6.4.5 File

Helper to read files.

Implemented in: Neos\Eel\Helper\FileHelper

File.fileInfo(filepath)

Get file name and path information

• filepath (string)

Return (array) with keys dirname, basename, extension (if any), and filename

File.getSha1(filepath)

• filepath (string)

Return (string)

File.readFile(filepath)

Read and return the files contents for further use.

• filepath (string)

Return (string)

File.stat(filepath)

Get file information like creation and modification times as well as size.

• filepath (string)

Return (array) with keys mode, uid, gid, size, atime, mtime, ctime, (blksize, blocks, dev, ino, nlink, rdev)

6.4.6 Json

JSON helpers for Eel contexts

Implemented in: Neos\Eel\Helper\JsonHelper

240 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Json.parse(json, associativeArrays)

JSON decode the given string

• json (string)

• associativeArrays (boolean, optional)

Return (mixed)

Json.stringify(value, options)

JSON encode the given value

Usage example for options:

Json.stringify(value, [‘JSON_UNESCAPED_UNICODE’, ‘JSON_FORCE_OBJECT’])

• value (mixed)

• options (array, optional) Array of option constant names as strings

Return (string)

6.4.7 Math

Math helpers for Eel contexts

The implementation sticks to the JavaScript specificiation including EcmaScript 6 proposals.

See https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Math for a documentation and
specification of the JavaScript implementation.

Implemented in: Neos\Eel\Helper\MathHelper

Math.abs(x)

• x (float, optional) A number

Return (float) The absolute value of the given value

Math.acos(x)

• x (float) A number

Return (float) The arccosine (in radians) of the given value

Math.acosh(x)

• x (float) A number

Return (float) The hyperbolic arccosine (in radians) of the given value

Math.asin(x)

• x (float) A number

Return (float) The arcsine (in radians) of the given value

6.4. Eel Helpers Reference 241

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Math

Neos CMS Documentation, Release 4.0.0

Math.asinh(x)

• x (float) A number

Return (float) The hyperbolic arcsine (in radians) of the given value

Math.atan(x)

• x (float) A number

Return (float) The arctangent (in radians) of the given value

Math.atan2(y, x)

• y (float) A number

• x (float) A number

Return (float) The arctangent of the quotient of its arguments

Math.atanh(x)

• x (float) A number

Return (float) The hyperbolic arctangent (in radians) of the given value

Math.cbrt(x)

• x (float) A number

Return (float) The cube root of the given value

Math.ceil(x)

• x (float) A number

Return (float) The smallest integer greater than or equal to the given value

Math.cos(x)

• x (float) A number given in radians

Return (float) The cosine of the given value

Math.cosh(x)

• x (float) A number

Return (float) The hyperbolic cosine of the given value

Math.exp(x)

• x (float) A number

Return (float) The power of the Euler’s constant with the given value (e^x)

242 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Math.expm1(x)

• x (float) A number

Return (float) The power of the Euler’s constant with the given value minus 1 (e^x - 1)

Math.floor(x)

• x (float) A number

Return (float) The largest integer less than or equal to the given value

Math.getE()

Return (float) Euler’s constant and the base of natural logarithms, approximately 2.718

Math.getLN10()

Return (float) Natural logarithm of 10, approximately 2.303

Math.getLN2()

Return (float) Natural logarithm of 2, approximately 0.693

Math.getLOG10E()

Return (float) Base 10 logarithm of E, approximately 0.434

Math.getLOG2E()

Return (float) Base 2 logarithm of E, approximately 1.443

Math.getPI()

Return (float) Ratio of the circumference of a circle to its diameter, approximately 3.14159

Math.getSQRT1_2()

Return (float) Square root of 1/2; equivalently, 1 over the square root of 2, approximately 0.707

Math.getSQRT2()

Return (float) Square root of 2, approximately 1.414

Math.hypot(x, y, z_)

• x (float) A number

• y (float) A number

• z_ (float, optional) Optional variable list of additional numbers

Return (float) The square root of the sum of squares of the arguments

6.4. Eel Helpers Reference 243

Neos CMS Documentation, Release 4.0.0

Math.isFinite(x)

Test if the given value is a finite number

This is equivalent to the global isFinite() function in JavaScript.

• x (mixed) A value

Return (boolean) TRUE if the value is a finite (not NAN) number

Math.isInfinite(x)

Test if the given value is an infinite number (INF or -INF)

This function has no direct equivalent in JavaScript.

• x (mixed) A value

Return (boolean) TRUE if the value is INF or -INF

Math.isNaN(x)

Test if the given value is not a number (either not numeric or NAN)

This is equivalent to the global isNaN() function in JavaScript.

• x (mixed) A value

Return (boolean) TRUE if the value is not a number

Math.log(x)

• x (float) A number

Return (float) The natural logarithm (base e) of the given value

Math.log10(x)

• x (float) A number

Return (float) The base 10 logarithm of the given value

Math.log1p(x)

• x (float) A number

Return (float) The natural logarithm (base e) of 1 + the given value

Math.log2(x)

• x (float) A number

Return (float) The base 2 logarithm of the given value

Math.max(x, y_)

• x (float, optional) A number

• y_ (float, optional) Optional variable list of additional numbers

Return (float) The largest of the given numbers (zero or more)

244 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Math.min(x, y_)

• x (float, optional) A number

• y_ (float, optional) Optional variable list of additional numbers

Return (float) The smallest of the given numbers (zero or more)

Math.pow(x, y)

Calculate the power of x by y

• x (float) The base

• y (float) The exponent

Return (float) The base to the exponent power (x^y)

Math.random()

Get a random foating point number between 0 (inclusive) and 1 (exclusive)

That means a result will always be less than 1 and greater or equal to 0, the same way Math.random() works in
JavaScript.

See Math.randomInt(min, max) for a function that returns random integer numbers from a given interval.

Return (float) A random floating point number between 0 (inclusive) and 1 (exclusive), that is from [0, 1)

Math.randomInt(min, max)

Get a random integer number between a min and max value (inclusive)

That means a result will always be greater than or equal to min and less than or equal to max.

• min (integer) The lower bound for the random number (inclusive)

• max (integer) The upper bound for the random number (inclusive)

Return (integer) A random number between min and max (inclusive), that is from [min, max]

Math.round(subject, precision)

Rounds the subject to the given precision

The precision defines the number of digits after the decimal point. Negative values are also supported (-1 rounds
to full 10ths).

• subject (float) The value to round

• precision (integer, optional) The precision (digits after decimal point) to use, defaults to 0

Return (float) The rounded value

Math.sign(x)

Get the sign of the given number, indicating whether the number is positive, negative or zero

• x (integer|float) The value

Return (integer) -1, 0, 1 depending on the sign or NAN if the given value was not numeric

6.4. Eel Helpers Reference 245

Neos CMS Documentation, Release 4.0.0

Math.sin(x)

• x (float) A number given in radians

Return (float) The sine of the given value

Math.sinh(x)

• x (float) A number

Return (float) The hyperbolic sine of the given value

Math.sqrt(x)

• x (float) A number

Return (float) The square root of the given number

Math.tan(x)

• x (float) A number given in radians

Return (float) The tangent of the given value

Math.tanh(x)

• x (float) A number

Return (float) The hyperbolic tangent of the given value

Math.trunc(x)

Get the integral part of the given number by removing any fractional digits

This function doesn’t round the given number but merely calls ceil(x) or floor(x) depending on the sign of the
number.

• x (float) A number

Return (integer) The integral part of the given number

6.4.8 Neos.Array

Some Functional Programming Array helpers for Eel contexts

These helpers are WORK IN PROGRESS and NOT STABLE YET

Implemented in: Neos\Neos\Fusion\Helper\ArrayHelper

Neos.Array.filter(set, filterProperty)

Filter an array of objects, by only keeping the elements where each object’s $filterProperty evaluates to true.

• set (array|Collection)

• filterProperty (string)

Return (array)

246 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Neos.Array.filterNegated(set, filterProperty)

Filter an array of objects, by only keeping the elements where each object’s $filterProperty evaluates to false.

• set (array|Collection)

• filterProperty (string)

Return (array)

Neos.Array.groupBy(set, groupingKey)

The input is assumed to be an array or Collection of objects. Groups this input by the $groupingKey property of
each element.

• set (array|Collection)

• groupingKey (string)

Return (array)

6.4.9 Neos.Caching

Caching helper to make cache tag generation easier.

Implemented in: Neos\Neos\Fusion\Helper\CachingHelper

Neos.Caching.descendantOfTag(nodes)

Generate a @cache entry tag for descendants of a node, an array of nodes or a FlowQuery result A cache entry
with this tag will be flushed whenever a node (for any variant) that is a descendant (child on any level) of one of
the given nodes is updated.

• nodes (mixed) (A single Node or array or Traversable of Nodes)

Return (array)

Neos.Caching.nodeTag(nodes)

Generate a @cache entry tag for a single node, array of nodes or a FlowQuery result A cache entry with this tag
will be flushed whenever one of the given nodes (for any variant) is updated.

• nodes (mixed) (A single Node or array or Traversable of Nodes)

Return (array)

Neos.Caching.nodeTypeTag(nodeType)

Generate an @cache entry tag for a node type A cache entry with this tag will be flushed whenever a node (for
any variant) that is of the given node type(s) (including inheritance) is updated.

• nodeType (string|NodeType|string[]|NodeType[])

Return (string|string[])

6.4.10 Neos.Link

Eel helper for the linking service

Implemented in: Neos\Neos\Fusion\Helper\LinkHelper

6.4. Eel Helpers Reference 247

Neos CMS Documentation, Release 4.0.0

Neos.Link.convertUriToObject(uri, contextNode)

• uri (string|Uri)

• contextNode (NodeInterface, optional)

Return (NodeInterface|AssetInterface|NULL)

Neos.Link.getScheme(uri)

• uri (string|Uri)

Return (string)

Neos.Link.hasSupportedScheme(uri)

• uri (string|Uri)

Return (boolean)

Neos.Link.resolveAssetUri(uri)

• uri (string|Uri)

Return (string)

Neos.Link.resolveNodeUri(uri, contextNode, controllerContext)

• uri (string|Uri)

• contextNode (NodeInterface)

• controllerContext (ControllerContext)

Return (string)

6.4.11 Neos.Node

Eel helper for ContentRepository Nodes

Implemented in: Neos\Neos\Fusion\Helper\NodeHelper

Neos.Node.isOfType(node, nodeType)

If this node type or any of the direct or indirect super types has the given name.

• node (NodeInterface)

• nodeType (string)

Return (bool)

248 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Neos.Node.nearestContentCollection(node, nodePath)

Check if the given node is already a collection, find collection by nodePath otherwise, throw exception if no
content collection could be found

• node (NodeInterface)

• nodePath (string)

Return (NodeInterface)

6.4.12 Neos.Rendering

Render Content Dimension Names, Node Labels

These helpers are WORK IN PROGRESS and NOT STABLE YET

Implemented in: Neos\Neos\Fusion\Helper\RenderingHelper

Neos.Rendering.injectConfigurationManager(configurationManager)

• configurationManager (ConfigurationManager)

Return (void)

Neos.Rendering.labelForNodeType(nodeTypeName)

Render the label for the given $nodeTypeName

• nodeTypeName (string)

Return (string)

Neos.Rendering.renderDimensions(dimensions)

Render a human-readable description for the passed $dimensions

• dimensions (array)

Return (string)

6.4.13 Neos.Ui.Activation

Implemented in: Neos\Neos\Ui\Fusion\Helper\ActivationHelper

Neos.Ui.Activation.isLegacyBackendEnabled()

6.4.14 Neos.Ui.Modules

Implemented in: Neos\Neos\Ui\Fusion\Helper\ModulesHelper

Neos.Ui.Modules.isAllowed(modulePath)

Checks whether the current user has access to a module

• modulePath (string)

Return (boolean)

6.4. Eel Helpers Reference 249

Neos CMS Documentation, Release 4.0.0

Neos.Ui.Modules.isAvailable(moduleName)

Checks, whether a module is available to the current user

• moduleName (string)

Return (boolean)

Neos.Ui.Modules.isEnabled(modulePath)

Checks whether a module is enabled

• modulePath (string)

Return (boolean)

6.4.15 Neos.Ui.PositionalArraySorter

Implemented in: Neos\Neos\Ui\Fusion\Helper\PositionalArraySorterHelper

Neos.Ui.PositionalArraySorter.sort(array, positionPath)

• array (array)

• positionPath (string, optional)

Return (array)

6.4.16 Neos.Ui.Sites

Implemented in: Neos\Neos\Ui\Fusion\Helper\SitesHelper

Neos.Ui.Sites.isActive(siteNode)

6.4.17 Neos.Ui.StaticResources

Implemented in: Neos\Neos\Ui\Fusion\Helper\StaticResourcesHelper

Neos.Ui.StaticResources.compiledResourcePackage()

6.4.18 Neos.Ui.Workspace

Implemented in: Neos\Neos\Ui\Fusion\Helper\WorkspaceHelper

Neos.Ui.Workspace.getAllowedTargetWorkspaces()

Neos.Ui.Workspace.getPersonalWorkspace()

Neos.Ui.Workspace.getPublishableNodeInfo(workspace)

• workspace (Workspace)

Return (array)

250 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

6.4.19 NodeInfo

Implemented in: Neos\Neos\Ui\Fusion\Helper\NodeInfoHelper

NodeInfo.createRedirectToNode(controllerContext, node)

• controllerContext (ControllerContext)

• node (NodeInterface, optional)

Return (string)

NodeInfo.defaultNodesForBackend(site, documentNode, controllerContext)

• site (NodeInterface)

• documentNode (NodeInterface)

• controllerContext (ControllerContext)

Return (array)

NodeInfo.renderDocumentNodeAndChildContent(documentNode, controllerContext)

• documentNode (NodeInterface)

• controllerContext (ControllerContext)

Return (array)

NodeInfo.renderNodeWithMinimalPropertiesAndChildrenInformation(node, controllerContext,
nodeTypeFilterOverride)

• node (NodeInterface)

• controllerContext (ControllerContext|null, optional)

• nodeTypeFilterOverride (string, optional)

Return (array)

NodeInfo.renderNodeWithPropertiesAndChildrenInformation(node, controllerContext, node-
TypeFilterOverride)

• node (NodeInterface)

• controllerContext (ControllerContext|null, optional)

• nodeTypeFilterOverride (string, optional)

Return (array)

NodeInfo.renderNodes(nodes, controllerContext, omitMostPropertiesForTreeState)

• nodes (array)

• controllerContext (ControllerContext)

• omitMostPropertiesForTreeState (bool, optional)

Return (array)

6.4. Eel Helpers Reference 251

Neos CMS Documentation, Release 4.0.0

NodeInfo.renderNodesWithParents(nodes, controllerContext)

• nodes (array)

• controllerContext (ControllerContext)

Return (array)

NodeInfo.uri(node, controllerContext)

• node (NodeInterface)

• controllerContext (ControllerContext)

Return (string)

6.4.20 Security

Helper for security related information

Implemented in: Neos\Eel\Helper\SecurityHelper

Security.getAccount()

Get the account of the first authenticated token.

Return (Account|NULL)

Security.hasRole(roleIdentifier)

Returns TRUE, if at least one of the currently authenticated accounts holds a role with the given identifier, also
recursively.

• roleIdentifier (string) The string representation of the role to search for

Return (boolean) TRUE, if a role with the given string representation was found

6.4.21 String

String helpers for Eel contexts

Implemented in: Neos\Eel\Helper\StringHelper

String.charAt(string, index)

Get the character at a specific position

Example:

String.charAt("abcdefg", 5) == "f"

• string (string) The input string

• index (integer) The index to get

Return (string) The character at the given index

252 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

String.crop(string, maximumCharacters, suffix)

Crop a string to maximumCharacters length, optionally appending suffix if cropping was necessary.

• string (string) The input string

• maximumCharacters (integer) Number of characters where cropping should happen

• suffix (string, optional) Suffix to be appended if cropping was necessary

Return (string) The cropped string

String.cropAtSentence(string, maximumCharacters, suffix)

Crop a string to maximumCharacters length, taking sentences into account, optionally appending suffix if
cropping was necessary.

• string (string) The input string

• maximumCharacters (integer) Number of characters where cropping should happen

• suffix (string, optional) Suffix to be appended if cropping was necessary

Return (string) The cropped string

String.cropAtWord(string, maximumCharacters, suffix)

Crop a string to maximumCharacters length, taking words into account, optionally appending suffix if
cropping was necessary.

• string (string) The input string

• maximumCharacters (integer) Number of characters where cropping should happen

• suffix (string, optional) Suffix to be appended if cropping was necessary

Return (string) The cropped string

String.endsWith(string, search, position)

Test if a string ends with the given search string

Example:

String.endsWith('Hello, World!', 'World!') == true

• string (string) The string

• search (string) A string to search

• position (integer, optional) Optional position for limiting the string

Return (boolean) TRUE if the string ends with the given search

String.firstLetterToLowerCase(string)

Lowercase the first letter of a string

Example:

String.firstLetterToLowerCase('CamelCase') == 'camelCase'

• string (string) The input string

Return (string) The string with the first letter in lowercase

6.4. Eel Helpers Reference 253

Neos CMS Documentation, Release 4.0.0

String.firstLetterToUpperCase(string)

Uppercase the first letter of a string

Example:

String.firstLetterToUpperCase('hello world') == 'Hello world'

• string (string) The input string

Return (string) The string with the first letter in uppercase

String.htmlSpecialChars(string, preserveEntities)

Convert special characters to HTML entities

• string (string) The string to convert

• preserveEntities (boolean, optional) true if entities should not be double encoded

Return (string) The converted string

String.indexOf(string, search, fromIndex)

Find the first position of a substring in the given string

Example:

String.indexOf("Blue Whale", "Blue") == 0

• string (string) The input string

• search (string) The substring to search for

• fromIndex (integer, optional) The index where the search should start, defaults to the beginning

Return (integer) The index of the substring (>= 0) or -1 if the substring was not found

String.isBlank(string)

Test if the given string is blank (empty or consists of whitespace only)

Examples:

String.isBlank('') == true
String.isBlank(' ') == true

• string (string) The string to test

Return (boolean) true if the given string is blank

String.lastIndexOf(string, search, toIndex)

Find the last position of a substring in the given string

Example:

String.lastIndexOf("Developers Developers Developers!", "Developers") == 22

• string (string) The input string

• search (string) The substring to search for

254 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

• toIndex (integer, optional) The position where the backwards search should start, defaults to the end

Return (integer) The last index of the substring (>=0) or -1 if the substring was not found

String.length(string)

Get the length of a string

• string (string) The input string

Return (integer) Length of the string

String.md5(string)

Calculate the MD5 checksum of the given string

• string (string) The string to hash

Return (string) The MD5 hash of string

String.pregMatch(string, pattern)

Match a string with a regular expression (PREG style)

Example:

String.pregMatch("For more information, see Chapter 3.4.5.1", "/(chapter \d+(\.
→˓\d)*)/i")
== ['Chapter 3.4.5.1', 'Chapter 3.4.5.1', '.1']

• string (string) The input string

• pattern (string) A PREG pattern

Return (array) The matches as array or NULL if not matched

String.pregMatchAll(string, pattern)

Perform a global regular expression match (PREG style)

Example:

String.pregMatchAll("<hr id="icon-one" /><hr id="icon-two" />", '/id="icon-(.+?)"/
→˓')
== [['id="icon-one"', 'id="icon-two"'],['one','two']]

• string (string) The input string

• pattern (string) A PREG pattern

Return (array) The matches as array or NULL if not matched

String.pregReplace(string, pattern, replace)

Replace occurrences of a search string inside the string using regular expression matching (PREG style)

Examples:

String.pregReplace("Some.String with sp:cial characters", "/[[:^alnum:]]/", "-")
→˓== "Some-String-with-sp-cial-characters"
String.pregReplace("2016-08-31", "/([0-9]+)-([0-9]+)-([0-9]+)/", "$3.$2.$1") ==
→˓"31.08.2016"

6.4. Eel Helpers Reference 255

Neos CMS Documentation, Release 4.0.0

• string (string) The input string

• pattern (string) A PREG pattern

• replace (string) A replacement string, can contain references to capture groups with “\n” or “$n

Return (string) The string with all occurrences replaced

String.pregSplit(string, pattern, limit)

Split a string by a separator using regular expression matching (PREG style)

Examples:

String.pregSplit("foo bar baz", "/\s+/") == ['foo', 'bar', 'baz']
String.pregSplit("first second third", "/\s+/", 2) == ['first', 'second third']

• string (string) The input string

• pattern (string) A PREG pattern

• limit (integer, optional) The maximum amount of items to return, in contrast to split() this will return all
remaining characters in the last item (see example)

Return (array) An array of the splitted parts, excluding the matched pattern

String.rawUrlDecode(string)

Decode the string from URLs according to RFC 3986

• string (string) The string to decode

Return (string) The decoded string

String.rawUrlEncode(string)

Encode the string for URLs according to RFC 3986

• string (string) The string to encode

Return (string) The encoded string

String.replace(string, search, replace)

Replace occurrences of a search string inside the string

Example:

String.replace("canal", "ana", "oo") == "cool"

Note: this method does not perform regular expression matching, @see pregReplace().

• string (string) The input string

• search (string) A search string

• replace (string) A replacement string

Return (string) The string with all occurrences replaced

256 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

String.split(string, separator, limit)

Split a string by a separator

Example:

String.split("My hovercraft is full of eels", " ") == ['My', 'hovercraft', 'is',
→˓'full', 'of', 'eels']
String.split("Foo", "", 2) == ['F', 'o']

Node: This implementation follows JavaScript semantics without support of regular expressions.

• string (string) The string to split

• separator (string, optional) The separator where the string should be splitted

• limit (integer, optional) The maximum amount of items to split (exceeding items will be discarded)

Return (array) An array of the splitted parts, excluding the separators

String.startsWith(string, search, position)

Test if a string starts with the given search string

Examples:

String.startsWith('Hello world!', 'Hello') == true
String.startsWith('My hovercraft is full of...', 'Hello') == false
String.startsWith('My hovercraft is full of...', 'hovercraft', 3) == true

• string (string) The input string

• search (string) The string to search for

• position (integer, optional) The position to test (defaults to the beginning of the string)

Return (boolean)

String.stripTags(string, allowableTags)

Strip all HTML tags from the given string

Example:

String.stripTags('Some link') == 'Some link'

This is a wrapper for the strip_tags() PHP function.

• string (string) The string to strip

• allowableTags (string, optional) Specify tags which should not be stripped

Return (string) The string with tags stripped

String.substr(string, start, length)

Return the characters in a string from start up to the given length

This implementation follows the JavaScript specification for “substr”.

Examples:

String.substr('Hello, World!', 7, 5) == 'World'
String.substr('Hello, World!', 7) == 'World!'
String.substr('Hello, World!', -6) == 'World!'

6.4. Eel Helpers Reference 257

Neos CMS Documentation, Release 4.0.0

• string (string) A string

• start (integer) Start offset

• length (integer, optional) Maximum length of the substring that is returned

Return (string) The substring

String.substring(string, start, end)

Return the characters in a string from a start index to an end index

This implementation follows the JavaScript specification for “substring”.

Examples:

String.substring('Hello, World!', 7, 12) == 'World'
String.substring('Hello, World!', 7) == 'World!'

• string (string)

• start (integer) Start index

• end (integer, optional) End index

Return (string) The substring

String.toBoolean(string)

Convert a string to boolean

A value is true, if it is either the string "TRUE" or "true" or the number 1.

• string (string) The string to convert

Return (boolean) The boolean value of the string (true or false)

String.toFloat(string)

Convert a string to float

• string (string) The string to convert

Return (float) The float value of the string

String.toInteger(string)

Convert a string to integer

• string (string) The string to convert

Return (integer) The converted string

String.toLowerCase(string)

Lowercase a string

• string (string) The input string

Return (string) The string in lowercase

258 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

String.toString(value)

Convert the given value to a string

• value (mixed) The value to convert (must be convertible to string)

Return (string) The string value

String.toUpperCase(string)

Uppercase a string

• string (string) The input string

Return (string) The string in uppercase

String.trim(string, charlist)

Trim whitespace at the beginning and end of a string

• string (string) The string to trim

• charlist (string, optional) List of characters that should be trimmed, defaults to whitespace

Return (string) The trimmed string

String.wordCount(unicodeString)

Return the count of words for a given string. Remove marks & digits and flatten all kind of whitespaces (tabs, new
lines and multiple spaces) For example this helper can be utilized to calculate the reading time of an article.

• unicodeString (string) The input string

Return (integer) Number of words

6.4.22 Translation

Translation helpers for Eel contexts

Implemented in: Neos\Flow\I18n\EelHelper\TranslationHelper

Translation.id(id)

Start collection of parameters for translation by id

• id (string) Id to use for finding translation (trans-unit id in XLIFF)

Return (TranslationParameterToken)

Translation.translate(id, originalLabel, arguments, source, package, quantity, locale)

Get the translated value for an id or original label

If only id is set and contains a translation shorthand string, translate according to that shorthand

In all other cases:

Replace all placeholders with corresponding values if they exist in the translated label.

• id (string) Id to use for finding translation (trans-unit id in XLIFF)

• originalLabel (string, optional) The original translation value (the untranslated source string).

6.4. Eel Helpers Reference 259

Neos CMS Documentation, Release 4.0.0

• arguments (array, optional) Numerically indexed array of values to be inserted into placeholders

• source (string, optional) Name of file with translations

• package (string, optional) Target package key. If not set, the current package key will be used

• quantity (mixed, optional) A number to find plural form for (float or int), NULL to not use plural forms

• locale (string, optional) An identifier of locale to use (NULL for use the default locale)

Return (string) Translated label or source label / ID key

Translation.value(value)

Start collection of parameters for translation by original label

• value (string)

Return (TranslationParameterToken)

6.4.23 Type

Type helper for Eel contexts

Implemented in: Neos\Eel\Helper\TypeHelper

Type.className(variable)

Get the class name of the given variable or NULL if it wasn’t an object

• variable (object)

Return (string|NULL)

Type.getType(variable)

Get the variable type

• variable (mixed)

Return (string)

Type.instance(variable, expectedObjectType)

Is the given variable of the provided object type.

• variable (mixed)

• expectedObjectType (string)

Return (boolean)

Type.isArray(variable)

Is the given variable an array.

• variable (mixed)

Return (boolean)

260 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Type.isBoolean(variable)

Is the given variable boolean.

• variable (mixed)

Return (boolean)

Type.isFloat(variable)

Is the given variable a float.

• variable (mixed)

Return (boolean)

Type.isInteger(variable)

Is the given variable an integer.

• variable (mixed)

Return (boolean)

Type.isNumeric(variable)

Is the given variable numeric.

• variable (mixed)

Return (boolean)

Type.isObject(variable)

Is the given variable an object.

• variable (mixed)

Return (boolean)

Type.isScalar(variable)

Is the given variable a scalar.

• variable (mixed)

Return (boolean)

Type.isString(variable)

Is the given variable a string.

• variable (mixed)

Return (boolean)

6.4. Eel Helpers Reference 261

Neos CMS Documentation, Release 4.0.0

Type.typeof(variable)

Get the variable type

• variable (mixed)

Return (string)

6.5 FlowQuery Operation Reference

This reference was automatically generated from code on 2018-08-10

6.5.1 add

Adds the given items to the current context. The operation accepts one argument that may be an Array, a Flow-
Query or an Object.

Implementation Neos\Eel\FlowQuery\Operations\AddOperation

Priority 1

Final No

Returns void

6.5.2 cacheLifetime

“cacheLifetime” operation working on ContentRepository nodes. Will get the minimum of all allowed cache
lifetimes for the nodes in the current FlowQuery context. This means it will evaluate to the nearest future value of
the hiddenBeforeDateTime or hiddenAfterDateTime properties of all nodes in the context. If none are set or all
values are in the past it will evaluate to NULL.

To include already hidden nodes (with a hiddenBeforeDateTime value in the future) in the result, also invisible
nodes have to be included in the context. This can be achieved using the “context” operation before fetching child
nodes.

Example:

q(node).context({‘invisibleContentShown’: true}).children().cacheLifetime()

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\CacheLifetimeOperation

Priority 1

Final Yes

Returns integer The cache lifetime in seconds or NULL if either no content collection was given or
no child node had a “hiddenBeforeDateTime” or “hiddenAfterDateTime” property set

6.5.3 children

“children” operation working on generic objects. It iterates over all context elements and returns the values of the
properties given in the filter expression that has to be specified as argument or in a following filter operation.

Implementation Neos\Eel\FlowQuery\Operations\Object\ChildrenOperation

Priority 1

Final No

Returns void

262 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

6.5.4 children

“children” operation working on ContentRepository nodes. It iterates over all context elements and returns all
child nodes or only those matching the filter expression specified as optional argument.

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\ChildrenOperation

Priority 100

Final No

Returns void

6.5.5 closest

“closest” operation working on ContentRepository nodes. For each node in the context, get the first node that
matches the selector by testing the node itself and traversing up through its ancestors.

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\ClosestOperation

Priority 100

Final No

Returns void

6.5.6 context

“context” operation working on ContentRepository nodes. Modifies the ContentRepository Context of each node
in the current FlowQuery context by the given properties and returns the same nodes by identifier if they can be
accessed in the new Context (otherwise they will be skipped).

Example:

q(node).context({‘invisibleContentShown’: true}).children()

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\ContextOperation

Priority 1

Final No

Returns void

6.5.7 count

Count the number of elements in the context.

If arguments are given, these are used to filter the elements before counting.

Implementation Neos\Eel\FlowQuery\Operations\CountOperation

Priority 1

Final Yes

Returns void|integer with the number of elements

6.5.8 filter

Filter operation, limiting the set of objects. The filter expression is expected as string argument and used to reduce
the context to matching elements by checking each value against the filter.

A filter expression is written in Fizzle, a grammar inspired by CSS selectors. It has the form “[” [<value>]
<operator> <operand> “]” and supports the following operators:

6.5. FlowQuery Operation Reference 263

Neos CMS Documentation, Release 4.0.0

= Strict equality of value and operand

!= Strict inequality of value and operand

< Value is less than operand

<= Value is less than or equal to operand

> Value is greater than operand

>= Value is greater than or equal to operand

$= Value ends with operand (string-based)

^= Value starts with operand (string-based)

*= Value contains operand (string-based)

instanceof Checks if the value is an instance of the operand

!instanceof Checks if the value is not an instance of the operand

For the latter the behavior is as follows: if the operand is one of the strings object, array, int(eger), float, double,
bool(ean) or string the value is checked for being of the specified type. For any other strings the value is used as
classname with the PHP instanceof operation to check if the value matches.

Implementation Neos\Eel\FlowQuery\Operations\Object\FilterOperation

Priority 1

Final No

Returns void

6.5.9 filter

This filter implementation contains specific behavior for use on ContentRepository nodes. It will not evaluate any
elements that are not instances of the NodeInterface.

The implementation changes the behavior of the instanceof operator to work on node types instead of PHP object
types, so that:

[instanceof Neos.NodeTypes:Page]

will in fact use isOfType() on the NodeType of context elements to filter. This filter allow also to filter the current
context by a given node. Anything else remains unchanged.

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\FilterOperation

Priority 100

Final No

Returns void

6.5.10 find

“find” operation working on ContentRepository nodes. This operation allows for retrieval of nodes specified by a
path, identifier or node type (recursive).

Example (node name):

q(node).find(‘main’)

Example (relative path):

q(node).find(‘main/text1’)

Example (absolute path):

264 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

q(node).find(‘/sites/my-site/home’)

Example (identifier):

q(node).find(‘#30e893c1-caef-0ca5-b53d-e5699bb8e506’)

Example (node type):

q(node).find(‘[instanceof Neos.NodeTypes:Text]’)

Example (multiple node types):

q(node).find(‘[instanceof Neos.NodeTypes:Text],[instanceof Neos.NodeTypes:Image]’)

Example (node type with filter):

q(node).find(‘[instanceof Neos.NodeTypes:Text][text*=”Neos”]’)

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\FindOperation

Priority 100

Final No

Returns void

6.5.11 first

Get the first element inside the context.

Implementation Neos\Eel\FlowQuery\Operations\FirstOperation

Priority 1

Final No

Returns void

6.5.12 get

Get a (non-wrapped) element from the context.

If FlowQuery is used, the result is always another FlowQuery. In case you need to pass a FlowQuery result (and
lazy evaluation does not work out) you can use get() to unwrap the result from the “FlowQuery envelope”.

If no arguments are given, the full context is returned. Otherwise the value contained in the context at the index
given as argument is returned. If no such index exists, NULL is returned.

Implementation Neos\Eel\FlowQuery\Operations\GetOperation

Priority 1

Final Yes

Returns mixed

6.5.13 has

“has” operation working on NodeInterface. Reduce the set of matched elements to those that have a child node
that matches the selector or given subject.

Accepts a selector, an array, an object, a traversable object & a FlowQuery object as argument.

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\HasOperation

Priority 100

Final No

6.5. FlowQuery Operation Reference 265

Neos CMS Documentation, Release 4.0.0

Returns void

6.5.14 is

Check whether the at least one of the context elements match the given filter.

Without arguments is evaluates to TRUE if the context is not empty. If arguments are given, they are used to filter
the context before evaluation.

Implementation Neos\Eel\FlowQuery\Operations\IsOperation

Priority 1

Final Yes

Returns void|boolean

6.5.15 last

Get the last element inside the context.

Implementation Neos\Eel\FlowQuery\Operations\LastOperation

Priority 1

Final No

Returns void

6.5.16 neosUiDefaultNodes

Fetches all nodes needed for the given state of the UI

Implementation Neos\Neos\Ui\FlowQueryOperations\NeosUiDefaultNodesOperation

Priority 100

Final No

Returns void

6.5.17 neosUiFilteredChildren

“children” operation working on ContentRepository nodes. It iterates over all context elements and returns all
child nodes or only those matching the filter expression specified as optional argument.

Implementation Neos\Neos\Ui\FlowQueryOperations\NeosUiFilteredChildrenOperation

Priority 100

Final No

Returns void

6.5.18 next

“next” operation working on ContentRepository nodes. It iterates over all context elements and returns the im-
mediately following sibling. If an optional filter expression is provided, it only returns the node if it matches the
given expression.

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\NextOperation

Priority 100

266 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Final No

Returns void

6.5.19 nextAll

“nextAll” operation working on ContentRepository nodes. It iterates over all context elements and returns each
following sibling or only those matching the filter expression specified as optional argument.

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\NextAllOperation

Priority 0

Final No

Returns void

6.5.20 nextUntil

“nextUntil” operation working on ContentRepository nodes. It iterates over all context elements and returns each
following sibling until the matching sibling is found. If an optional filter expression is provided as a second
argument, it only returns the nodes matching the given expression.

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\NextUntilOperation

Priority 0

Final No

Returns void

6.5.21 parent

“parent” operation working on ContentRepository nodes. It iterates over all context elements and returns each
direct parent nodes or only those matching the filter expression specified as optional argument.

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\ParentOperation

Priority 100

Final No

Returns void

6.5.22 parents

“parents” operation working on ContentRepository nodes. It iterates over all context elements and returns the
parent nodes or only those matching the filter expression specified as optional argument.

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\ParentsOperation

Priority 0

Final No

Returns void

6.5. FlowQuery Operation Reference 267

Neos CMS Documentation, Release 4.0.0

6.5.23 parents

“parents” operation working on ContentRepository nodes. It iterates over all context elements and returns the
parent nodes or only those matching the filter expression specified as optional argument.

Implementation Neos\Neos\Eel\FlowQueryOperations\ParentsOperation

Priority 100

Final No

Returns void

6.5.24 parentsUntil

“parentsUntil” operation working on ContentRepository nodes. It iterates over all context elements and returns the
parent nodes until the matching parent is found. If an optional filter expression is provided as a second argument,
it only returns the nodes matching the given expression.

Implementation Neos\Neos\Eel\FlowQueryOperations\ParentsUntilOperation

Priority 100

Final No

Returns void

6.5.25 parentsUntil

“parentsUntil” operation working on ContentRepository nodes. It iterates over all context elements and returns the
parent nodes until the matching parent is found. If an optional filter expression is provided as a second argument,
it only returns the nodes matching the given expression.

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\ParentsUntilOperation

Priority 0

Final No

Returns void

6.5.26 prev

“prev” operation working on ContentRepository nodes. It iterates over all context elements and returns the im-
mediately preceding sibling. If an optional filter expression is provided, it only returns the node if it matches the
given expression.

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\PrevOperation

Priority 100

Final No

Returns void

6.5.27 prevAll

“prevAll” operation working on ContentRepository nodes. It iterates over all context elements and returns each
preceding sibling or only those matching the filter expression specified as optional argument

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\PrevAllOperation

Priority 0

268 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Final No

Returns void

6.5.28 prevUntil

“prevUntil” operation working on ContentRepository nodes. It iterates over all context elements and returns each
preceding sibling until the matching sibling is found. If an optional filter expression is provided as a second
argument, it only returns the nodes matching the given expression.

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\PrevUntilOperation

Priority 0

Final No

Returns void

6.5.29 property

Used to access properties of a ContentRepository Node. If the property mame is prefixed with _, internal node
properties like start time, end time, hidden are accessed.

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\PropertyOperation

Priority 100

Final Yes

Returns mixed

6.5.30 property

Access properties of an object using ObjectAccess.

Expects the name of a property as argument. If the context is empty, NULL is returned. Otherwise the value of
the property on the first context element is returned.

Implementation Neos\Eel\FlowQuery\Operations\Object\PropertyOperation

Priority 1

Final Yes

Returns mixed

6.5.31 remove

Removes the given items from the current context. The operation accepts one argument that may be an Array, a
FlowQuery or an Object.

Implementation Neos\Eel\FlowQuery\Operations\RemoveOperation

Priority 1

Final No

Returns void

6.5. FlowQuery Operation Reference 269

Neos CMS Documentation, Release 4.0.0

6.5.32 search

Implementation Neos\Neos\Ui\FlowQueryOperations\SearchOperation

Priority 100

Final No

Returns void

6.5.33 siblings

“siblings” operation working on ContentRepository nodes. It iterates over all context elements and returns all
sibling nodes or only those matching the filter expression specified as optional argument.

Implementation Neos\ContentRepository\Eel\FlowQueryOperations\SiblingsOperation

Priority 100

Final No

Returns void

6.5.34 slice

Slice the current context

If no arguments are given, the full context is returned. Otherwise the value contained in the context are sliced with
offset and length.

Implementation Neos\Eel\FlowQuery\Operations\SliceOperation

Priority 1

Final No

Returns void

6.5.35 sort

“sort” operation working on ContentRepository nodes. Sorts nodes by specified node properties.

{@inheritdoc}

First argument is the node property to sort by. Works with internal arguments (_xyz) as well. Second argument is
the sort direction (ASC or DESC).

Implementation Neos\Neos\Eel\FlowQueryOperations\SortOperation

Priority 1

Final No

Returns mixed

6.6 Neos Command Reference

The commands in this reference are shown with their full command identifiers. On your system you can use
shorter identifiers, whose availability depends on the commands available in total (to avoid overlap the shortest
possible identifier is determined during runtime).

To see the shortest possible identifiers on your system as well as further commands that may be available, use:

270 Chapter 6. References

mailto:\protect \T1\textbraceleft @inheritdoc

Neos CMS Documentation, Release 4.0.0

./flow help

The following reference was automatically generated from code on 2017-05-11

6.6.1 Package NEOS.CONTENTREPOSITORY

neos.contentrepository:node:repair

Repair inconsistent nodes

This command analyzes and repairs the node tree structure and individual nodes based on the current node type
configuration.

It is possible to execute only one or more specific checks by providing the –skip or –only option. See the full
description of checks further below for possible check identifiers.

The following checks will be performed:

Remove abstract and undefined node types removeAbstractAndUndefinedNodes

Will remove all nodes that has an abstract or undefined node type.

Remove orphan (parentless) nodes removeOrphanNodes

Will remove all child nodes that do not have a connection to the root node.

Remove disallowed child nodes removeDisallowedChildNodes

Will remove all child nodes that are disallowed according to the node type’s auto-create configuration and con-
straints.

Remove undefined node properties removeUndefinedProperties

Remove broken object references removeBrokenEntityReferences

Detects and removes references from nodes to entities which don’t exist anymore (for example Image nodes
referencing ImageVariant objects which are gone for some reason).

Will remove all undefined properties according to the node type configuration.

Remove nodes with invalid dimensions removeNodesWithInvalidDimensions

Will check for and optionally remove nodes which have dimension values not matching the current content di-
mension configuration.

Remove nodes with invalid workspace removeNodesWithInvalidWorkspace

Will check for and optionally remove nodes which belong to a workspace which no longer exists..

Repair inconsistent node identifiers fixNodesWithInconsistentIdentifier

Will check for and optionally repair node identifiers which are out of sync with their corresponding nodes in a live
workspace.

Missing child nodes createMissingChildNodes

For all nodes (or only those which match the –node-type filter specified with this command) which currently don’t
have child nodes as configured by the node type’s configuration new child nodes will be created.

Reorder child nodes reorderChildNodes

For all nodes (or only those which match the –node-type filter specified with this command) which have configured
child nodes, those child nodes are reordered according to the position from the parents NodeType configuration.
Missing default properties addMissingDefaultValues

For all nodes (or only those which match the –node-type filter specified with this command) which currently dont
have a property that have a default value configuration the default value for that property will be set.

Repair nodes with missing shadow nodes repairShadowNodes

6.6. Neos Command Reference 271

Neos CMS Documentation, Release 4.0.0

This will reconstruct missing shadow nodes in case something went wrong in creating or publishing them. This
must be used on a workspace other than live.

It searches for nodes which have a corresponding node in one of the base workspaces, have different node paths,
but don’t have a corresponding shadow node with a “movedto” value.

Generate missing URI path segments

Generates URI path segment properties for all document nodes which don’t have a path segment set yet.

Remove content dimensions from / and /sites removeContentDimensionsFromRootAndSitesNode

Removes content dimensions from the root and sites nodes

Examples:

./flow node:repair

./flow node:repair –node-type Neos.NodeTypes:Page

./flow node:repair –workspace user-robert –only removeOrphanNodes,removeNodesWithInvalidDimensions

./flow node:repair –skip removeUndefinedProperties

Options

--node-type Node type name, if empty update all declared node types

--workspace Workspace name, default is ‘live’

--dry-run Don’t do anything, but report actions

--cleanup If FALSE, cleanup tasks are skipped

--skip Skip the given check or checks (comma separated)

--only Only execute the given check or checks (comma separated)

6.6.2 Package NEOS.FLOW

neos.flow:cache:flush

Flush all caches

The flush command flushes all caches (including code caches) which have been registered with Flow’s Cache
Manager. It also removes any session data.

If fatal errors caused by a package prevent the compile time bootstrap from running, the removal of any temporary
data can be forced by specifying the option –force.

This command does not remove the precompiled data provided by frozen packages unless the –force option is
used.

Options

--force Force flushing of any temporary data

Related commands

neos.flow:cache:warmup Warm up caches

neos.flow:package:freeze Freeze a package

neos.flow:package:refreeze Refreeze a package

272 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

neos.flow:cache:flushone

Flushes a particular cache by its identifier

Given a cache identifier, this flushes just that one cache. To find the cache identifiers, you can use the configura-
tion:show command with the type set to “Caches”.

Note that this does not have a force-flush option since it’s not meant to remove temporary code data, resulting into
a broken state if code files lack.

Arguments

--identifier Cache identifier to flush cache for

Related commands

neos.flow:cache:flush Flush all caches

neos.flow:configuration:show Show the active configuration settings

neos.flow:cache:warmup

Warm up caches

The warm up caches command initializes and fills – as far as possible – all registered caches to get a snappier
response on the first following request. Apart from caches, other parts of the application may hook into this
command and execute tasks which take further steps for preparing the app for the big rush.

Related commands

neos.flow:cache:flush Flush all caches

neos.flow:configuration:generateschema

Generate a schema for the given configuration or YAML file.

./flow configuration:generateschema –type Settings –path Neos.Flow.persistence

The schema will be output to standard output.

Options

--type Configuration type to create a schema for

--path path to the subconfiguration separated by “.” like “Neos.Flow

--yaml YAML file to create a schema for

neos.flow:configuration:listtypes

List registered configuration types

6.6. Neos Command Reference 273

Neos CMS Documentation, Release 4.0.0

neos.flow:configuration:show

Show the active configuration settings

The command shows the configuration of the current context as it is used by Flow itself. You can specify the
configuration type and path if you want to show parts of the configuration.

./flow configuration:show –type Settings –path Neos.Flow.persistence

Options

--type Configuration type to show

--path path to subconfiguration separated by “.” like “Neos.Flow

neos.flow:configuration:validate

Validate the given configuration

Validate all configuration ./flow configuration:validate

Validate configuration at a certain subtype ./flow configuration:validate –type Settings –path
Neos.Flow.persistence

You can retrieve the available configuration types with: ./flow configuration:listtypes

Options

--type Configuration type to validate

--path path to the subconfiguration separated by “.” like “Neos.Flow

--verbose if TRUE, output more verbose information on the schema files which were used

neos.flow:core:migrate

Migrate source files as needed

This will apply pending code migrations defined in packages to the specified package.

For every migration that has been run, it will create a commit in the package. This allows for easy inspection,
rollback and use of the fixed code. If the affected package contains local changes or is not part of a git repository,
the migration will be skipped. With the –force flag this behavior can be changed, but changes will only be
committed if the working copy was clean before applying the migration.

Arguments

--package The key of the package to migrate

Options

--status Show the migration status, do not run migrations

--packages-path If set, use the given path as base when looking for packages

--version If set, execute only the migration with the given version (e.g. “20150119114100”)

--verbose If set, notes and skipped migrations will be rendered

274 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

--force By default packages that are not under version control or contain local changes are skipped. With this
flag set changes are applied anyways (changes are not committed if there are local changes though)

Related commands

neos.flow:doctrine:migrate Migrate the database schema

neos.flow:core:setfilepermissions

Adjust file permissions for CLI and web server access

This command adjusts the file permissions of the whole Flow application to the given command line user and
webserver user / group.

Arguments

--commandline-user User name of the command line user, for example “john

--webserver-user User name of the webserver, for example “www-data

--webserver-group Group name of the webserver, for example “www-data

neos.flow:core:shell

Run the interactive Shell

The shell command runs Flow’s interactive shell. This shell allows for entering commands like through the regular
command line interface but additionally supports autocompletion and a user-based command history.

neos.flow:database:setcharset

Convert the database schema to use the given character set and collation (defaults to utf8mb4 and
utf8mb4_unicode_ci).

This command can be used to convert the database configured in the Flow settings to the utf8mb4 character set
and the utf8mb4_unicode_ci collation (by default, a custom collation can be given). It will only work when using
the pdo_mysql driver.

Make a backup before using it, to be on the safe side. If you want to inspect the statements used for conversion,
you can use the $output parameter to write them into a file. This file can be used to do the conversion manually.

For background information on this, see:

• http://stackoverflow.com/questions/766809/

• http://dev.mysql.com/doc/refman/5.5/en/alter-table.html

The main purpose of this is to fix setups that were created with Flow 2.3.x or earlier and whose database server
did not have a default collation of utf8mb4_unicode_ci. In those cases, the tables will have a collation that does
not match the default collation of later Flow versions, potentially leading to problems when creating foreign key
constraints (among others, potentially).

If you have special needs regarding the charset and collation, you can override the defaults with different ones.
One thing this might be useful for is when switching to the utf8mb4mb4 character set, see:

• https://mathiasbynens.be/notes/mysql-utf8mb4

• https://florian.ec/articles/mysql-doctrine-utf8/

6.6. Neos Command Reference 275

http://stackoverflow.com/questions/766809/
http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
https://mathiasbynens.be/notes/mysql-utf8mb4
https://florian.ec/articles/mysql-doctrine-utf8/

Neos CMS Documentation, Release 4.0.0

Note: This command is not a general purpose conversion tool. It will specifically not fix cases of actual utf8mb4
stored in latin1 columns. For this a conversion to BLOB followed by a conversion to the proper type, charset and
collation is needed instead.

Options

--character-set Character set, defaults to utf8mb4

--collation Collation to use, defaults to utf8mb4_unicode_ci

--output A file to write SQL to, instead of executing it

--verbose If set, the statements will be shown as they are executed

neos.flow:doctrine:create

Create the database schema

Creates a new database schema based on the current mapping information.

It expects the database to be empty, if tables that are to be created already exist, this will lead to errors.

Options

--output A file to write SQL to, instead of executing it

Related commands

neos.flow:doctrine:update Update the database schema

neos.flow:doctrine:migrate Migrate the database schema

neos.flow:doctrine:dql

Run arbitrary DQL and display results

Any DQL queries passed after the parameters will be executed, the results will be output:

doctrine:dql –limit 10 ‘SELECT a FROM NeosFlowSecurityAccount a’

Options

--depth How many levels deep the result should be dumped

--hydration-mode One of: object, array, scalar, single-scalar, simpleobject

--offset Offset the result by this number

--limit Limit the result to this number

neos.flow:doctrine:entitystatus

Show the current status of entities and mappings

Shows basic information about which entities exist and possibly if their mapping information contains errors or
not.

To run a full validation, use the validate command.

276 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Options

--dump-mapping-data If set, the mapping data will be output

--entity-class-name If given, the mapping data for just this class will be output

Related commands

neos.flow:doctrine:validate Validate the class/table mappings

neos.flow:doctrine:migrate

Migrate the database schema

Adjusts the database structure by applying the pending migrations provided by currently active packages.

Options

--version The version to migrate to

--output A file to write SQL to, instead of executing it

--dry-run Whether to do a dry run or not

--quiet If set, only the executed migration versions will be output, one per line

Related commands

neos.flow:doctrine:migrationstatus Show the current migration status

neos.flow:doctrine:migrationexecute Execute a single migration

neos.flow:doctrine:migrationgenerate Generate a new migration

neos.flow:doctrine:migrationversion Mark/unmark migrations as migrated

neos.flow:doctrine:migrationexecute

Execute a single migration

Manually runs a single migration in the given direction.

Arguments

--version The migration to execute

Options

--direction Whether to execute the migration up (default) or down

--output A file to write SQL to, instead of executing it

--dry-run Whether to do a dry run or not

6.6. Neos Command Reference 277

Neos CMS Documentation, Release 4.0.0

Related commands

neos.flow:doctrine:migrate Migrate the database schema

neos.flow:doctrine:migrationstatus Show the current migration status

neos.flow:doctrine:migrationgenerate Generate a new migration

neos.flow:doctrine:migrationversion Mark/unmark migrations as migrated

neos.flow:doctrine:migrationgenerate

Generate a new migration

If $diffAgainstCurrent is TRUE (the default), it generates a migration file with the diff between current DB struc-
ture and the found mapping metadata.

Otherwise an empty migration skeleton is generated.

Only includes tables/sequences matching the $filterExpression regexp when diffing models and existing schema.
Include delimiters in the expression! The use of

–filter-expression ‘/^acme_com/’

would only create a migration touching tables starting with “acme_com”.

Note: A filter-expression will overrule any filter configured through the
Neos.Flow.persistence.doctrine.migrations.ignoredTables setting

Options

--diff-against-current Whether to base the migration on the current schema structure

--filter-expression Only include tables/sequences matching the filter expression regexp

Related commands

neos.flow:doctrine:migrate Migrate the database schema

neos.flow:doctrine:migrationstatus Show the current migration status

neos.flow:doctrine:migrationexecute Execute a single migration

neos.flow:doctrine:migrationversion Mark/unmark migrations as migrated

neos.flow:doctrine:migrationstatus

Show the current migration status

Displays the migration configuration as well as the number of available, executed and pending migrations.

Options

--show-migrations Output a list of all migrations and their status

--show-descriptions Show descriptions for the migrations (enables versions display)

278 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Related commands

neos.flow:doctrine:migrate Migrate the database schema

neos.flow:doctrine:migrationexecute Execute a single migration

neos.flow:doctrine:migrationgenerate Generate a new migration

neos.flow:doctrine:migrationversion Mark/unmark migrations as migrated

neos.flow:doctrine:migrationversion

Mark/unmark migrations as migrated

If all is given as version, all available migrations are marked as requested.

Arguments

--version The migration to execute

Options

--add The migration to mark as migrated

--delete The migration to mark as not migrated

Related commands

neos.flow:doctrine:migrate Migrate the database schema

neos.flow:doctrine:migrationstatus Show the current migration status

neos.flow:doctrine:migrationexecute Execute a single migration

neos.flow:doctrine:migrationgenerate Generate a new migration

neos.flow:doctrine:update

Update the database schema

Updates the database schema without using existing migrations.

It will not drop foreign keys, sequences and tables, unless –unsafe-mode is set.

Options

--unsafe-mode If set, foreign keys, sequences and tables can potentially be dropped.

--output A file to write SQL to, instead of executing the update directly

Related commands

neos.flow:doctrine:create Create the database schema

neos.flow:doctrine:migrate Migrate the database schema

6.6. Neos Command Reference 279

Neos CMS Documentation, Release 4.0.0

neos.flow:doctrine:validate

Validate the class/table mappings

Checks if the current class model schema is valid. Any inconsistencies in the relations between models (for
example caused by wrong or missing annotations) will be reported.

Note that this does not check the table structure in the database in any way.

Related commands

neos.flow:doctrine:entitystatus Show the current status of entities and mappings

neos.flow:help:help

Display help for a command

The help command displays help for a given command: ./flow help <commandIdentifier>

Options

--command-identifier Identifier of a command for more details

neos.flow:package:activate

Activate an available package

This command activates an existing, but currently inactive package.

Arguments

--package-key The package key of the package to create

Related commands

neos.flow:package:deactivate Deactivate a package

neos.flow:package:create

Create a new package

This command creates a new package which contains only the mandatory directories and files.

Arguments

--package-key The package key of the package to create

Options

--package-type The package type of the package to create

280 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Related commands

neos.kickstarter:kickstart:package Kickstart a new package

neos.flow:package:deactivate

Deactivate a package

This command deactivates a currently active package.

Arguments

--package-key The package key of the package to create

Related commands

neos.flow:package:activate Activate an available package

neos.flow:package:delete

Delete an existing package

This command deletes an existing package identified by the package key.

Arguments

--package-key The package key of the package to create

neos.flow:package:freeze

Freeze a package

This function marks a package as frozen in order to improve performance in a development context. While a
package is frozen, any modification of files within that package won’t be tracked and can lead to unexpected
behavior.

File monitoring won’t consider the given package. Further more, reflection data for classes contained in the pack-
age is cached persistently and loaded directly on the first request after caches have been flushed. The precompiled
reflection data is stored in the Configuration directory of the respective package.

By specifying all as a package key, all currently frozen packages are frozen (the default).

Options

--package-key Key of the package to freeze

Related commands

neos.flow:package:unfreeze Unfreeze a package

neos.flow:package:refreeze Refreeze a package

6.6. Neos Command Reference 281

Neos CMS Documentation, Release 4.0.0

neos.flow:package:list

List available packages

Lists all locally available packages. Displays the package key, version and package title and its state – active or
inactive.

Options

--loading-order The returned packages are ordered by their loading order.

Related commands

neos.flow:package:activate Activate an available package

neos.flow:package:deactivate Deactivate a package

neos.flow:package:refreeze

Refreeze a package

Refreezes a currently frozen package: all precompiled information is removed and file monitoring will consider
the package exactly once, on the next request. After that request, the package remains frozen again, just with the
updated data.

By specifying all as a package key, all currently frozen packages are refrozen (the default).

Options

--package-key Key of the package to refreeze, or ‘all’

Related commands

neos.flow:package:freeze Freeze a package

neos.flow:cache:flush Flush all caches

neos.flow:package:rescan

Rescan package availability and recreates the PackageStates configuration.

neos.flow:package:unfreeze

Unfreeze a package

Unfreezes a previously frozen package. On the next request, this package will be considered again by the file
monitoring and related services – if they are enabled in the current context.

By specifying all as a package key, all currently frozen packages are unfrozen (the default).

Options

--package-key Key of the package to unfreeze, or ‘all’

282 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Related commands

neos.flow:package:freeze Freeze a package

neos.flow:cache:flush Flush all caches

neos.flow:resource:clean

Clean up resource registry

This command checks the resource registry (that is the database tables) for orphaned resource objects which don’t
seem to have any corresponding data anymore (for example: the file in Data/Persistent/Resources has been deleted
without removing the related PersistentResource object).

If the Neos.Media package is active, this command will also detect any assets referring to broken resources and
will remove the respective Asset object from the database when the broken resource is removed.

This command will ask you interactively what to do before deleting anything.

neos.flow:resource:copy

Copy resources

This command copies all resources from one collection to another storage identified by name. The target storage
must be empty and must not be identical to the current storage of the collection.

This command merely copies the binary data from one storage to another, it does not change the related Persis-
tentResource objects in the database in any way. Since the PersistentResource objects in the database refer to a
collection name, you can use this command for migrating from one storage to another my configuring the new
storage with the name of the old storage collection after the resources have been copied.

Arguments

--source-collection The name of the collection you want to copy the assets from

--target-collection The name of the collection you want to copy the assets to

Options

--publish If enabled, the target collection will be published after the resources have been copied

neos.flow:resource:publish

Publish resources

This command publishes the resources of the given or - if none was specified, all - resource collections to their
respective configured publishing targets.

Options

--collection If specified, only resources of this collection are published. Example: ‘persistent’

6.6. Neos Command Reference 283

Neos CMS Documentation, Release 4.0.0

neos.flow:routing:getpath

Generate a route path

This command takes package, controller and action and displays the generated route path and the selected route:

./flow routing:getPath –format json Acme.Demo\Sub\Package

Arguments

--package Package key and subpackage, subpackage parts are separated with backslashes

Options

--controller Controller name, default is ‘Standard’

--action Action name, default is ‘index’

--format Requested Format name default is ‘html’

neos.flow:routing:list

List the known routes

This command displays a list of all currently registered routes.

neos.flow:routing:routepath

Route the given route path

This command takes a given path and displays the detected route and the selected package, controller and action.

Arguments

--path The route path to resolve

Options

--method The request method (GET, POST, PUT, DELETE, . . .) to simulate

neos.flow:routing:show

Show information for a route

This command displays the configuration of a route specified by index number.

Arguments

--index The index of the route as given by routing:list

neos.flow:security:generatekeypair

Generate a public/private key pair and add it to the RSAWalletService

284 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Options

--used-for-passwords If the private key should be used for passwords

Related commands

neos.flow:security:importprivatekey Import a private key

neos.flow:security:importprivatekey

Import a private key

Read a PEM formatted private key from stdin and import it into the RSAWalletService. The public key will be
automatically extracted and stored together with the private key as a key pair.

You can generate the same fingerprint returned from this using these commands:

ssh-keygen -yf my-key.pem > my-key.pub ssh-keygen -lf my-key.pub

To create a private key to import using this method, you can use:

ssh-keygen -t rsa -f my-key ./flow security:importprivatekey < my-key

Again, the fingerprint can also be generated using:

ssh-keygen -lf my-key.pub

Options

--used-for-passwords If the private key should be used for passwords

Related commands

neos.flow:security:importpublickey Import a public key

neos.flow:security:generatekeypair Generate a public/private key pair and add it to the RSAWal-
letService

neos.flow:security:importpublickey

Import a public key

Read a PEM formatted public key from stdin and import it into the RSAWalletService.

Related commands

neos.flow:security:importprivatekey Import a private key

neos.flow:security:showeffectivepolicy

Shows a list of all defined privilege targets and the effective permissions

6.6. Neos Command Reference 285

Neos CMS Documentation, Release 4.0.0

Arguments

--privilege-type The privilege type (“entity”, “method” or the FQN of a class implementing PrivilegeIn-
terface)

Options

--roles A comma separated list of role identifiers. Shows policy for an unauthenticated user when left empty.

neos.flow:security:showmethodsforprivilegetarget

Shows the methods represented by the given security privilege target

If the privilege target has parameters those can be specified separated by a colon for example “parameter1:value1”
“parameter2:value2”. But be aware that this only works for parameters that have been specified in the policy

Arguments

--privilege-target The name of the privilegeTarget as stated in the policy

neos.flow:security:showunprotectedactions

Lists all public controller actions not covered by the active security policy

neos.flow:server:run

Run a standalone development server

Starts an embedded server, see http://php.net/manual/en/features.commandline.webserver.php Note: This requires
PHP 5.4+

To change the context Flow will run in, you can set the FLOW_CONTEXT environment variable: export
FLOW_CONTEXT=Development && ./flow server:run

Options

--host The host name or IP address for the server to listen on

--port The server port to listen on

neos.flow:typeconverter:list

Lists all currently active and registered type converters

All active converters are listed with ordered by priority and grouped by source type first and target type second.

Options

--source Filter by source

--target Filter by target type

286 Chapter 6. References

http://php.net/manual/en/features.commandline.webserver.php

Neos CMS Documentation, Release 4.0.0

6.6.3 Package NEOS.FLUIDADAPTOR

neos.fluidadaptor:documentation:generatexsd

Generate Fluid ViewHelper XSD Schema

Generates Schema documentation (XSD) for your ViewHelpers, preparing the file to be placed online and
used by any XSD-aware editor. After creating the XSD file, reference it in your IDE and import the names-
pace in your Fluid template by adding the xmlns:* attribute(s): <html xmlns=”http://www.w3.org/1999/xhtml”
xmlns:f=”http://typo3.org/ns/TYPO3/Fluid/ViewHelpers” . . . >

Arguments

--php-namespace Namespace of the Fluid ViewHelpers without leading backslash (for example ‘NeosFlu-
idAdaptorViewHelpers’). NOTE: Quote and/or escape this argument as needed to avoid backslashes from
being interpreted!

Options

--xsd-namespace Unique target namespace used in the XSD schema (for example “http://yourdomain.org/
ns/viewhelpers”). Defaults to “http://typo3.org/ns/<php namespace>”.

--target-file File path and name of the generated XSD schema. If not specified the schema will be output
to standard output.

6.6.4 Package NEOS.KICKSTARTER

neos.kickstarter:kickstart:actioncontroller

Kickstart a new action controller

Generates an Action Controller with the given name in the specified package. In its default mode it will create just
the controller containing a sample indexAction.

By specifying the –generate-actions flag, this command will also create a set of actions. If no model or repository
exists which matches the controller name (for example “CoffeeRepository” for “CoffeeController”), an error will
be shown.

Likewise the command exits with an error if the specified package does not exist. By using the –generate-related
flag, a missing package, model or repository can be created alongside, avoiding such an error.

By specifying the –generate-templates flag, this command will also create matching Fluid templates for the actions
created. This option can only be used in combination with –generate-actions.

The default behavior is to not overwrite any existing code. This can be overridden by specifying the –force flag.

Arguments

--package-key The package key of the package for the new controller with an optional subpackage, (e.g.
“MyCompany.MyPackage/Admin”).

--controller-name The name for the new controller. This may also be a comma separated list of controller
names.

6.6. Neos Command Reference 287

http://yourdomain.org/ns/viewhelpers
http://yourdomain.org/ns/viewhelpers
http://typo3.org/ns

Neos CMS Documentation, Release 4.0.0

Options

--generate-actions Also generate index, show, new, create, edit, update and delete actions.

--generate-templates Also generate the templates for each action.

--generate-related Also create the mentioned package, related model and repository if neccessary.

--force Overwrite any existing controller or template code. Regardless of this flag, the package, model and
repository will never be overwritten.

Related commands

neos.kickstarter:kickstart:commandcontroller Kickstart a new command controller

neos.kickstarter:kickstart:commandcontroller

Kickstart a new command controller

Creates a new command controller with the given name in the specified package. The generated controller class
already contains an example command.

Arguments

--package-key The package key of the package for the new controller

--controller-name The name for the new controller. This may also be a comma separated list of controller
names.

Options

--force Overwrite any existing controller.

Related commands

neos.kickstarter:kickstart:actioncontroller Kickstart a new action controller

neos.kickstarter:kickstart:documentation

Kickstart documentation

Generates a documentation skeleton for the given package.

Arguments

--package-key The package key of the package for the documentation

neos.kickstarter:kickstart:model

Kickstart a new domain model

This command generates a new domain model class. The fields are specified as a variable list of arguments with
field name and type separated by a colon (for example “title:string” “size:int” “type:MyType”).

288 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Arguments

--package-key The package key of the package for the domain model

--model-name The name of the new domain model class

Options

--force Overwrite any existing model.

Related commands

neos.kickstarter:kickstart:repository Kickstart a new domain repository

neos.kickstarter:kickstart:package

Kickstart a new package

Creates a new package and creates a standard Action Controller and a sample template for its Index Action.

For creating a new package without sample code use the package:create command.

Arguments

--package-key The package key, for example “MyCompany.MyPackageName

Related commands

typo3.flow:package:create Command not available

neos.kickstarter:kickstart:repository

Kickstart a new domain repository

This command generates a new domain repository class for the given model name.

Arguments

--package-key The package key

--model-name The name of the domain model class

Options

--force Overwrite any existing repository.

Related commands

neos.kickstarter:kickstart:model Kickstart a new domain model

6.6. Neos Command Reference 289

Neos CMS Documentation, Release 4.0.0

6.6.5 Package NEOS.MEDIA

neos.media:media:clearthumbnails

Remove thumbnails

Removes all thumbnail objects and their resources. Optional preset parameter to only remove thumbnails
matching a specific thumbnail preset configuration.

Options

--preset Preset name, if provided only thumbnails matching that preset are cleared

neos.media:media:createthumbnails

Create thumbnails

Creates thumbnail images based on the configured thumbnail presets. Optional preset parameter to only create
thumbnails for a specific thumbnail preset configuration.

Additionally accepts a async parameter determining if the created thumbnails are generated when created.

Options

--preset Preset name, if not provided thumbnails are created for all presets

--async Asynchronous generation, if not provided the setting Neos.Media.asyncThumbnails is used

neos.media:media:importresources

Import resources to asset management

This command detects Flow “PersistentResource”s which are not yet available as “Asset” objects and thus don’t
appear in the asset management. The type of the imported asset is determined by the file extension provided by
the PersistentResource.

Options

--simulate If set, this command will only tell what it would do instead of doing it right away

neos.media:media:renderthumbnails

Render ungenerated thumbnails

Loops over ungenerated thumbnails and renders them. Optional limit parameter to limit the amount of thumb-
nails to be rendered to avoid memory exhaustion.

Options

--limit Limit the amount of thumbnails to be rendered to avoid memory exhaustion

290 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

6.6.6 Package NEOS.NEOS

neos.neos:domain:activate

Activate a domain record by hostname

Arguments

--hostname The hostname to activate

neos.neos:domain:add

Add a domain record

Arguments

--site-node-name The nodeName of the site rootNode, e.g. “neostypo3org

--hostname The hostname to match on, e.g. “flow.neos.io

Options

--scheme The scheme for linking (http/https)

--port The port for linking (0-49151)

neos.neos:domain:deactivate

Deactivate a domain record by hostname

Arguments

--hostname The hostname to deactivate

neos.neos:domain:delete

Delete a domain record by hostname

Arguments

--hostname The hostname to remove

neos.neos:domain:list

Display a list of available domain records

Options

--hostname An optional hostname to search for

6.6. Neos Command Reference 291

Neos CMS Documentation, Release 4.0.0

neos.neos:site:activate

Activate a site

This command activates the specified site.

Arguments

--site-node The node name of the site to activate

neos.neos:site:create

Create a new site

This command allows to create a blank site with just a single empty document in the default dimension. The name
of the site, the packageKey must be specified.

If no nodeType option is specified the command will use Neos.NodeTypes:Page as fallback. The node type must
already exists and have the superType Neos.Neos:Document.

If no ‘‘nodeName‘ option is specified the command will create a unique node-name from the name of the site. If
a node name is given it has to be unique for the setup.

If the flag ‘‘activate‘ is set to false new site will not be activated.

Arguments

--name The name of the site

--package-key The site package

Options

--node-type The node type to use for the site node. (Default = Neos.NodeTypes:Page)

--node-name The name of the site node. If no nodeName is given it will be determined from the siteName.

--inactive The new site is not activated immediately (default = false).

neos.neos:site:deactivate

Deactivate a site

This command deactivates the specified site.

Arguments

--site-node The node name of the site to deactivate

neos.neos:site:export

Export sites content (e.g. site:export –package-key "Neos.Demo")

This command exports all or one specific site with all its content into an XML format.

If the package key option is given, the site(s) will be exported to the given package in the default location Re-
sources/Private/Content/Sites.xml.

292 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

If the filename option is given, any resources will be exported to files in a folder named “Resources” alongside the
XML file.

If neither the filename nor the package key option are given, the XML will be printed to standard output and assets
will be embedded into the XML in base64 encoded form.

Options

--site-node the node name of the site to be exported; if none given will export all sites

--tidy Whether to export formatted XML. This is defaults to true

--filename relative path and filename to the XML file to create. Any resource will be stored in a sub folder
“Resources”.

--package-key Package to store the XML file in. Any resource will be stored in a sub folder “Resources”.

--node-type-filter Filter the node type of the nodes, allows complex expressions (e.g.
“Neos.Neos:Page”, “!Neos.Neos:Page,Neos.Neos:Text”)

neos.neos:site:import

Import sites content

This command allows for importing one or more sites or partial content from an XML source. The format must
be identical to that produced by the export command.

If a filename is specified, this command expects the corresponding file to contain the XML structure. The filename
php://stdin can be used to read from standard input.

If a package key is specified, this command expects a Sites.xml file to be located in the private resources directory
of the given package (Resources/Private/Content/Sites.xml).

Options

--package-key Package key specifying the package containing the sites content

--filename relative path and filename to the XML file containing the sites content

neos.neos:site:list

List available sites

neos.neos:site:prune

Remove all content and related data - for now. In the future we need some more sophisticated cleanup.

Options

--site-node Name of a site root node to clear only content of this site.

6.6. Neos Command Reference 293

Neos CMS Documentation, Release 4.0.0

neos.neos:user:activate

Activate a user

This command reactivates possibly expired accounts for the given user.

If an authentication provider is specified, this command will look for an account with the given username related
to the given provider. Still, this command will activate all accounts of a user, once such a user has been found.

Arguments

--username The username of the user to be activated.

Options

--authentication-provider Name of the authentication provider to use for finding the user. Example:
“Neos.Neos:Backend

neos.neos:user:addrole

Add a role to a user

This command allows for adding a specific role to an existing user.

Roles can optionally be specified as a comma separated list. For all roles provided by Neos, the role namespace
“Neos.Neos:” can be omitted.

If an authentication provider was specified, the user will be determined by an account identified by “username”
related to the given provider. However, once a user has been found, the new role will be added to all existing
accounts related to that user, regardless of its authentication provider.

Arguments

--username The username of the user

--role Role to be added to the user, for example “Neos.Neos:Administrator” or just “Administrator

Options

--authentication-provider Name of the authentication provider to use. Example:
“Neos.Neos:Backend

neos.neos:user:create

Create a new user

This command creates a new user which has access to the backend user interface.

More specifically, this command will create a new user and a new account at the same time. The created account is,
by default, a Neos backend account using the the “Neos.Neos:Backend” for authentication. The given username
will be used as an account identifier for that new account.

If an authentication provider name is specified, the new account will be created for that provider instead.

Roles for the new user can optionally be specified as a comma separated list. For all roles provided by Neos, the
role namespace “Neos.Neos:” can be omitted.

294 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Arguments

--username The username of the user to be created, used as an account identifier for the newly created account

--password Password of the user to be created

--first-name First name of the user to be created

--last-name Last name of the user to be created

Options

--roles A comma separated list of roles to assign. Examples: “Editor, Acme.Foo:Reviewer

--authentication-provider Name of the authentication provider to use for the new account. Example:
“Neos.Neos:Backend

neos.neos:user:deactivate

Deactivate a user

This command deactivates a user by flagging all of its accounts as expired.

If an authentication provider is specified, this command will look for an account with the given username related
to the given provider. Still, this command will deactivate all accounts of a user, once such a user has been found.

Arguments

--username The username of the user to be deactivated.

Options

--authentication-provider Name of the authentication provider to use for finding the user. Example:
“Neos.Neos:Backend

neos.neos:user:delete

Delete a user

This command deletes an existing Neos user. All content and data directly related to this user, including but not
limited to draft workspace contents, will be removed as well.

All accounts owned by the given user will be deleted.

If an authentication provider is specified, this command will look for an account with the given username related
to the given provider. Specifying an authentication provider does not mean that only the account for that provider
is deleted! If a user was found by the combination of username and authentication provider, all related accounts
will be deleted.

Arguments

--username The username of the user to be removed

6.6. Neos Command Reference 295

Neos CMS Documentation, Release 4.0.0

Options

--assume-yes Assume “yes” as the answer to the confirmation dialog

--authentication-provider Name of the authentication provider to use. Example:
“Neos.Neos:Backend

neos.neos:user:list

List all users

This command lists all existing Neos users.

neos.neos:user:removerole

Remove a role from a user

This command allows for removal of a specific role from an existing user.

If an authentication provider was specified, the user will be determined by an account identified by “username”
related to the given provider. However, once a user has been found, the role will be removed from all existing
accounts related to that user, regardless of its authentication provider.

Arguments

--username The username of the user

--role Role to be removed from the user, for example “Neos.Neos:Administrator” or just “Administrator

Options

--authentication-provider Name of the authentication provider to use. Example:
“Neos.Neos:Backend

neos.neos:user:setpassword

Set a new password for the given user

This command sets a new password for an existing user. More specifically, all accounts related to the user which
are based on a username / password token will receive the new password.

If an authentication provider was specified, the user will be determined by an account identified by “username”
related to the given provider.

Arguments

--username Username of the user to modify

--password The new password

Options

--authentication-provider Name of the authentication provider to use for finding the user. Example:
“Neos.Neos:Backend

296 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

neos.neos:user:show

Shows the given user

This command shows some basic details about the given user. If such a user does not exist, this command will
exit with a non-zero status code.

The user will be retrieved by looking for a Neos backend account with the given identifier (ie. the username) and
then retrieving the user which owns that account. If an authentication provider is specified, this command will
look for an account identified by “username” for that specific provider.

Arguments

--username The username of the user to show. Usually refers to the account identifier of the user’s Neos
backend account.

Options

--authentication-provider Name of the authentication provider to use. Example:
“Neos.Neos:Backend

neos.neos:workspace:create

Create a new workspace

This command creates a new workspace.

Arguments

--workspace Name of the workspace, for example “christmas-campaign

Options

--base-workspace Name of the base workspace. If none is specified, “live” is assumed.

--title Human friendly title of the workspace, for example “Christmas Campaign

--description A description explaining the purpose of the new workspace

--owner The identifier of a User to own the workspace

neos.neos:workspace:delete

Deletes a workspace

This command deletes a workspace. If you only want to empty a workspace and not delete the workspace itself,
use workspace:discard instead.

Arguments

--workspace Name of the workspace, for example “christmas-campaign

6.6. Neos Command Reference 297

Neos CMS Documentation, Release 4.0.0

Options

--force Delete the workspace and all of its contents

Related commands

neos.neos:workspace:discard Discard changes in workspace

neos.neos:workspace:discard

Discard changes in workspace

This command discards all modified, created or deleted nodes in the specified workspace.

Arguments

--workspace Name of the workspace, for example “user-john

Options

--verbose If enabled, information about individual nodes will be displayed

--dry-run If set, only displays which nodes would be discarded, no real changes are committed

neos.neos:workspace:discardall

Discard changes in workspace (DEPRECATED)

This command discards all modified, created or deleted nodes in the specified workspace.

Arguments

--workspace-name Name of the workspace, for example “user-john

Options

--verbose If enabled, information about individual nodes will be displayed

Related commands

neos.neos:workspace:discard Discard changes in workspace

neos.neos:workspace:list

Display a list of existing workspaces

neos.neos:workspace:publish

Publish changes of a workspace

This command publishes all modified, created or deleted nodes in the specified workspace to its base workspace.
If a target workspace is specified, the content is published to that workspace instead.

298 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Arguments

--workspace Name of the workspace containing the changes to publish, for example “user-john

Options

--target-workspace If specified, the content will be published to this workspace instead of the base
workspace

--verbose If enabled, some information about individual nodes will be displayed

--dry-run If set, only displays which nodes would be published, no real changes are committed

neos.neos:workspace:publishall

Publish changes of a workspace (DEPRECATED)

This command publishes all modified, created or deleted nodes in the specified workspace to the live workspace.

Arguments

--workspace-name Name of the workspace, for example “user-john

Options

--verbose If enabled, information about individual nodes will be displayed

Related commands

neos.neos:workspace:publish Publish changes of a workspace

neos.neos:workspace:rebase

Rebase a workspace

This command sets a new base workspace for the specified workspace. Note that doing so will put the possible
changes contained in the workspace to be rebased into a different context and thus might lead to unintended results
when being published.

Arguments

--workspace Name of the workspace to rebase, for example “user-john

--base-workspace Name of the new base workspace

6.6.7 Package NEOS.SITEKICKSTARTER

neos.sitekickstarter:kickstart:site

Kickstart a new site package

This command generates a new site package with basic Fusion and Sites.xml

6.6. Neos Command Reference 299

Neos CMS Documentation, Release 4.0.0

Arguments

--package-key The packageKey for your site

--site-name The siteName of your site

6.7 Validator Reference

6.7.1 Flow Validator Reference

This reference was automatically generated from code on 2018-08-10

AggregateBoundaryValidator

A validator which will not validate Aggregates that are lazy loaded and uninitialized. Validation over Aggregate
Boundaries can hence be forced by making the relation to other Aggregate Roots eager loaded.

Note that this validator is not part of the public API and you should not use it manually.

Checks if the given value is valid according to the property validators.

Note: A value of NULL or an empty string (‘’) is considered valid

AlphanumericValidator

Validator for alphanumeric strings.

The given $value is valid if it is an alphanumeric string, which is defined as [[:alnum:]].

Note: A value of NULL or an empty string (‘’) is considered valid

BooleanValueValidator

Validator for a specific boolean value.

Checks if the given value is a specific boolean value.

Note: A value of NULL or an empty string (‘’) is considered valid

Arguments

• expectedValue (boolean, optional): The expected boolean value

CollectionValidator

A generic collection validator.

Checks for a collection and if needed validates the items in the collection. This is done with the specified element
validator or a validator based on the given element type and validation group.

Either elementValidator or elementType must be given, otherwise validation will be skipped.

300 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Note: A value of NULL or an empty string (‘’) is considered valid

Arguments

• elementValidator (string, optional): The validator type to use for the collection elements

• elementValidatorOptions (array, optional): The validator options to use for the collection elements

• elementType (string, optional): The type of the elements in the collection

• validationGroups (string, optional): The validation groups to link to

CountValidator

Validator for countable things

The given value is valid if it is an array or Countable that contains the specified amount of elements.

Note: A value of NULL or an empty string (‘’) is considered valid

Arguments

• minimum (integer, optional): The minimum count to accept

• maximum (integer, optional): The maximum count to accept

DateTimeRangeValidator

Validator for checking Date and Time boundaries

Adds errors if the given DateTime does not match the set boundaries.

latestDate and earliestDate may be each <time>, <start>/<duration> or <duration>/<end>, where <duration> is an
ISO 8601 duration and <start> or <end> or <time> may be ‘now’ or a PHP supported format. (1)

In general, you are able to provide a timestamp or a timestamp with additional calculation. Calculations are done
as described in ISO 8601 (2), with an introducing “P”. P7MT2H30M for example mean a period of 7 months, 2
hours and 30 minutes (P introduces a period at all, while a following T introduces the time-section of a period.
This is not at least in order not to confuse months and minutes, both represented as M). A period is separated from
the timestamp with a forward slash “/”. If the period follows the timestamp, that period is added to the timestamp;
if the period precedes the timestamp, it’s subtracted. The timestamp can be one of PHP’s supported date formats
(1), so also “now” is supported.

Use cases:

If you offer something that has to be manufactured and you ask for a delivery date, you might assure that this date
is at least two weeks in advance; this could be done with the expression “now/P2W”. If you have a library of
ancient goods and want to track a production date that is at least 5 years ago, you can express it with “P5Y/now”.

Examples:

If you want to test if a given date is at least five minutes ahead, use earliestDate: now/PT5M

If you want to test if a given date was at least 10 days ago, use latestDate: P10D/now

If you want to test if a given date is between two fix boundaries, just combine the latestDate and earliestDate-options:
earliestDate: 2007-03-01T13:00:00Z latestDate: 2007-03-30T13:00:00Z

6.7. Validator Reference 301

Neos CMS Documentation, Release 4.0.0

Footnotes:

http://de.php.net/manual/en/datetime.formats.compound.php (1) http://en.wikipedia.org/wiki/ISO_8601#
Durations (2) http://en.wikipedia.org/wiki/ISO_8601#Time_intervals (3)

Note: A value of NULL or an empty string (‘’) is considered valid

Arguments

• latestDate (string, optional): The latest date to accept

• earliestDate (string, optional): The earliest date to accept

DateTimeValidator

Validator for DateTime objects.

Checks if the given value is a valid DateTime object.

Note: A value of NULL or an empty string (‘’) is considered valid

Arguments

• locale (string|Locale, optional): The locale to use for date parsing

• strictMode (boolean, optional): Use strict mode for date parsing

• formatLength (string, optional): The format length, see DatesReader::FORMAT_LENGTH_*

• formatType (string, optional): The format type, see DatesReader::FORMAT_TYPE_*

EmailAddressValidator

Validator for email addresses

Checks if the given value is a valid email address.

Note: A value of NULL or an empty string (‘’) is considered valid

FloatValidator

Validator for floats.

The given value is valid if it is of type float or a string matching the regular expression [0-9.e+-]

Note: A value of NULL or an empty string (‘’) is considered valid

302 Chapter 6. References

http://de.php.net/manual/en/datetime.formats.compound.php
http://en.wikipedia.org/wiki/ISO_8601#Durations
http://en.wikipedia.org/wiki/ISO_8601#Durations
http://en.wikipedia.org/wiki/ISO_8601#Time_intervals

Neos CMS Documentation, Release 4.0.0

GenericObjectValidator

A generic object validator which allows for specifying property validators.

Checks if the given value is valid according to the property validators.

Note: A value of NULL or an empty string (‘’) is considered valid

IntegerValidator

Validator for integers.

Checks if the given value is a valid integer.

Note: A value of NULL or an empty string (‘’) is considered valid

LabelValidator

A validator for labels.

Labels usually allow all kinds of letters, numbers, punctuation marks and the space character. What you don’t
want in labels though are tabs, new line characters or HTML tags. This validator is for such uses.

The given value is valid if it matches the regular expression specified in PATTERN_VALIDCHARACTERS.

Note: A value of NULL or an empty string (‘’) is considered valid

LocaleIdentifierValidator

A validator for locale identifiers.

This validator validates a string based on the expressions of the Flow I18n implementation.

Is valid if the given value is a valid “locale identifier”.

Note: A value of NULL or an empty string (‘’) is considered valid

NotEmptyValidator

Validator for not empty values.

Checks if the given value is not empty (NULL, empty string, empty array or empty object that implements the
Countable interface).

NumberRangeValidator

Validator for general numbers

The given value is valid if it is a number in the specified range.

Note: A value of NULL or an empty string (‘’) is considered valid

6.7. Validator Reference 303

Neos CMS Documentation, Release 4.0.0

Arguments

• minimum (integer, optional): The minimum value to accept

• maximum (integer, optional): The maximum value to accept

NumberValidator

Validator for general numbers.

Checks if the given value is a valid number.

Note: A value of NULL or an empty string (‘’) is considered valid

Arguments

• locale (string|Locale, optional): The locale to use for number parsing

• strictMode (boolean, optional): Use strict mode for number parsing

• formatLength (string, optional): The format length, see NumbersReader::FORMAT_LENGTH_*

• formatType (string, optional): The format type, see NumbersReader::FORMAT_TYPE_*

RawValidator

A validator which accepts any input.

This validator is always valid.

Note: A value of NULL or an empty string (‘’) is considered valid

RegularExpressionValidator

Validator based on regular expressions.

Checks if the given value matches the specified regular expression.

Note: A value of NULL or an empty string (‘’) is considered valid

Arguments

• regularExpression (string): The regular expression to use for validation, used as given

StringLengthValidator

Validator for string length.

Checks if the given value is a valid string (or can be cast to a string if an object is given) and its length is between
minimum and maximum specified in the validation options.

304 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Note: A value of NULL or an empty string (‘’) is considered valid

Arguments

• minimum (integer, optional): Minimum length for a valid string

• maximum (integer, optional): Maximum length for a valid string

StringValidator

Validator for strings.

Checks if the given value is a string.

Note: A value of NULL or an empty string (‘’) is considered valid

TextValidator

Validator for “plain” text.

Checks if the given value is a valid text (contains no XML tags).

Be aware that the value of this check entirely depends on the output context. The validated text is not expected
to be secure in every circumstance, if you want to be sure of that, use a customized regular expression or filter on
output.

See http://php.net/filter_var for details.

Note: A value of NULL or an empty string (‘’) is considered valid

UniqueEntityValidator

Validator for uniqueness of entities.

Checks if the given value is a unique entity depending on it’s identity properties or custom configured identity
properties.

Note: A value of NULL or an empty string (‘’) is considered valid

Arguments

• identityProperties (array, optional): List of custom identity properties.

UuidValidator

Validator for Universally Unique Identifiers.

Checks if the given value is a syntactically valid UUID.

6.7. Validator Reference 305

http://php.net/filter_var

Neos CMS Documentation, Release 4.0.0

Note: A value of NULL or an empty string (‘’) is considered valid

6.7.2 Media Validator Reference

This reference was automatically generated from code on 2018-08-10

ImageOrientationValidator

Validator that checks the orientation (square, portrait, landscape) of a given image.

Supported validator options are (array)allowedOrientations with one or two out of ‘square’, ‘landcape’ or ‘por-
trait’.

Example:

[at]Flow\Validate("$image", type="\Neos\Media\Validator\ImageOrientationValidator",
options={ "allowedOrientations"={"square", "landscape"} })

this would refuse an image that is in portrait orientation, but allow landscape and square ones.

The given $value is valid if it is an NeosMediaDomainModelImageInterface of the configured orientation (square,
portrait and/or landscape) Note: a value of NULL or empty string (‘’) is considered valid

Note: A value of NULL or an empty string (‘’) is considered valid

Arguments

• allowedOrientations (array): Array of image orientations, one or two out of ‘square’, ‘landcape’ or
‘portrait’

ImageSizeValidator

Validator that checks size (resolution) of a given image

Example: [at]FlowValidate(“$image”, type=”NeosMediaValidatorImageSizeValidator”, options={ “mini-
mumWidth”=150, “maximumResolution”=60000 })

The given $value is valid if it is an NeosMediaDomainModelImageInterface of the configured resolution Note: a
value of NULL or empty string (‘’) is considered valid

Note: A value of NULL or an empty string (‘’) is considered valid

Arguments

• minimumWidth (integer, optional): The minimum width of the image

• minimumHeight (integer, optional): The minimum height of the image

• maximumWidth (integer, optional): The maximum width of the image

• maximumHeight (integer, optional): The maximum height of the image

• minimumResolution (integer, optional): The minimum resolution of the image

306 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

• maximumResolution (integer, optional): The maximum resolution of the image

ImageTypeValidator

Validator that checks the type of a given image

Example: [at]FlowValidate(“$image”, type=”NeosMediaValidatorImageTypeValidator”, options={ “allowed-
Types”={“jpeg”, “png”} })

The given $value is valid if it is an NeosMediaDomainModelImageInterface of the configured type (one of the
image/* IANA media subtypes)

Note: a value of NULL or empty string (‘’) is considered valid

Note: A value of NULL or an empty string (‘’) is considered valid

Arguments

• allowedTypes (array): Allowed image types (using image/* IANA media subtypes)

6.7.3 Party Validator Reference

This reference was automatically generated from code on 2018-08-10

AimAddressValidator

Validator for AIM addresses.

Checks if the given value is a valid AIM name.

The AIM name has the following requirements: “It must be between 3 and 16 alphanumeric characters in length
and must begin with a letter.”

Note: A value of NULL or an empty string (‘’) is considered valid

IcqAddressValidator

Validator for ICQ addresses.

Checks if the given value is a valid ICQ UIN address.

The ICQ UIN address has the following requirements: “It must be 9 numeric characters.” More information is
found on: http://www.icq.com/support/icq_8/start/authorization/en

Note: A value of NULL or an empty string (‘’) is considered valid

JabberAddressValidator

Validator for Jabber addresses.

Checks if the given value is a valid Jabber name.

The Jabber address has the following structure: “name@jabber.org” More information is found on: http://tracker.
phpbb.com/browse/PHPBB3-3832

6.7. Validator Reference 307

http://www.icq.com/support/icq_8/start/authorization/en
mailto:name@jabber.org
http://tracker.phpbb.com/browse/PHPBB3-3832
http://tracker.phpbb.com/browse/PHPBB3-3832

Neos CMS Documentation, Release 4.0.0

Note: A value of NULL or an empty string (‘’) is considered valid

MsnAddressValidator

Validator for MSN addresses.

Checks if the given value is a valid MSN address.

The MSN address has the following structure: “name@hotmail.com, name@live.com, name@msn.com,
name@outlook.com”

Note: A value of NULL or an empty string (‘’) is considered valid

SipAddressValidator

Validator for Sip addresses.

Checks if the given value is a valid Sip name.

The Sip address has the following structure: “sip:+4930432343@isp.com” More information is found on: http:
//wiki.snom.com/Features/Dial_Plan/Regular_Expressions

Note: A value of NULL or an empty string (‘’) is considered valid

SkypeAddressValidator

Validator for Skype addresses.

Checks if the given value is a valid Skype name.

The Skype website says: “It must be between 6-32 characters, start with a letter and contain only letters and
numbers (no spaces or special characters).”

Nevertheless dash and underscore are allowed as special characters. Furthermore, account names can contain a
colon if they were auto-created trough a connected Microsoft or Facebook profile. In this case, the syntax is as
follows: - live:john.due - Facebook:john.doe

We added period and minus as additional characters because they are suggested by Skype during registration.

Note: A value of NULL or an empty string (‘’) is considered valid

UrlAddressValidator

Validator for URL addresses.

Checks if the given value is a valid URL.

Note: A value of NULL or an empty string (‘’) is considered valid

308 Chapter 6. References

mailto:name@hotmail.com
mailto:name@live.com
mailto:name@msn.com
mailto:name@outlook.com
sip:+4930432343@isp.com
http://wiki.snom.com/Features/Dial_Plan/Regular_Expressions
http://wiki.snom.com/Features/Dial_Plan/Regular_Expressions

Neos CMS Documentation, Release 4.0.0

YahooAddressValidator

Validator for Yahoo addresses.

Checks if the given value is a valid Yahoo address.

The Yahoo address has the following structure: “name@yahoo.*”

Note: A value of NULL or an empty string (‘’) is considered valid

6.8 Signal Reference

6.8.1 Content Repository Signals Reference

This reference was automatically generated from code on 2018-08-10

Context (Neos\ContentRepository\Domain\Service\Context)

This class contains the following signals.

beforeAdoptNode

Autogenerated Proxy Method

afterAdoptNode

Autogenerated Proxy Method

Node (Neos\ContentRepository\Domain\Model\Node)

This class contains the following signals.

beforeNodeMove

Autogenerated Proxy Method

afterNodeMove

Autogenerated Proxy Method

beforeNodeCopy

Autogenerated Proxy Method

afterNodeCopy

Autogenerated Proxy Method

6.8. Signal Reference 309

mailto:name@yahoo.*

Neos CMS Documentation, Release 4.0.0

beforeNodeCreate

Autogenerated Proxy Method

afterNodeCreate

Autogenerated Proxy Method

nodeAdded

Autogenerated Proxy Method

nodeUpdated

Autogenerated Proxy Method

nodeRemoved

Autogenerated Proxy Method

beforeNodePropertyChange

Autogenerated Proxy Method

nodePropertyChanged

Autogenerated Proxy Method

nodePathChanged

Autogenerated Proxy Method

NodeData (Neos\ContentRepository\Domain\Model\NodeData)

This class contains the following signals.

nodePathChanged

Autogenerated Proxy Method

NodeDataRepository (Neos\ContentRepository\Domain\Repository\NodeDataRepository)

This class contains the following signals.

repositoryObjectsPersisted

Autogenerated Proxy Method

310 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

PublishingService (Neos\ContentRepository\Domain\Service\PublishingService)

This class contains the following signals.

nodePublished

Autogenerated Proxy Method

nodeDiscarded

Autogenerated Proxy Method

Workspace (Neos\ContentRepository\Domain\Model\Workspace)

This class contains the following signals.

baseWorkspaceChanged

Autogenerated Proxy Method

beforeNodePublishing

Autogenerated Proxy Method

afterNodePublishing

Autogenerated Proxy Method

6.8.2 Flow Signals Reference

This reference was automatically generated from code on 2018-08-10

AbstractAdvice (Neos\Flow\Aop\Advice\AbstractAdvice)

This class contains the following signals.

adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.

AbstractBackend (Neos\Flow\Persistence\Generic\Backend\AbstractBackend)

This class contains the following signals.

removedObject

Autogenerated Proxy Method

6.8. Signal Reference 311

Neos CMS Documentation, Release 4.0.0

persistedObject

Autogenerated Proxy Method

ActionRequest (Neos\Flow\Mvc\ActionRequest)

This class contains the following signals.

requestDispatched

Autogenerated Proxy Method

AfterAdvice (Neos\Flow\Aop\Advice\AfterAdvice)

This class contains the following signals.

adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.

AfterReturningAdvice (Neos\Flow\Aop\Advice\AfterReturningAdvice)

This class contains the following signals.

adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.

AfterThrowingAdvice (Neos\Flow\Aop\Advice\AfterThrowingAdvice)

This class contains the following signals.

adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.

AroundAdvice (Neos\Flow\Aop\Advice\AroundAdvice)

This class contains the following signals.

adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.

312 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

AuthenticationProviderManager (Neos\Flow\Security\Authentication\AuthenticationProviderManager)

This class contains the following signals.

authenticatedToken

Autogenerated Proxy Method

loggedOut

Autogenerated Proxy Method

BeforeAdvice (Neos\Flow\Aop\Advice\BeforeAdvice)

This class contains the following signals.

adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.

Bootstrap (Neos\Flow\Core\Bootstrap)

This class contains the following signals.

finishedCompiletimeRun

Emits a signal that the compile run was finished.

finishedRuntimeRun

Emits a signal that the runtime run was finished.

bootstrapShuttingDown

Emits a signal that the bootstrap finished and is shutting down.

CacheCommandController (Neos\Flow\Command\CacheCommandController)

This class contains the following signals.

warmupCaches

Autogenerated Proxy Method

ConfigurationManager (Neos\Flow\Configuration\ConfigurationManager)

This class contains the following signals.

6.8. Signal Reference 313

Neos CMS Documentation, Release 4.0.0

configurationManagerReady

Emits a signal after The ConfigurationManager has been loaded

CoreCommandController (Neos\Flow\Command\CoreCommandController)

This class contains the following signals.

finishedCompilationRun

Signals that the compile command was successfully finished.

Dispatcher (Neos\Flow\Mvc\Dispatcher)

This class contains the following signals.

beforeControllerInvocation

Autogenerated Proxy Method

afterControllerInvocation

Autogenerated Proxy Method

DoctrineCommandController (Neos\Flow\Command\DoctrineCommandController)

This class contains the following signals.

afterDatabaseMigration

Autogenerated Proxy Method

EntityManagerFactory (Neos\Flow\Persistence\Doctrine\EntityManagerFactory)

This class contains the following signals.

beforeDoctrineEntityManagerCreation

Autogenerated Proxy Method

afterDoctrineEntityManagerCreation

Autogenerated Proxy Method

PackageManager (Neos\Flow\Package\PackageManager)

This class contains the following signals.

314 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

packageStatesUpdated

Emits a signal when package states have been changed (e.g. when a package was created)

The advice is not proxyable, so the signal is dispatched manually here.

PersistenceManager (Neos\Flow\Persistence\Doctrine\PersistenceManager)

This class contains the following signals.

allObjectsPersisted

Autogenerated Proxy Method

PersistenceManager (Neos\Flow\Persistence\Generic\PersistenceManager)

This class contains the following signals.

allObjectsPersisted

Autogenerated Proxy Method

PolicyService (Neos\Flow\Security\Policy\PolicyService)

This class contains the following signals.

configurationLoaded

Autogenerated Proxy Method

rolesInitialized

Autogenerated Proxy Method

SlaveRequestHandler (Neos\Flow\Cli\SlaveRequestHandler)

This class contains the following signals.

dispatchedCommandLineSlaveRequest

Emits a signal that a CLI slave request was dispatched.

6.8.3 Media Signals Reference

This reference was automatically generated from code on 2018-08-10

Asset (Neos\Media\Domain\Model\Asset)

This class contains the following signals.

6.8. Signal Reference 315

Neos CMS Documentation, Release 4.0.0

assetCreated

Autogenerated Proxy Method

AssetService (Neos\Media\Domain\Service\AssetService)

This class contains the following signals.

assetCreated

Autogenerated Proxy Method

assetRemoved

Autogenerated Proxy Method

assetUpdated

Autogenerated Proxy Method

assetResourceReplaced

Autogenerated Proxy Method

Audio (Neos\Media\Domain\Model\Audio)

This class contains the following signals.

assetCreated

Autogenerated Proxy Method

Document (Neos\Media\Domain\Model\Document)

This class contains the following signals.

assetCreated

Autogenerated Proxy Method

Image (Neos\Media\Domain\Model\Image)

This class contains the following signals.

assetCreated

Autogenerated Proxy Method

316 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

ImageVariant (Neos\Media\Domain\Model\ImageVariant)

This class contains the following signals.

assetCreated

Autogenerated Proxy Method

Thumbnail (Neos\Media\Domain\Model\Thumbnail)

This class contains the following signals.

thumbnailCreated

Autogenerated Proxy Method

ThumbnailService (Neos\Media\Domain\Service\ThumbnailService)

This class contains the following signals.

thumbnailCreated

Autogenerated Proxy Method

Video (Neos\Media\Domain\Model\Video)

This class contains the following signals.

assetCreated

Autogenerated Proxy Method

6.8.4 Neos Signals Reference

This reference was automatically generated from code on 2018-08-10

AbstractCreate (Neos\Neos\Ui\Domain\Model\Changes\AbstractCreate)

This class contains the following signals.

nodeCreationHandlersApplied

Autogenerated Proxy Method

ContentContext (Neos\Neos\Domain\Service\ContentContext)

This class contains the following signals.

6.8. Signal Reference 317

Neos CMS Documentation, Release 4.0.0

beforeAdoptNode

Autogenerated Proxy Method

afterAdoptNode

Autogenerated Proxy Method

ContentController (Neos\Neos\Controller\Backend\ContentController)

This class contains the following signals.

assetUploaded

Autogenerated Proxy Method

Create (Neos\Neos\Ui\Domain\Model\Changes\Create)

This class contains the following signals.

nodeCreationHandlersApplied

Autogenerated Proxy Method

CreateAfter (Neos\Neos\Ui\Domain\Model\Changes\CreateAfter)

This class contains the following signals.

nodeCreationHandlersApplied

Autogenerated Proxy Method

CreateBefore (Neos\Neos\Ui\Domain\Model\Changes\CreateBefore)

This class contains the following signals.

nodeCreationHandlersApplied

Autogenerated Proxy Method

PublishingService (Neos\Neos\Service\PublishingService)

This class contains the following signals.

nodePublished

Autogenerated Proxy Method

318 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

nodeDiscarded

Autogenerated Proxy Method

Site (Neos\Neos\Domain\Model\Site)

This class contains the following signals.

siteChanged

Autogenerated Proxy Method

SiteImportService (Neos\Neos\Domain\Service\SiteImportService)

This class contains the following signals.

siteImported

Autogenerated Proxy Method

SiteService (Neos\Neos\Domain\Service\SiteService)

This class contains the following signals.

sitePruned

Autogenerated Proxy Method

UserService (Neos\Neos\Domain\Service\UserService)

This class contains the following signals.

userCreated

Autogenerated Proxy Method

userDeleted

Autogenerated Proxy Method

userUpdated

Autogenerated Proxy Method

rolesAdded

Autogenerated Proxy Method

6.8. Signal Reference 319

Neos CMS Documentation, Release 4.0.0

rolesRemoved

Autogenerated Proxy Method

userActivated

Autogenerated Proxy Method

userDeactivated

Autogenerated Proxy Method

6.9 Coding Guideline Reference

6.9.1 PHP Coding Guidelines & Best Practices

Coding Standards are an important factor for achieving a high code quality. A common visual style, naming
conventions and other technical settings allow us to produce a homogenous code which is easy to read and main-
tain. However, not all important factors can be covered by rules and coding standards. Equally important is the
style in which certain problems are solved programmatically - it’s the personality and experience of the individ-
ual developer which shines through and ultimately makes the difference between technically okay code or a well
considered, mature solution.

These guidelines try to cover both, the technical standards as well as giving incentives for a common development
style. These guidelines must be followed by everyone who creates code for the Flow core. Because Neos is
based on Flow, it follows the same principles - therefore, whenever we mention Flow in the following sections,
we equally refer to Neos. We hope that you feel encouraged to follow these guidelines as well when creating your
own packages and Flow based applications.

CGL on One Page

Fig. 1: The Coding Guidelines on One Page

The most important parts of our Coding Guidelines in a one page document you can print out and
hang on your wall for easy reference. Does it get any easier than that?

Code Formatting and Layout aka “beautiful code”

The visual style of programming code is very important. In the Neos project we want many programmers to
contribute, but in the same style. This will help us to:

• Easily read/understand each others code and consequently easily spot security problems or optimization
opportunities

• It is a signal about consistency and cleanliness, which is a motivating factor for programmers striving for
excellence

320 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Some people may object to the visual guidelines since everyone has his own habits. You will have to overcome
that in the case of Flow; the visual guidelines must be followed along with coding guidelines for security. We
want all contributions to the project to be as similar in style and as secure as possible.

General considerations

• Follow the PSR-2 standard for code formatting

• Almost every PHP file in Flow contains exactly one class and does not output anything if it is called directly.
Therefore you start your file with a <?php tag and must not end it with the closing ?>.

• Every file must contain a header stating namespace and licensing information

– Declare your namespace.

– The copyright header itself must not start with /**, as this may confuse documentation generators!

The Flow standard file header:

<?php
namespace YourCompany\Package\Something\New;

/*
* This file is part of the YourCompany.Package package.

*
* (c) YourCompany

*
* This package is Open Source Software. For the full copyright and license

* information, please view the LICENSE file which was distributed with this

* source code.

*/

• Code lines are of arbitrary length, no strict limitations to 80 characters or something similar (wake up,
graphical displays have been available for decades now. . .). But feel free to break lines for better readability
if you think it makes sense!

• Lines end with a newline a.k.a chr(10) - UNIX style

• Files must be encoded in UTF-8 without byte order mark (BOM)

Make sure you use the correct license and mention the correct package in the header.

Indentation and line formatting

Since we adopted PSR-2 as coding standard we use spaces for indentation.

Here’s a code snippet which shows the correct usage of spaces.

Correct use of indentation:

/**
* Returns the name of the currently set context.

*
* @return string Name of the current context

*/
public function getContextName()
{

return $this->contextName;
}

6.9. Coding Guideline Reference 321

Neos CMS Documentation, Release 4.0.0

Naming

Naming is a repeatedly undervalued factor in the art of software development. Although everybody seems to agree
on that nice names are a nice thing to have, most developers choose cryptic abbreviations in the end (to save some
typing). Beware that we Neos core developers are very passionate about naming (some people call it fanatic, well
. . .). In our opinion spending 15 minutes (or more . . .) just to find a good name for a method is well spent time!
There are zillions of reasons for using proper names and in the end they all lead to better readable, manageable,
stable and secure code.

As a general note, english words (or abbreviations if necessary) must be used for all class names, method names,
comments, variables names, database table and field names. The consensus is that english is much better to read
for the most of us, compared to other languages.

When using abbreviations or acronyms remember to make them camel-cased as needed, no all-uppercase stuff.

Vendor namespaces

The base for namespaces as well as package keys is the vendor namespace. Since Flow is part of the Neos project,
the core team decided to choose “Neos” as our vendor namespace. The Object Manager for example is known
under the class name Neos\Flow\ObjectManagement\ObjectManager. In our examples you will find
the Acme vendor namespace.

Why do we use vendor namespaces? This has two great benefits: first of all we don’t need a central package key
registry and secondly, it allows anyone to seamlessly integrate third-party packages, such as Symfony2 compo-
nents and Zend Framework components or virtually any other PHP library.

Think about your own vendor namespace for a few minutes. It will stay with you for a long time.

Package names

All package names start with an uppercase character and usually are written in UpperCamelCase. In order to
avoid problems with different filesystems, only the characters a-z, A-Z, 0-9 and the dash sign “-” are allowed for
package names – don’t use special characters.

The full package key is then built by combining the vendor namespace and the package, like Neos.Eel or
Acme.Demo.

Namespace and Class names

• Only the characters a-z, A-Z and 0-9 are allowed for namespace and class names.

• Namespaces are usually written in UpperCamelCase but variations are allowed for well established names
and abbreviations.

• Class names are always written in UpperCamelCase.

• The unqualified class name must be meant literally even without the namespace.

• The main purpose of namespaces is categorization and ordering

• Class names must be nouns, never adjectives.

• The name of abstract classes must start with the word “Abstract”, class names of aspects must end with the
word “Aspect”.

Incorrect naming of namespaces and classes

322 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Fully qualified class name Unqualified name Remarks
\Neos\Flow\Session\Php Php The class is not a representation of PHP
\Neos\Cache\Backend\File File The class doesn’t represent a file!
\Neos\Flow\Session\Interface Interface Not allowed, “Interface” is a reserved keyword
\Neos\Foo\Controller\Default Default Not allowed, “Default” is a reserved keyword
\Neos\Flow\Objects\Manager Manager Just “Manager” is too fuzzy

Correct naming of namespaces and classes

Fully qualified class name Unqualified name Remarks
\Neos\Flow\Session\PhpSession PhpSession That’s a PHP Session
\Neos\Flow\Cache\Backend\FileBackend FileBackend A File Backend
\Neos\Flow\Session\SessionInterface SessionInterface Interface for a session
\Neos\Foo\Controller\StandardController StandardController The standard controller
\Neos\Flow\Objects\ObjectManager ObjectManager “ObjectManager” is clearer

Edge cases in naming of namespaces and classes

Fully qualified class name Unqualified
name

Remarks

\Neos\Flow\Mvc\ControllerInterfaceController-
Interface

Consequently the interface belongs to all the controllers in
the Controller sub namespace

\Neos\Flow\Mvc\Controller\ControllerInterface Better
\Neos\Cache\AbstractBackend Abstract-

Backend
Same here: In reality this class belongs to the backends

\Neos\Cache\Backend\AbstractBackend Better

Note: When specifying class names to PHP, always reference the global namespace inside namespaced code by
using a leading backslash. When referencing a class name inside a string (e.g. given to the get-Method of the
ObjectManager, in pointcut expressions or in YAML files), never use a leading backslash. This follows the
native PHP notion of names in strings always being seen as fully qualified.

Importing Namespaces

If you refer to other classes or interfaces you are encouraged to import the namespace with the use statement if it
improves readability.

Following rules apply:

• If importing namespaces creates conflicting class names you might alias class/interface or namespaces with
the as keyword.

• One use statement per line, one use statement for each imported namespace

• Imported namespaces should be ordered alphabetically (modern IDEs provide support for this)

Tip: use statements have no side-effects (e.g. they don’t trigger autoloading). Nevertheless you should remove
unused imports for better readability

Interface names

Only the characters a-z, A-Z and 0-9 are allowed for interface names – don’t use special characters.

6.9. Coding Guideline Reference 323

Neos CMS Documentation, Release 4.0.0

All interface names are written in UpperCamelCase. Interface names must be adjectives or nouns and have the
Interface suffix. A few examples follow:

• \Neos\Flow\ObjectManagement\ObjectInterface

• \Neos\Flow\ObjectManagement\ObjectManagerInterface

• \MyCompany\MyPackage\MyObject\MySubObjectInterface

• \MyCompany\MyPackage\MyObject\MyHtmlParserInterface

Exception names

Exception naming basically follows the rules for naming classes. There are two possible types of exceptions:
generic exceptions and specific exceptions. Generic exceptions should be named “Exception” preceded by their
namespace. Specific exceptions should reside in their own sub-namespace end with the word Exception.

• \Neos\Flow\ObjectManagement\Exception

• \Neos\Flow\ObjectManagement\Exception\InvalidClassNameException

• \MyCompany\MyPackage\MyObject\Exception

• \MyCompany\MyPackage\MyObject\Exception\OutOfCoffeeException

On consistent naming of classes, interfaces and friends

At times, the question comes up, why we use a naming scheme that is inconsistent with what we write in the PHP
sources. Here is the best explanation we have:

At first glance this feels oddly inconsistent; We do, after all, put each of those at the same position
within php code.

But, I think leaving Abstract as a prefix, and Interface/Trait as suffixes makes sense. Consider the
opposite of how we do it: “Interface Foo”, “Trait Foo” both feel slightly odd when I say them out
loud, and “Foo Abstract” feels very wrong. I think that is because of the odd rules of grammar in
English (Oh! English. What an ugly inconsistent language! And yet, it is my native tongue).

Consider the phrase “the poor man”. ‘poor’ is an adjective that describes ‘man’, a noun. Poor happens
to also work as a noun, but the definition changes slightly when you use it as a noun instead of
an adjective. And, if you were to flip the phrase around, it would not make much sense, or could
have (sometimes funny) alternative meanings: “the man poor” (Would that mean someone without a
boyfriend?)

The word “Abstract” works quite well as an adjective, but has the wrong meaning as a noun. An “Ab-
stract” (noun) is “an abridgement or summary” or a kind of legal document, or any other summary-
like document. But we’re not talking about a document, we’re talking about the computing definition
which is an adjective: “abstract type”. (http://en.wiktionary.org/wiki/abstract)

“Abstract” can be a noun, an adjective, or a verb. But, we want the adjective form. “Interface” is a
noun or a verb. “Trait” is always a noun. So, based on current English rules, “Abstract Foo”, “Foo
Interface” and “Foo Trait” feel the most natural. English is a living language where words can move
from one part of speech to another, so we could get away with using the words in different places in
the sentence. But that would, at least to begin with, feel awkward.

So, I blame the inconsistent placement of Abstract, Interface, and Trait on the English language.

[. . .]

—Jacob Floyd, http://lists.typo3.org/pipermail/flow/2014-November/005625.html

324 Chapter 6. References

http://en.wiktionary.org/wiki/abstract
http://lists.typo3.org/pipermail/flow/2014-November/005625.html

Neos CMS Documentation, Release 4.0.0

Method names

All method names are written in lowerCamelCase. In order to avoid problems with different filesystems, only the
characters a-z, A-Z and 0-9 are allowed for method names – don’t use special characters.

Make method names descriptive, but keep them concise at the same time. Constructors must always be called
__construct(), never use the class name as a method name.

• myMethod()

• someNiceMethodName()

• betterWriteLongMethodNamesThanNamesNobodyUnderstands()

• singYmcaLoudly()

• __construct()

Variable names

Variable names are written in lowerCamelCase and should be

• self-explanatory

• not shortened beyond recognition, but rather longer if it makes their meaning clearer

The following example shows two variables with the same meaning but different naming. You’ll surely agree the
longer versions are better (don’t you . . . ?).

Correct naming of variables

• $singletonObjectsRegistry

• $argumentsArray

• $aLotOfHtmlCode

Incorrect naming of variables

• $sObjRgstry

• $argArr

• $cx

As a special exception you may use variable names like $i, $j and $k for numeric indexes in for loops if it’s
clear what they mean on the first sight. But even then you should want to avoid them.

Constant names

All constant names are written in UPPERCASE. This includes TRUE, FALSE and NULL. Words can be separated
by underscores - you can also use the underscore to group constants thematically:

• STUFF_LEVEL

• COOLNESS_FACTOR

• PATTERN_MATCH_EMAILADDRESS

• PATTERN_MATCH_VALIDHTMLTAGS

It is, by the way, a good idea to use constants for defining regular expression patterns (as seen above) instead of
defining them somewhere in your code.

6.9. Coding Guideline Reference 325

Neos CMS Documentation, Release 4.0.0

Filenames

These are the rules for naming files:

• All filenames are UpperCamelCase.

• Class and interface files are named according to the class or interface they represent

• Each file must contain only one class or interface

• Names of files containing code for unit tests must be the same as the class which is tested, appended with
“Test.php”.

• Files are placed in a directory structure representing the namespace structure. You may use PSR-0 or PSR-4
autoloading as you like. We generally use PSR-4.

File naming in Flow

Neos.TemplateEngine/Classes/TemplateEngineInterface.php Contains the interface
\Neos\TemplateEngine\TemplateEngineInterface which is part of the package
Neos.TemplateEngine

Neos.Flow/Classes/Error/RuntimeException.php Contains the
\Neos\Flow\Error\Messages\RuntimeException being a part of the package Neos.Flow

Acme.DataAccess/Classes/CustomQuery.php Contains class \Acme\DataAccess\CustomQuery
which is part of the package Acme.DataAccess

Neos.Flow/Tests/Unit/Package/PackageManagerTest.php Contains the class
\Neos\Flow\Tests\Unit\Package\PackageManagerTest which is a PHPUnit testcase
for Package\PackageManager.

PHP code formatting

PSR-2

We follow the PSR-2 standard which is defined by PHP FIG. You should read the full PSR-2 standard. .. psr-2
standard: https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md

Some things are not specified in PSR-2, so here are some amendments.

Strings

In general, we use single quotes to enclose literal strings:

$neos = 'A great project from a great team';

If you’d like to insert values from variables, concatenate strings. A space must be inserted before and after the dot
for better readability:

$message = 'Hey ' . $name . ', you look ' . $appearance . ' today!';

You may break a string into multiple lines if you use the dot operator. You’ll have to indent each following line to
mark them as part of the value assignment:

$neos = 'A great ' .
'project from ' .
'a great ' .
'team';

You should also consider using a PHP function such as sprintf() to concatenate strings to increase readability:

326 Chapter 6. References

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md

Neos CMS Documentation, Release 4.0.0

$message = sprintf('Hey %s, you look %s today!', $name, $appearance);

Development Process

Test-Driven Development

In a nutshell: before coding a feature or fixing a bug, write an unit test.

Whatever you do: before committing changes to the repository, run all unit tests to make sure nothing is broken!

Commit Messages

To have a clear and focused history of code changes is greatly helped by using a consistent way of writing commit
messages. Because of this and to help with (partly) automated generation of change logs for each release we have
defined a fixed syntax for commit messages that is to be used.

Tip: Never commit without a commit message explaining the commit!

The syntax is as follows:

• Start with one of the following codes:

FEATURE: A feature change. Most likely it will be an added feature, but it could also be removed. For
additions there should be a corresponding ticket in the issue tracker.

BUGFIX: A fix for a bug. There should be a ticket corresponding to this in the issue tracker as well as a
new) unit test for the fix.

SECURITY: A security related change. Those must only be committed by active contributors in agreement
with the Neos Security Team.

TASK: Anything not covered by the above categories, e.g. coding style cleanup or documentation changes.
Usually only used if there’s no corresponding ticket.

Except for SECURITY each of the above codes can be prefixed with WIP to mark a change work in
progress. This means that it is not yet ready for a final review. The WIP prefix must be removed before a
change is merged.

• The code is followed by a short summary in the same line, no full stop at the end. If the change affects the
public API or is likely to break things on the user side, start the line with [!!!]. This indicates a breaking
change that needs human action when updating. Make sure to explain why a change is breaking and in what
circumstances.

• Then follows (after a blank line) a custom message explaining what was done. It should be written in a style
that serves well for a change log read by users.

• If there is more to say about a change add a new paragraph with background information below. In case of
breaking changes give a hint on what needs to be changed by the user.

• If corresponding tickets exist, mention the ticket number(s) using footer lines after another blank line and
use the following actions:

Fixes <Issue-Id> If the change fixes a bug, resolves a feature request or task.

Related to <Issue-Id> If the change relates to an issue but does not resolve or fix it.

A commit messages following the rules. . . :

6.9. Coding Guideline Reference 327

https://www.neos.io/about/security-bulletins.html

Neos CMS Documentation, Release 4.0.0

TASK: Short (50 chars or less) summary of changes

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of an email and the rest of the text as the body. The blank
line separating the summary from the body is critical (unless you omit
the body entirely); tools like rebase can get confused if you run the
two together.

Write your commit message in the present tense: "Fix bug" and not "Fixed
bug." This convention matches up with commit messages generated by
commands like git merge and git revert.

Code snippets::

should be written in
ReStructuredText compatible
format for better highlighting

Further paragraphs come after blank lines.

* Bullet points are okay, too

* An asterisk is used for the bullet, it can be preceded by a single
space. This format is rendered correctly by Forge (redmine)

* Use a hanging indent

Fixes #123

Examples of good and bad subject lines:

Introduce xyz service // BAD, missing code prefix
BUGFIX: Fixed bug xyz // BAD, subject should be
→˓written in present tense
WIP !!! TASK: A breaking change // BAD, subject has to start
→˓with [!!!] for breaking changes
BUGFIX: Make SessionManager remove expired sessions // GOOD, the line explains
→˓what the change does, not what the

bug is about (this should
→˓be explained in the following lines

and in the related bug
→˓tracker ticket)

Source Code Documentation

All code must be documented with inline comments. The syntax is similar to that known from the Java program-
ming language (JavaDoc). This way code documentation can automatically be generated.

Documentation Blocks

A file contains different documentation blocks, relating to the class in the file and the members of the class. A
documentation block is always used for the entity it precedes.

Class documentation

Classes have their own documentation block describing the classes purpose.

Standard documentation block:

328 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

/**
* First sentence is short description. Then you can write more, just as you like

*
* Here may follow some detailed description about what the class is for.

*
* Paragraphs are separated by an empty line.

*/
class SomeClass {
...

}

Additional tags or annotations, such as @see or @Flow\Aspect, can be added as needed.

Documenting variables, constants, includes

Properties of a class should be documented as well. We use the short version for documenting them.

Standard variable documentation block:

/**
* A short description, very much recommended

*
* @var string

*/
protected $title = 'Untitled';

In general you should try to code in a way that the types can be derived (e.g. by using type hints and annotations).
In some cases this is not possible, for example when iterating through an array of objects. In these cases it’s ok to
add inline @var annotations to increase readability and to activate auto-completion and syntax-highlighting:

protected function someMethod(array $products) {
/** @var $product \Acme\SomePackage\Domain\Model\Product */
foreach ($products as $product) {

$product->getTitle();
}

}

Method documentation

For a method, at least all parameters and the return value must be documented.

Standard method documentation block:

/**
* A description for this method

*
* Paragraphs are separated by an empty line.

*
* @param \Neos\Blog\Domain\Model\Post $post A post

* @param string $someString This parameter should contain some string

* @return void

*/
public function addStringToPost(\Neos\Blog\Domain\Model\Post $post, $someString) {
...

}

A special note about the @param tags: The parameter type and name are separated by one space, not aligned.
Do not put a colon after the parameter name. Always document the return type, even if it is void - that way it is
clearly visible it hasn’t just been forgotten (only constructors never have a @return annotation!).

6.9. Coding Guideline Reference 329

Neos CMS Documentation, Release 4.0.0

Testcase documentation

Testcases need to be marked as being a test and can have some more annotations.

Standard testcase documentation block:

/**
* @test

*/
public function fooReturnsBarForQuux() {
...

}

Defining the Public API

Not all methods with a public visibility are necessarily part of the intended public API of a project. For Flow, only
the methods explicitly defined as part of the public API will be kept stable and are intended for use by developers
using Flow. Also the API documentation we produce will only cover the public API.

To mark a method as part of the public API, include an @api annotation for it in the docblock.

Defining the public API:

/**
* This method is part of the public API.

*
* @return void

* @api

*/
public function fooBar() {
...

}

Tip: When something in a class or an interface is annotated with @api make sure to also annotate the class or
interface itself! Otherwise it will be ignored completely when official API documentation is rendered!

Overview of Documentation Annotations

There are not only documentation annotations that can be used. In Flow annotations are also used in the MVC
component, for defining aspects and advices for the AOP framework as well as for giving instructions to the
Persistence framework. See the individual chapters for information on their purpose and use.

Here is a list of annotations used within the project. They are grouped by use case and the order given here should
be kept for the sake of consistency.

Interface Documentation

• @api

• @since

• @deprecated

Class Documentation

• @FlowIntroduce

• @FlowEntity

• @FlowValueObject

330 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

• @FlowScope

• @FlowAutowiring

• @FlowLazy

• @FlowAspect

• @api

• @since

• @deprecated

Property Documentation

• @FlowIntroduce

• @FlowIdentity

• @FlowTransient

• @FlowLazy

• @FlowIgnoreValidation

• @FlowInject

• @FlowInjectConfiguration

• @FlowValidate

• @var

• @api

• @since

• @deprecated

Constructor Documentation

• @param

• @throws

• @api

• @since

• @deprecated

Method Documentation

• @FlowAfter

• @FlowAfterReturning

• @FlowAfterThrowing

• @FlowAround

• @FlowBefore

• @FlowPointcut

• @FlowAutowiring

• @FlowCompileStatic

• @FlowFlushesCaches

• @FlowInternal

• @FlowSession

• @FlowSignal

6.9. Coding Guideline Reference 331

Neos CMS Documentation, Release 4.0.0

• @FlowIgnoreValidation

• @FlowSkipCsrfProtection

• @FlowValidate

• @FlowValidationGroups

• @param

• @return

• @throws

• @api

• @since

• @deprecated

Testcase Documentation

• @test

• @dataProvider

• @expectedException

Tip: Additional annotations (more or less only the @todo and @see come to mind here), should be placed after
all other annotations.

Best Practices

Flow

This section gives you an overview of Flow’s coding rules and best practices.

Error Handling and Exceptions

Flow makes use of a hierarchy for its exception classes. The general rule is to throw preferably specific exceptions
and usually let them bubble up until a place where more general exceptions are caught. Consider the following
example:

Some method tried to retrieve an object from the object manager. However, instead of providing a string con-
taining the object name, the method passed an object (of course not on purpose - something went wrong). The
object manager now throws an InvalidObjectName exception. In order to catch this exception you can, of
course, catch it specifically - or only consider a more general Object exception (or an even more general Flow
exception). This all works because we have the following hierarchy:

+ \Neos\Flow\Exception
+ \Neos\Flow\ObjectManagement\Exception
+ \Neos\Flow\ObjectManagement\Exception\InvalidObjectNameException

Throwing an exception

When throwing an exception, make sure to provide a clear error message and an error code being the unix times-
tamp of when you write the ‘‘throw‘‘ statement. That error code must be unique, so watch out when doing copy
and paste!

332 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

Unit Testing

Some notes for a start:

• Never use the object manager or factory in unit tests! If they are needed, mock them.

• Avoid tests for the scope of an object. Those tests test the object factory, rather then the test target. Such
a test should be done by checking for the presence of an expected @scope annotation – eventually we will
find an elegant way for this.

Cross Platform Coding

• When concatenating paths, always use \Neos\Utility\Files::concatenatePaths() to avoid
trouble.

PHP in General

• All code should be object oriented. This means there should be no functions outside classes if not absolutely
necessary. If you need a “container” for some helper methods, consider creating a static class.

• All code must make use of PHP5 advanced features for object oriented programming.

– Use PHP namespaces

– Always declare the scope (public, protected, private) of methods and member variables

– Make use of iterators and exceptions, have a look at the SPL

• Make use of type-hinting wherever possible

• Always use <?php as opening tags (never only <?)

• Never use the closing tag ?> at the end of a file, leave it out

• Never use the shut-up operator @ to suppress error messages. It makes debugging harder, is dirty style and
slow as hell

• Prefer strict comparisons whenever possible, to avoid problems with truthy and falsy values that might
behave different than what you expect. Here are some examples:

Examples of good and bad comparisons:

if ($template) // BAD
if (isset($template)) // GOOD
if ($template !== NULL)) // GOOD
if ($template !== '')) // GOOD

if (strlen($template) > 0) // BAD! strlen("-1") is greater than 0
if (is_string($template) && strlen($template) > 0) // BETTER

if ($foo == $bar) // BAD, avoid truthy comparisons
if ($foo != $bar) // BAD, avoid falsy comparisons
if ($foo === $bar)) // GOOD
if ($foo !== $bar)) // GOOD

• Order of methods in classes. To gain a better overview, it helps if methods in classes are always ordered in
a certain way. We prefer the following:

– constructor

– injection methods

– initialization methods (including initializeObject())

– public methods

6.9. Coding Guideline Reference 333

http://www.php.net/manual/language.namespaces.php
http://www.php.net/manual/ref.spl.php
http://www.php.net/manual/language.oop5.typehinting.php

Neos CMS Documentation, Release 4.0.0

Fig. 2: Truthy and falsy are fuzzy. . .

– protected methods

– private methods

– shutdown methods

– destructor

• Avoid double-negation. Instead of exportSystemView(..., $noRecurse) use
exportSystemView(..., $recurse). It is more logical to pass TRUE if you want recur-
sion instead of having to pass FALSE. In general, parameters negating things are a bad idea.

Comments

In general, comments are a good thing and we strive for creating a well-documented source code. However, inline
comments can often be a sign for a bad code structure or method naming.1 As an example, consider the example
for a coding smell:

// We only allow valid persons
if (is_object($p) && strlen($p->lastN) > 0 && $p->hidden === FALSE && $this->
→˓environment->moonPhase === MOON_LIB::CRESCENT) {
$xmM = $thd;

}

This is a perfect case for the refactoring technique “extract method”: In order to avoid the comment, create a new
method which is as explanatory as the comment:

if ($this->isValidPerson($person) {
$xmM = $thd;

}

Bottom line is: You may (and are encouraged to) use inline comments if they support the readability of your code.
But always be aware of possible design flaws you probably try to hide with them.

1 This is also referred to as a bad “smell” in the theory of Refactoring. We highly recommend reading “Refactoring” by Martin Fowler - if
you didn’t already.

334 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

6.9.2 JavaScript Coding Guidelines

Here, you will find an explanation of the JavaScript Coding Guidelines we use. Generally, we strive to follow the
Neos Flow Coding Guidelines as closely as possible, with exceptions which make sense in the JavaScript context.

This guideline explains mostly how we want JavaScript code to be formatted; and it does not deal with the Neos
User Interface structure. If you want to know more about the Neos User Interface architecture, have a look into
the “Neos User Interface Development” book.

Naming Conventions

• one class per file, with the same naming convention as Neos Flow.

• This means all classes are built like this: <PackageKey>.<SubNamespace>.<ClassName>,
and this class is implemented in a JavaScript file located at <Package>/.../JavaScript/
<SubNamespace>/<ClassName>.js

• Right now, the base directory for JavaScript in Neos Flow packages Resources/Public/
JavaScript, but this might still change.

• We suggest that the base directory for JavaScript files is JavaScript.

• Files have to be encoded in UTF-8 without byte order mark (BOM).

• Classes and namespaces are written in UpperCamelCase, while properties and methods are written in
lowerCamelCase.

• The xtype of a class is always the fully qualified class name. Every class which can be instantiated needs to
have an xtype declaration.

• Never create a class which has classes inside itself. Example: if the class TYPO3.Foo exists, it is prohibited
to create a class TYPO3.Foo.Bar.You can easily check this: If a directory with the same name as the
JavaScript file exists, this is prohibited.

Here follows an example:

TYPO3.Foo.Bar // implemented in .../Foo/Bar.js
TYPO3.Foo.Bar = ...

TYPO3.Foo // implemented in ...Foo.js
TYPO3.Foo = **overriding the "Bar" class**

So, if the class TYPO3.Foo.Bar is included before TYPO3.Foo, then the second class definition com-
pletely overrides the Bar object. In order to prevent such issues, this constellation is forbidden.

• Every class, method and class property should have a doc comment.

• Private methods and properties should start with an underscore (_) and have a @private annotation.

Doc Comments

Generally, doc comments follow the following form:

/**
*
*/

See the sections below on which doc comments are available for the different elements (classes, methods, . . .).

We are using http://code.google.com/p/ext-doc/ for rendering an API documentation from the code, that’s why
types inside @param, @type and @cfg have to be written in braces like this:

@param {String} theFirstParameter A Description of the first parameter
@param {My.Class.Name} theSecondParameter A description of the second parameter

6.9. Coding Guideline Reference 335

http://code.google.com/p/ext-doc/

Neos CMS Documentation, Release 4.0.0

Generally, we do not use @api annotations, as private methods and attributes are marked with @private and
prefixed with an underscore. So, everything which is not marked as private belongs to the public API!

We are not sure yet if we should use @author annotations at all. (TODO Decide!)

To make a reference to another method of a class, use the {@link #methodOne This is an example
link to method one} syntax.

If you want to do multi-line doc comments, you need to format them with
, <pre> and other HTML tags:

/**
* Description of the class. Make it as long as needed,

* feel free to explain how to use it.

* This is a sample class

* The file encoding should be utf-8

* UTF-8 Check: öäüß

* {@link #methodOne This is an example link to method one}

*/

Class Definitions

Classes can be declared singleton or prototype. A class is singleton, if only one instance of this class will exist at
any given time. An class is of type prototype, if more than one object can be created from the class at run-time.
Most classes will be of type prototype.

You will find examples for both below.

Prototype Class Definitions

Example of a prototype class definition:

Ext.ns("TYPO3.TYPO3.Content");

/*
* This file is part of the Neos.Neos package.

*
* (c) Contributors of the Neos Project - www.neos.io

*
* This package is Open Source Software. For the full copyright and license

* information, please view the LICENSE file which was distributed with this

* source code.

*/

/**
* @class TYPO3.TYPO3.Content.FrontendEditor

*
* The main frontend editor.

*
* @namespace TYPO3.TYPO3.Content

* @extends Ext.Container

*/
TYPO3.TYPO3.Content.FrontendEditor = Ext.extend(Ext.Container, {

// here comes the class contents
});
Ext.reg('TYPO3.TYPO3.Content.FrontendEditor', TYPO3.TYPO3.Content.FrontendEditor);

• At the very beginning of the file is the namespace declaration of the class, followed by a newline.

• Then follows the class documentation block, which must start with the @class declaration in the first line.

• Now comes a description of the class, possibly with examples.

336 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

• Afterwards must follow the namespace of the class and the information about object extension

• Now comes the actual class definition, using Ext.extend.

• As the last line of the class, it follows the xType registration. We always use the fully qualified class name
as xtype

Usually, the constructor of the class receives a hash of parameters. The possible configuration options need to be
documented inside the class with the @cfg annotation:

TYPO3.TYPO3.Content.FrontendEditor = Ext.extend(Ext.Container, {
/**
* An explanation of the configuration option followed

* by a blank line.

*
* @cfg {Number} configTwo

*/
configTwo: 10
...

}

Singleton Class Definitions

Now comes a singleton class definition. You will see that it is very similar to a prototype class definition, we will
only highlight the differences.

Example of a singleton class definition:

Ext.ns("TYPO3.TYPO3.Core");

/*
* This file is part of the Neos.Neos package.

*
* (c) Contributors of the Neos Project - www.neos.io

*
* This package is Open Source Software. For the full copyright and license

* information, please view the LICENSE file which was distributed with this

* source code.

*/

/**
* @class TYPO3.TYPO3.Core.Application

*
* The main entry point which controls the lifecycle of the application.

*
* @namespace TYPO3.TYPO3.Core

* @extends Ext.util.Observable

* @singleton

*/
TYPO3.TYPO3.Core.Application = Ext.apply(new Ext.util.Observable, {

// here comes the class contents
});

• You should add a @singleton annotation to the class doc comment after the @namespace and
@extends annotation

• In singleton classes, you use Ext.apply. Note that you need to use new to instantiate the base class.

• There is no xType registration in singletons, as they are available globally anyhow.

6.9. Coding Guideline Reference 337

Neos CMS Documentation, Release 4.0.0

Class Doc Comments

Class Doc Comments should always be in the following order:

• @class <Name.Of.Class> (required)

• Then follows a description of the class, which can span multiple lines. Before and after this description
should be a blank line.

• @namespace <Name.Of.Namespace> (required)

• @extends <Name.Of.BaseClass> (required)

• @singleton (required if the class is a singleton)

If the class has a non-empty constructor, the following doc comments need to be added as well, after a blank line:

• @constructor

• @param {<type>} <nameOfParameter> <description of parameter> for every param-
eter of the constructor

Example of a class doc comment without constructor:

/**
* @class Acme.Foo.Bar

*
* Some Description of the class,

* which can possibly span multiple lines

*
* @namespace Acme.Foo

* @extends TYPO3.TYPO3.Core.SomeOtherClass

*/

Example of a class doc comment with constructor:

/**
* @class Acme.TYPO3.Foo.ClassWithConstructor

*
* This class has a constructor!

*
* @namespace Acme.TYPO3.Foo

* @extends TYPO3.TYPO3.Core.SomeOtherClass

*
* @constructor

* @param {String} id The ID which to use

*/

Method Definitions

Methods should be documented the following way, with a blank line between methods.

Example of a method comment:

...
TYPO3.TYPO3.Core.Application = Ext.apply(new Ext.util.Observable, {

... property definitions ...
/**
* This is a method declaration; and the

* explanatory text is followed by a newline.

*
* @param {String} param1 Parameter name

* @param {String} param2 (Optional) Optional parameter

* @return {Boolean} Return value
(continues on next page)

338 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

*/
aPublicMethod: function(param1, param2) {

return true;
},

/**
* this is a private method of this class,

* the private annotation marks them an prevent that they

* are listed in the api doc. As they are private, they

* have to start with an underscore as well.

*
* @return {void}

* @private

*/
_sampleMethod: function() {
}

}
...

Contrary to what is defined in the Neos Flow PHP Coding Guidelines, methods which are public automatically
belong to the public API, without an @api annotation. Contrary, methods which do not belong to the public
API need to begin with an underscore and have the @private annotation.

• All methods need to have JSDoc annotations.

• Every method needs to have a @return annotation. In case the method does not return anything, a
@return {void} is needed, otherwise the concrete return value should be described.

Property Definitions

All properties of a class need to be properly documented as well, with an @type annotation. If a property is
private, it should start with an underscore and have the @private annotation at the last line of its doc comment:

...
TYPO3.TYPO3.Core.Application = Ext.apply(new Ext.util.Observable, { // this is
→˓just an example class definition

/**
* Explanation of the property

* which is followed by a newline

*
* @type {String}

*/
propertyOne: 'Hello',

/**
* Now follows a private property

* which starts with an underscore.

*
* @type {Number}

* @private

*/
_thePrivateProperty: null,
...

}

Code Style

• use single quotes(‘) instead of double quotes(“) for string quoting

6.9. Coding Guideline Reference 339

Neos CMS Documentation, Release 4.0.0

• Multi-line strings (using \) are forbidden. Instead, multi-line strings should be written like this:

'Some String' +
' which spans' +
' multiple lines'

• There is no limitation on line length.

• JavaScript constants (true, false, null) must be written in lowercase, and not uppercase.

• Custom JavaScript constants should be avoided.

• Use a single var statement at the top of a method to declare all variables:

function() {
var myVariable1, myVariable2, someText;
// now, use myVariable1,

}

Please do **not assign** values to the variables in the initialization, except
→˓empty
default values::

// DO:
function() {

var myVariable1, myVariable2;
...

}
// DO:
function() {

var myVariable1 = {}, myVariable2 = [], myVariable3;
...

}
// DON'T
function() {

var variable1 = 'Hello',
variable2 = variable1 + ' World';

...
}

• We use a single TAB for indentation.

• Use inline comments sparingly, they are often a hint that a new method must be introduced.

Inline Comments must be indented one level deeper than the current nesting level:

function() {
var foo;

// Explain what we are doing here.
foo = '123';

}

• Whitespace around control structures like if, else, . . . should be inserted like in the Neos Flow CGLs:

if (myExpression) {
// if part

} else {
// Else Part

}

• Arrays and Objects should never have a trailing comma after their last element

• Arrays and objects should be formatted in the following way:

340 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

[
{

foo: 'bar'
}, {

x: y
}

]

• Method calls should be formatted the following way:

// for simple parameters:
new Ext.blah(options, scope, foo);
object.myMethod(foo, bar, baz);

// when the method takes a **single** parameter of type **object** as argument,
→˓ and this object is specified directly in place:
new Ext.Panel({

a: 'b',
c: 'd'

});

// when the method takes more parameters, and one is a configuration object
→˓which is specified in place:
new Ext.blah(

{
foo: 'bar'

},
scope,
options

);<

TODO: are there JS Code Formatters / Indenters, maybe the Spket JS Code Formatter?

Using JSLint to validate your JavaScript

JSLint is a JavaScript program that looks for problems in JavaScript programs. It is a code quality tool. When C
was a young programming language, there were several common programming errors that were not caught by the
primitive compilers, so an accessory program called lint was developed that would scan a source file, looking
for problems. jslint is the same for JavaScript.

JavaScript code ca be validated on-line at http://www.jslint.com/. When validating the JavaScript code, “The Good
Parts” family options should be set. For that purpose, there is a button “The Good Parts” to be clicked.

Instead of using it online, you can also use JSLint locally, which is now described. For the sake of convenience, the
small tutorial bellow demonstrates how to use JSlint with the help of CLI wrapper to enable recursive validation
among directories which streamlines the validation process.

• Download Rhino from http://www.mozilla.org/rhino/download.html and put it for instance into /Users/
john/WebTools/Rhino

• Download JSLint.js (@see attachment “jslint.js”, line 5667-5669 contains the configuration we would
like to have, still to decide) (TODO)

• Download jslint.php (@see attachment “jslint.php” TODO), for example into /Users/fudriot/
WebTools/JSLint

• Open and edit path in jslint.php -> check variable $rhinoPath and $jslintPath

• Add an alias to make it more convenient in the terminal:

alias jslint '/Users/fudriot/WebTools/JSLint/jslint.php'

Now, you can use JSLint locally:

6.9. Coding Guideline Reference 341

http://www.jslint.com/
http://www.mozilla.org/rhino/download.html

Neos CMS Documentation, Release 4.0.0

// scan one file or multi-files
jslint file.js
jslint file-1.js file-2.js

// scan one directory or multi-directory
jslint directory
jslint directory-1 directory-2

// scan current directory
jslint .

It is also possible to adjust the validation rules JSLint uses. At the end of file jslint.js, it is possible to
customize the rules to be checked by JSlint by changing options’ value. By default, the options are taken over the
book “JavaScript: The Good Parts” which is written by the same author of JSlint.

Below are the options we use for TYPO3 v5:

bitwise: true, eqeqeq: true, immed: true,newcap: true, nomen: false,
onevar: true, plusplus: false, regexp: true, rhino: true, undef: false,
white: false, strict: true

In case some files needs to be evaluated with special rules, it is possible to add a comment on the top of file which
can override the default ones:

/* jslint white: true, evil: true, laxbreak: true, onevar: true, undef: true,
nomen: true, eqeqeq: true, plusplus: true, bitwise: true, regexp: true,
newcap: true, immed: true */

More information about the meaning and the reasons of the rules can be found at http://www.jslint.com/lint.html

Event Handling

When registering an event handler, always use explicit functions instead of inline functions to allow overriding of
the event handler.

Additionally, this function needs to be prefixed with on to mark it as event handler function. Below follows an
example for good and bad code.

Good Event Handler Code:

TYPO3.TYPO3.Application.on('theEventName', this._onCustomEvent, this);

Bad Event Handler Code:

TYPO3.TYPO3.Application.on(
'theEventName',
function() {

alert('Text');
},
this

);

All events need to be explicitly documented inside the class where they are fired onto with an @event annotation:

TYPO3.TYPO3.Core.Application = Ext.apply(new Ext.util.Observable, {
/**
* @event eventOne Event declaration

*/

/**
* @event eventTwo Event with parameters

(continues on next page)

342 Chapter 6. References

http://www.jslint.com/lint.html

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

* @param {String} param1 Parameter name

* @param {Object} param2 Parameter name

*

* property1: description of property1

* property2: description of property2

*

*/
...

}

Additionally, make sure to document if the scope of the event handler is not set to this, i.e. does not point to its
class, as the user expects this.

ExtJS specific things

TODO

• explain initializeObject

• how to extend Ext components

• can be extended by using constructor() not initComponents() like it is for panels and so on

How to extend data stores

This is an example for how to extend an ExtJS data store:

TYPO3.TYPO3.Content.DummyStore = Ext.extend(Ext.data.Store, {

constructor: function(cfg) {
cfg = cfg || {};
var config = Ext.apply(

{
autoLoad: true

},
cfg

);

TYPO3.TYPO3.Content.DummyStore.superclass.constructor.call(
this,
config

);
}

});
Ext.reg('TYPO3.TYPO3.Content.DummyStore', TYPO3.TYPO3.Content.DummyStore);

Unit Testing

• It’s highly recommended to write unit tests for javascript classes. Unit tests should be located in the follow-
ing location: Package/Tests/JavaScript/...

• The structure below this folder should reflect the structure below Package/Resources/Public/
JavaScript/... if possible.

• The namespace for the Unit test classes is Package.Tests.

• TODO: Add some more information about Unit Testing for JS

• TODO: Add note about the testrunner when it’s added to the package

6.9. Coding Guideline Reference 343

Neos CMS Documentation, Release 4.0.0

• TODO: http://developer.yahoo.com/yui/3/test/

Note: This is a documentation stub.

6.10 Configuration Reference

6.10.1 Navigation tree loadingDepth

loadingDepth defines the number of levels inside the node tree which shall be loaded eagerly, at start. A
similar setting is available for the structure tree.

If you have lots of nodes you can reduce the number of levels inside Settings.yaml to speed up page loading:

Neos:
Neos:
userInterface:

navigateComponent:
nodeTree:
loadingDepth: 2

structureTree:
loadingDepth: 2

6.10.2 Node tree presets

By default all node types that extend Neos.Neos:Document appear in the Node tree filter allowing
the editor to only show nodes of the selected type in the tree.

The default baseNodeType can be changed in order to hide nodes from the tree by default.

This example shows how to exclude one specific node type (and it’s children) from the tree:

Neos:
Neos:
userInterface:

navigateComponent:
nodeTree:
presets:

'default':
baseNodeType: 'Neos.Neos:Document,!Acme.Com:SomeNodeTypeToIgnore'

In addition to the default preset, additional presets can be configured such as:

Neos:
Neos:
userInterface:

navigateComponent:
nodeTree:
presets:

'default':
baseNodeType: 'Neos.Neos:Document,!Acme.Com:Mixin.

→˓HideInBackendByDefault'
'legalPages':
ui:
label: 'Legal pages'
icon: 'icon-gavel'

baseNodeType: 'Acme.Com:Document.Imprint,Acme.Com:Document.Terms'
'landingPages':

(continues on next page)

344 Chapter 6. References

http://developer.yahoo.com/yui/3/test/

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

ui:
label: 'Landing pages'
icon: 'icon-bullseye'

baseNodeType: 'Acme.Com:Mixin.LandingPage'

If at least one custom preset is defined, instead of the list of all node types the filter will display the configured
presets.

6.11 Node Migration Reference

Node migrations can be used to deal with renamed node types and property names, set missing default values for
properties, adjust content dimensions and more.

Node migrations work by applying transformations on nodes. The nodes that will be transformed are selected
through filters in migration files.

The Content Repository comes with a number of common transformations:

• AddDimensions

• AddNewProperty

• ChangeNodeType

• ChangePropertyValue

• RemoveNode

• RemoveProperty

• RenameDimension

• RenameNode

• RenameProperty

• SetDimensions

• StripTagsOnProperty

They all implement the Neos\ContentRepository\Migration\Transformations\TransformationInterface.
Custom transformations can be developed against that interface as well, just use the fully qualified class name for
those when specifying which transformation to use.

6.11.1 Migration files

To use node migrations to adjust a setup to changed configuration, a YAML file is created that configures the mi-
gration by setting up filters to select what nodes are being worked on by transformations. The Content Repository
comes with a number of filters:

• DimensionValues

• IsRemoved

• NodeName

• NodeType

• PropertyNotEmpty

• Workspace

They all implement the Neos\ContentRepository\Migration\Filters\FilterInterface.
Custom filters can be developed against that interface as well, just use the fully qualified class name for those
when specifying which filter to use.

6.11. Node Migration Reference 345

Neos CMS Documentation, Release 4.0.0

Here is an example of a migration, Version20140708120530.yaml, that operates on nodes in the “live”
workspace that are marked as removed and applies the RemoveNode transformation on them:

up:
comments: 'Delete removed nodes that were published to "live" workspace'
warnings: 'There is no way of reverting this migration since the nodes will be

→˓deleted in the database.'
migration:
-

filters:
-
type: 'IsRemoved'
settings: []

-
type: 'Workspace'
settings:

workspaceName: 'live'
transformations:

-
type: 'RemoveNode'
settings: []

down:
comments: 'No down migration available'

Like all migrations the file should be placed in a package inside the Migrations/ContentRepository
folder where it will be picked up by the CLI tools provided with the content repository:

• ./flow node:migrationstatus

• ./flow node:migrate

Use ./flow help <command> to get detailed instructions. The migrationstatus command also prints
a short description for each migration.

Note: Node migrations in Migrations/TYPO3CR directories are also supported for historic reasons

6.11.2 Transformations Reference

AddDimensions

Add dimensions on a node. This adds to the existing dimensions, if you need to overwrite existing dimensions,
use SetDimensions.

Options Reference:

dimensionValues (array) An array of dimension names and values to set.

addDefaultDimensionValues (boolean) Whether to add the default dimension values for all dimensions
that were not given.

AddNewProperty

Add a new property with the given value.

Options Reference:

newPropertyName (string) The name of the new property to be added.

value (mixed) Property value to be set.

346 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

ChangeNodeType

Change the node type.

Options Reference:

newType (string) The new Node Type to use as a string.

ChangePropertyValue

Change the value of a given property.

This can apply two transformations:

• If newValue is set, the value will be set to this, with any occurrences of the
currentValuePlaceholder replaced with the current value of the property.

• If search and replace are given, that replacement will be done on the value (after applying the newValue,
if set).

This would simply override the existing value:

transformations:
-
type: 'ChangePropertyValue'
settings:

property: 'title'
newValue: 'a new value'

This would prefix the existing value:

transformations:
-
type: 'ChangePropertyValue'
settings:

property: 'title'
newValue: 'this is a prefix to {current}'

This would prefix existing value and then apply search/replace on the result:

transformations:
-
type: 'ChangePropertyValue'
settings:

property: 'title'
newValue: 'this is a prefix to {current}'
search: 'something'
replace: 'something else'

And in case your value contains the magic string “{current}” and you need to leav it intact, this would prefix the
existing value but use a different placeholder:

transformations:
-
type: 'ChangePropertyValue'
settings:

property: 'title'
newValue: 'this is a prefix to {__my_unique_placeholder}'
currentValuePlaceholder: '__my_unique_placeholder'

Options Reference:

property (string) The name of the property to change.

6.11. Node Migration Reference 347

Neos CMS Documentation, Release 4.0.0

newValue (string) New property value to be set.

The value of the option currentValuePlaceholder (defaults to “{current}”) will be used to include
the current property value into the new value.

search (string) Search string to replace in current property value.

replace (string) Replacement for the search string.

currentValuePlaceholder (string) The value of this option (defaults to {current}) will be used to
include the current property value into the new value.

RemoveNode

Removes the node.

RemoveProperty

Remove the property.

Options Reference:

property (string) The name of the property to be removed.

RenameDimension

Rename a dimension.

Options Reference:

newDimensionName (string) The new name for the dimension.

oldDimensionName (string) The old name of the dimension to rename.

RenameNode

Rename a node.

Options Reference:

newName (string) The new name for the node.

RenameProperty

Rename a given property.

Options Reference:

from (string) The name of the property to change.

to (string) The new name for the property to change.

SetDimensions

Set dimensions on a node. This always overwrites existing dimensions, if you need to add to existing dimensions,
use AddDimensions.

Options Reference:

dimensionValues (array) An array of dimension names and values to set.

addDefaultDimensionValues (boolean) Whether to add the default dimension values for all dimensions
that were not given.

348 Chapter 6. References

Neos CMS Documentation, Release 4.0.0

StripTagsOnProperty

Strip all tags on a given property.

Options Reference:

property (string) The name of the property to work on.

6.11.3 Filters Reference

DimensionValues

Filter nodes by their dimensions.

Options Reference:

dimensionValues (array) The array of dimension values to filter for.

filterForDefaultDimensionValues (boolean) Overrides the given dimensionValues with dimension
defaults.

IsRemoved

Selects nodes marked as removed.

NodeName

Selects nodes with the given name.

Options Reference:

nodeName (string) The value to compare the node name against, strict equality is checked.

NodeType

Selects nodes by node type.

Options Reference:

nodeType (string) The node type name to match on.

withSubTypes (boolean) Whether the filter should match also on all subtypes of the configured node type.
Note: This can only be used with node types still available in the system!

exclude (boolean) Whether the filter should exclude the given NodeType instead of including only this node
type.

PropertyNotEmpty

Filter nodes having the given property and its value not empty.

Options Reference:

propertyName (string) The property name to be checked for non-empty value.

6.11. Node Migration Reference 349

Neos CMS Documentation, Release 4.0.0

Workspace

Filter nodes by workspace name.

Options Reference:

workspaceName (string) The workspace name to match on.

350 Chapter 6. References

CHAPTER 7

Contribute

7.1 Development

Developing Neos.

7.1.1 Neos UI Development

Setting up your machine for Neos UI development

For user interface development of Neos we utilize grunt and some other tools.

Setting up your machine could be done by using the installation script that can be found in Neos.Neos/
Scripts/install-dev-tools.sh. If you want to do a manual installation you will need to install the
following software:

• nodejs

• npm

• grunt-cli (global, sudo npm install -g grunt-cli)

• requirejs (sudo npm install -g requirejs)

• bower (sudo npm install -g bower)

• bundler (sudo gem install bundler)

• sass & compass (sudo gem install sass compass)

Note: Make sure you call npm install, bundle install --binstubs --path bundle and
bower install before running the grunt tasks.

Grunt tasks types

We have different types of grunt tasks. All tasks have different purposes:

• build commands

351

Neos CMS Documentation, Release 4.0.0

Those commands are used to package a production version of the code. Like for example mini-
fied javascript, minified css or rendered documentation.

• compile commands

Those commands are meant for compiling resources that are used in development context. This
could for example be a packed file containing jquery and related plugins which are loaded in
development context using requirejs.

• watch commands

Those commands are used for watching file changes. When a change is detected the compile
commands for development are executed. Use those commands during your daily work for a fast
development experience.

• test commmands

Used for running automated tests. Those tests use phantomjs which is automatically installed
by calling npm install. Phantomjs needs some other dependencies though, check Neos.
Neos/Scripts/install-phantomjs-dependencies.sh for ubuntu based systems.

Available grunt tasks

Build

• grunt build

Executes grunt build-js and grunt build-css.

• grunt build-js

Builds the minified and concatenated javascript sources to ContentModule-built.js us-
ing requirejs.

• grunt build-css

Compiles and concatenates the css sources to Includes-built.css.

• grunt build-docs

Renders the documentation. This task depends on a local installation of Omnigraffle.

Compile

• grunt compile

Executes grunt compile-js and grunt compile-css

• grunt compile-js

Compiles the javascript sources. This is the task to use if you want to package the jquery sources
including plugins or if you want to recreated the wrapped libraries we include in Neos. During
this process some of the included libraries are altered to prevent collisions with Neos or the
website frontend.

• grunt compile-css

Compiles and concatenates the scss sources to css.

Watch

• watch-css

Watches changes to the scss files and runs compile-css if a change is detected.

352 Chapter 7. Contribute

Neos CMS Documentation, Release 4.0.0

• watch-docs

Watches changes to the rst files of the documentation, and executes a compilation of all re-
structured text sources to html. This task depends on a local sphinx install but does not require
Omnigraffle.

• watch

All of the above.

Test

• grunt test

Runs QUnit tests for javascript modules.

7.2 Documentation

Improving the Neos documentation.

7.2.1 Neos Documentation

How it works

We use Read The Docs (http://neos.readthedocs.org) to host the documentation for Neos. This service listens for
commits on Github and automatically builds the documentation for all branches.

The entire documentation of Neos is located inside the Neos development collection (https://github.com/neos/
neos-development-collection) and can be edited by forking the repository, editing the files and creating a pull
request.

reStructuredText

The markup language that is used by Sphinx is [reStructuredText](http://docutils.sourceforge.net/rst.html), a plain-
text markup syntax that easy to edit using any text editor and provides the possibility to write well organized
documentations that can be rendered in multiple output formats by e.g. Sphinx.

Sphinx

Sphinx is a generator that automates building documentations from reStructuredText markup. It can produce
HTML, LaTex, ePub, plain text and many more output formats.

As Sphinx is a python based tool, you can install it by using either pip:

pip install -U Sphinx

or easy_install:

easy_install -U Sphinx

Makefile

As Sphinx accepts many options to build the many output formats, we included a Makefile to simplify the building
process.

In order to use the commands you must already have Sphinx installed.

You can get an overview of the provided commands by

7.2. Documentation 353

http://neos.readthedocs.org
https://github.com/neos/neos-development-collection
https://github.com/neos/neos-development-collection
http://docutils.sourceforge.net/rst.html

Neos CMS Documentation, Release 4.0.0

cd Neos.Neos/Documentation

make help

Docker

If you don’t want to install Sphinx on your computer or have trouble installing it, you can use a prebuilt Docker
image that contains a working version of Sphinx. The image is built on top of a pretty small alpine linux and has
only around 80MB.

You can simply prefix your make command with the following docker command:

docker run -v $(pwd):/documents hhoechtl/doctools-sphinx make html

This will fire up a docker-container built from that image and execute the Sphinx build inside the container. As
your current directory is mounted into the container, it can read the files and the generated output will be written
in your local filesystem as it would by just executing the make command with your local Sphinx installation.

7.2.2 Beginners Guide Sphinx-Setup

Contribute to the Neos-Documentation

This Documentation aims to get you started quite from the ground up. A lot of explainations here can of cause be
used to work on the whole repository, it just seems to be a good starting point to explain the workflow concerning
the documentation first.

Imagine you would like to contribute to the Documentation but you haven’t worked with github yet, you don’t
know how a proper workflow looks like and you are not sure how to start contributing. The problem is, that even
while explaining some of the basic steps, there always is the need for some kind of basic setup you will have to
take care of yourself. You can of cause commit by using GitHub itself. The aim of this document is focusing on
working with git locally. You need for eg. a Linux Console and git to get started.1

What are the goals?

Once everything is set up nicely and hopefully without to much trouble, you will:

• know how to commit changes directly on GitHub.

• be able to easily access the Documentation offline in your browser

• know how to work with git and hub effectively when editing the Documentation

• see the life updated changes in your browser

• send pull request for your changes back to the Neos-Team

• see how to do some basic formatting with reStructuredText (rST)

• know how to use the todo functionality

Let’s get started

The easiest way to start is using GitHubs website itself to work on the repository. Just click on the fork-button
inside the repository, once you have done this you have got your own copy (fork) of the repo you can work on. At
first create a new branch by clicking on the branch-button and typing in a new appropriate branch-name into the
input field.

Next you can start editing the files relating to the branch you just created. Now you just need to save your changes
by clicking the “Commit changes”-button. (Please read the part below about meaningful commit messages).

1 The basic setup, this Tutorial and the Screenshots are based on Arch Linux, Awesome (as a Window Manager), bash (with urxvt) and
ice-firefox (the single-page-browser ice-spb) and Atom as the Editor.

354 Chapter 7. Contribute

Neos CMS Documentation, Release 4.0.0

Once you have done all the necessary changes you can click the “Create pull request”-button. Again make sure
to explain what you have done. This last step opens also a new dialog about your pull request in the original
forked repository. Depending of what you have done this will either be merged right away or you might get some
feedback if some work might still be necessary.

That’s basically it. Next we will look into the way of making your commits more precise before discussing a
detailed offline way of working on the repository.

Guideline - commit messages

Note: The following section was originally posted here (commit message style) by Christian Müller. Please make
sure to follow these Guidelines.

To have a clear and focused history of code changes is greatly helped by using a consistent way of writing commit
messages. Because of this and to help with (partly) automated generation of change logs for each release we have
defined a fixed syntax for commit messages that is to be used.

Warning: Tip: Never commit without a commit message explaining the commit

The syntax is as follows:

Start with one of the following codes:

Note: FEATURE A feature change. Most likely it will be an added feature, but it could also be removed. There
should be a corresponding ticket in the issue tracker. Features usually only get into the current development
master.

BUGFIX A fix for a bug. There should be a ticket corresponding to this in the issue tracker and we encourage to
add a new test that exposes the bug, which makes the work for everyone easier in the future and prevents the bug
from reappearing.

TASK Anything not covered by the above categories, e.g. coding style cleanup or documentation changes. Usually
only used if there’s no corresponding ticket.

SECURITY A security related change. Those are only commited by active team members in the security commu-
nity of practice.

MERGE Used for a branch upmerges by the team (or CI server) not something you usually would need to use.

The code is separated by a colon : from a short summary in the same line, no full stop at the end.

If the change affects the public API or is likely to break things on the user side, prefix the line with !!!. This
indicates a breaking change that needs human action when updating. Make sure to explain why a change is
breaking and in what circumstances. A change including a migration should always be marked breaking to alert
users of the need to migrate.

Then (after a blank line) follows the custom message explaining what was done. It should be written in a style
that serves well for a change log read by users. If there is more to say about a change add a new paragraph with
background information below. In case of breaking changes give a hint on what needs to be changed by the user.
If corresponding tickets exist, mention the ticket number(s) using footer lines after another blank line and use the
following actions:

<issue number> #close Some additional info if needed If the change resolves a ticket by fixing a bug, implemeting
a feature or doing a task. <issue number> #comment Some info why this is related If the change relates to an issue
but does not resolve or fix it. This follows Jiras smart commit footers, see more details in the Jira documentation3

A commit messages following the rules. . . :

7.2. Documentation 355

https://discuss.neos.io/t/commit-message-style/507

Neos CMS Documentation, Release 4.0.0

Note: TASK: Short (50 chars or less) summary of changes

More detailed explanatory text, if necessary. Wrap it to about 72 characters or so. In some contexts, the first line
is treated as the subject of an email and the rest of the text as the body. The blank line separating the summary
from the body is critical (unless you omit the body entirely); tools like rebase can get confused if you run the two
together.

Write your commit message in the present tense: “Fix bug” and not “Fixed bug.” This convention matches up with
commit messages generated by commands like git merge and git revert.

Code snippets:

should be written in
ReStructuredText compatible
format for better highlighting

Further paragraphs come after blank lines.

• Bullet points are okay, too

• An asterisk is used for the bullet, it can be preceded by a single space. This format is rendered correctly by
Forge (redmine)

• Use a hanging indent

A first step in solving neos/flow-development-collection#789.

Fixes #123

Closes #456

Examples of good and bad subject lines:

Note: Introduce xyz service BAD, missing code prefix

BUGFIX: Fixed bug xyz BAD, subject should be written in present tense

TASK!!!: A breaking change BAD, subject has to start with !!! for breaking changes

BUGFIX: SessionManager removes expired sessions GOOD, the line explains what the change does, not what the
bug is about (this should be explained in the following lines and in the related bug tracker ticket)

!!! BUGFIX: SessionManager never expires sessions GOOD, the line explains what the change does, not what
the bug is about (this should be explained in the following lines and in the related bug tracker ticket)

Warning: Please also have a look at this discussion: (Creating a pull request).

Using git in the console

sudo apt-get install git-all hub #(Debian Based)
sudo pacman -Sy git hub #(Arch Linux)

Quote: “Whether you are beginner or an experienced contributor to open-source, hub makes it easier to fetch
repositories, navigate project pages, fork repos and even submit pull requests, all from the command-line.”
– hub.github.com

The Atom Editor including the extension packages Git Diff and language-restructuredtext would be nice options
for editing the files, etc. . . :

356 Chapter 7. Contribute

https://discuss.neos.io/t/creating-a-pull-request/506
https://hub.github.com/

Neos CMS Documentation, Release 4.0.0

yaourt atom-editor #(Arch Linux)

(See https://github.com/atom/atom for other Distributions)2

Here you can see how the Atom Editor looks like. On the left side you can see, that the new (green) and changed
(yellow) folders and files are highlighted, also in the document itself you can see which lines you changed or
added:

Fig. 1: The Atom Editor

To be able to work with GitHub nicely from the console, you could use hub instead of git, for that you can edit
and add: alias git=hub to the .bashrc and refresh it:

vim ~/.bashrc #(add: alias git=hub)
source ~/.bashrc #(to reload the .bashrc-file)

The Neos Development Collection Repository

Now lets clone the Neos Development Collection Repository into the folder you are currently in.

git clone https://github.com/neos/neos-development-collection.git

Sphinx requirements

Sphinx is based on Python to make Sphinx available in your System you probably need to install some packages
through pip.

sudo pacman -S python-pip

There are different ways of dealing with Python-packages. The following way is to install it in the user-directory
and a dding the bin-path to the $PATH – Environment.

2 The Atom Editor is just one example of many good Editors out there, also the given Information here might not be enough the Arch
Linux command makes necessary to have set up AUR and yaourt otherwise you won’t be able to run that command at all. . .

7.2. Documentation 357

https://github.com/atom/atom

Neos CMS Documentation, Release 4.0.0

pip install --user Sphinx
pip install --user sphinx-autobuild
pip install --user sphinx_rtd_theme

Then add the following line to your .bashrc: export PATH=$HOME/.local/bin:$PATH

vim ~/.bashrc #(add the above line)
source ~/.bashrc #(to reload the .bashrc-file)

Let the fun begin

Now you should already be able to make the documentation available in the browser. Go into the following folder
from where you cloned the Neos-Collection:

cd /neos-development-collection/Neos.Neos/Documentation/

And then run the following command:

make livehtml

If everything works as planed, you should now see a line like this in the console:

[I 160908 18:55:04 server:281] Serving on http://127.0.0.1:8000

Fig. 2: Sphinx make livehtml

The Url served here is, as long as you keep the process running, live reloaded when the files are changed. Just
open the Url in your Browser, you should see the whole Documentation served by your local machine. Now try
to open a file in the Neos-Collection eg. the file you are reading right now is located here: /neos-development-
collection/Neos.Neos/Documentation/Contribute/Documentation/BeginnersGuide.rst

Now change a line, save it and have a look in the console and the browser. Afterwards undo the change, to
make sure git doesn’t take the change seriously yet. . . The console should have recognised by now, that you are
connected with a browser to the url, and now should also tell you which file was changed. If you check the browser
again, it should, without manually refreshing the page, show you the edited line in its new version.

358 Chapter 7. Contribute

Neos CMS Documentation, Release 4.0.0

Fig. 3: Sphinx browser view

reStructuredText (rST)

Now you can start improving the documentation. If you haven’t worked with reStructuredText (rST) it’s pretty
simple and gives you quite some options. Just have a look at the Documentation files available, they give you
a good understanding of what is possible. It has a lot of capabilities. Checkout their documentation for more
informations Sphinx docs.

One nice feature is the, in the Neos-Sphinx setup integrated, extension todo. With todo you are able to point out
that there is still some work necessary. Add a todo, if you feel like there is something missing here, or someone
else needs to check if what you have written is correct like this. Just use it a lot to make sure it’s obvious what still
needs to be done. . .

Note: Every following line which is indented by two spaces now, is part of the note. If you would replace it with
todo instead of (.. note:: -> .. todo::), it wouldn’t be visible in the frontend/browser anymore, but just just visible
for you and others, when editing these files.

There is also the possibility to see all the todos with its positions by putting .. todolist:: into the document.
Both features (the todo itself and their collection) can be made visible in the browser while working on the
documentation for eg. by starting Sphinx like this:

make livehtml SPHINXOPTS="-D todo_include_todos=1"

If you just want to put a simple comment (also not shown in the frontend) you can do the following:

Note: Comments are also invisible in the browser, you can create them by just using two dots (..) at the beginning
of a line. The following indented lines are part of the comment.

Warning: Make sure that when you add code-blocks eg. .. code-block:: bash to leave a new line afterwards,
otherwise its not being rendered.

7.2. Documentation 359

http://www.sphinx-doc.org/en/stable/rest.html

Neos CMS Documentation, Release 4.0.0

Fig. 4: Sphinx todolist

GitHub checkout-process

Now we should have a look at the git-workflow. The first step you should checkout a branch from master to be
able to work on that locally for now. Somewhere below the Folder neos-development-collection/, you should run
the following command to create and enter a new branch:

git checkout -b [local_branch_name]

Now you can start editing the files as you like in your own local feature-branch.

If you’ve been working on a branch here and there, you should probably make sure first, that your master-branch
is up to date. The there are two strategies for that. Here we will rebase your only local branch onto master. The
following would be an example where you stash your changes for now, so you don’t have to commit them there
and then, switch to your local master, pull the changes to be up to date and then apply your changes back to your
reactivated feature-branch.

git stash
git checkout master
git pull
git checkout [local_branch_name]
git rebase master
git stash apply

Warning: Make sure not to rebase branches that you’ve collaborated with others on. Never rebase anything
you have pushed somewhere already.

To get more information about how to work with git go to this page there are many good sources online. Two
good examples are for eg.: SSH, Basic Branching and Merging or also Rebasing.

git add [new files]
git commit -m "FEATURE done with the feature: [local_branch_name] to make this and
→˓that more efficient"
git fork #(forking repo on GitHub...)

(continues on next page)

360 Chapter 7. Contribute

https://help.github.com/articles/generating-an-ssh-key/
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/ch3-6.html

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

#→ git remote add YOUR_USER git://github.com/YOUR_USER/neos-development-collection.
→˓git

push the changes to your new remote
git push YOUR_USER feature
open a pull request for the topic branch you've just pushed
git pull-request
#→ (opens a text editor for your pull request message)

7.2. Documentation 361

Neos CMS Documentation, Release 4.0.0

362 Chapter 7. Contribute

CHAPTER 8

How To’s

8.1 Neos Best Practices (to be written)

8.2 Adding A Simple Contact Form

Using the Neos.Form package you can easily create and adopt simple to very complex forms. For it to work
properly you just have to define where it should find its form configurations.

Yaml (Sites/Vendor.Site/Configuration/Settings.yaml)

Neos:
Form:
yamlPersistenceManager:

savePath: 'resource://Vendor.Site/Private/Form/'

Now place a valid Neos.Form Yaml configuration in the Private/Form folder. Then add a Form Element where
you wish the form to be displayed and select it from the dropdown in the Inspector.

Yaml (Sites/Vendor.Site/Resources/Private/Form/contact-form.yaml)

type: 'Neos.Form:Form'
identifier: contact-form
label: Contact
renderingOptions:

submitButtonLabel: Send
renderables:

-
type: 'Neos.Form:Page'
identifier: page-one
label: Contact
renderables:

-
type: 'Neos.Form:SingleLineText'
identifier: name
label: Name
validators:
- identifier: 'Neos.Flow:NotEmpty'

properties:

(continues on next page)

363

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

placeholder: Name
defaultValue: ''

-
type: 'Neos.Form:SingleLineText'
identifier: email
label: E-Mail
validators:
- identifier: 'Neos.Flow:NotEmpty'
- identifier: 'Neos.Flow:EmailAddress'

properties:
placeholder: 'E-Mail'

defaultValue: ''
-

type: 'Neos.Form:MultiLineText'
identifier: message
label: Message
validators:
- identifier: 'Neos.Flow:NotEmpty'

properties:
placeholder: 'Your Message'

defaultValue: ''
finishers:

-
identifier: 'Neos.Form:Email'
options:

templatePathAndFilename: resource://Vendor.Site/Private/Templates/Email/
→˓Message.txt

subject: Contact from example.net
recipientAddress: office@example.net
recipientName: 'Office of Company'
senderAddress: server@example.net
senderName: Server example.net
replyToAddress: office@example.net
format: plaintext

-
identifier: 'Neos.Form:Confirmation'
options:

message: >
<h3>Thank you for your feedback</h3>
<p>We will process it as soon as possible.</p>

In this example we are using the Neos.Form:Email Finisher. The Email Finisher requires the Neos.SwiftMailer
package to be installed. It sends an E-Mail using the defined template and settings. By the second Finisher a
confirmation is displayed.

Html (Sites/Vendor.Site/Resources/Private/Templates/Email/Message.txt)

Hello,

<f:for each="{form.formState.formValues}" as="value" key="label">
{label}: {value}

</f:for>

Thanks

To find out more about how to create forms see the Neos.Form package. There is even a Click Form Builder that
exports the Yaml settings files.

Warning: Make sure the Neos.Demo package (or other) is deactivated. Otherwise the setting Neos.Form.
yamlPersistenceManager.savePath may be overwritten by another package. You can deactivate a

364 Chapter 8. How To’s

Neos CMS Documentation, Release 4.0.0

package with the command ./flow package:deactivate <PackageKey>.

8.3 Changing the Body Class with a condition

In some cases there is the need to define different body classes based on a certain condition.

It can for example be that if a page has sub pages then we want to add a body class tag for this.

Fusion code:

page {
bodyTag {

attributes.class = ${q(node).children().count() > 1 ? 'has-subpages' : ''}
}

}

First of all we add the part called bodyTag to the Fusion page object. Then inside we add the attributes.class.

Then we add a FlowQuery that checks if the current node has any children. If the condition is true then the class
“has-subpages” is added to the body tag on all pages that have any children.

An other example could be that we want to check if the current page is of type page.

Fusion code:

page {
bodyTag {

attributes.class = ${q(node).filter('[instanceof Neos.Neos:Page]') != '' ?
→˓'is-page' : ''}

}
}

8.4 Changing Defaults Depending on Content Placement

Let’s say we want to adjust our YouTube content element depending on the context: By default, it renders in a
standard YouTube video size; but when being used inside the sidebar of the page, it should shrink to a width of
200 pixels. This is possible through nested prototypes:

page.body.contentCollections.sidebar.prototype(My.Package:YouTube) {
width = '200'
height = '150'

}

Essentially the above code can be read as: “For all YouTube elements inside the sidebar of the page, set width and
height”.

Let’s say we also want to adjust the size of the YouTube video when being used in a ThreeColumn element.
This time, we cannot make any assumptions about a fixed Fusion path being rendered, because the ThreeColumn
element can appear both in the main column, in the sidebar and nested inside itself. However, we are able to nest
prototypes into each other:

prototype(ThreeColumn).prototype(My.Package:YouTube) {
width = '200'
height = '150'

}

This essentially means: “For all YouTube elements which are inside ThreeColumn elements, set width and height”.

8.3. Changing the Body Class with a condition 365

Neos CMS Documentation, Release 4.0.0

The two possibilities above can also be flexibly combined. Basically this composability allows to adjust the
rendering of websites and web applications very easily, without overriding templates completely.

After you have now had a head-first start into Fusion based on practical examples, it is now time to step back a
bit, and explain the internals of Fusion and why it has been built this way.

8.5 Creating a simple Content Element

If you need some specific content element, you can easly create a new Node Type with an attached HTML tem-
plate. To add a new Node Type, follow this example, just replace “Vendor” by your own vendor prefix:

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml):

'Vendor:YourContentElementName':
superTypes:
'Neos.Neos:Content': TRUE

ui:
label: 'My first custom content element'
group: 'general'
inspector:

groups:
image:
label: 'Image'
icon: 'icon-image'
position: 1

properties:
headline:

type: string
defaultValue: 'Replace by your headline value ...'
ui:

label: 'Headline'
inlineEditable: TRUE

subheadline:
type: string
defaultValue: 'Replace by your subheadline value ...'
ui:

label: 'Subheadline'
inlineEditable: TRUE

text:
type: string
ui:

label: 'Text'
reloadIfChanged: TRUE

image:
type: Neos\Media\Domain\Model\ImageInterface
ui:

label: 'Image'
reloadIfChanged: TRUE
inspector:
group: 'image'

Based on your Node Type configuration, now you need a Fusion object to be able to use your new Node Type.
This Fusion object needs to have the same name as the Node Type:

Fusion (Sites/Vendor.Site/Resources/Private/Fusion/Root.fusion):

prototype(Vendor:YourContentElementName) < prototype(Neos.Neos:Content) {
templatePath = 'resource://Vendor.Site/Private/Templates/FusionObjects/

→˓YourContentElementName.html'

headline = ${q(node).property('headline')}

(continues on next page)

366 Chapter 8. How To’s

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

subheadline = ${q(node).property('subheadline')}
text = ${q(node).property('text')}
image = ${q(node).property('image')}

}

Last thing, add the required Fluid template:

HTML (Vendor.Site/Private/Templates/FusionObjects/YourContentElementName.html):

{namespace neos=Neos\Neos\ViewHelpers}
{namespace media=Neos\Media\ViewHelpers}
<article>

<header>
{neos:contentElement.editable(property: 'headline', tag: 'h2')}
{neos:contentElement.editable(property: 'subheadline', tag: 'h3')}

</header>
<div>

{neos:contentElement.editable(property: 'text')}
<f:if condition="{image}"><media:image image="{image}"

→˓maximumWidth="300" alt="{headline}" /></f:if>
</div>

</article>

Now, if you try to add a new Node in your page, you should see your new Node Type. Enjoy editing with Neos.

8.6 Customize Login Screen

You can customize the login screen by editing your Settings.yaml:

Neos:
Neos:
userInterface:

backendLoginForm:
backgroundImage: 'resource://Your.Package/Public/Images/LoginScreen.jpg'

Or alternatively add a custom stylesheet:

Neos:
Neos:
userInterface:

backendLoginForm:
stylesheets:
'Your.Package:CustomStyles': 'resource://Your.Package/Public/Styles/

→˓Login.css'

Note: In this case Your.Package:CustomStyles is a simple key, used only internally.

8.6.1 How to disable a stylesheet ?

You can disable existing stylesheets, by setting the value to FALSE, the following snippet will disable the
stylesheet provided by Neos, so your are free to implement your own:

Neos:
Neos:
userInterface:

backendLoginForm:

(continues on next page)

8.6. Customize Login Screen 367

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

stylesheets:
'Neos.Neos:DefaultStyles': FALSE
'Your.Package:CustomStyles': 'resource://Your.Package/Public/Styles/

→˓Login.css'

8.7 Editing a shared footer across all pages

A shared footer in Neos works as follows:

• The homepage contains a collection of content elements

• The same collection is rendered on all other pages

This enables you to edit the footer on all pages.

To add the footer to the page you use the ContentCollection with a static node path.

To have the collection on the homepage you need to configure the childNodes structure of the homepage. For this
you create a homepage node type with for example the following configuration in NodeTypes.yaml:

'My.Package:HomePage':
superTypes:
'Neos.NodeTypes:Page': TRUE

ui:
label: 'Homepage'

childNodes:
footer:

type: 'Neos.Neos:ContentCollection'

Note: If you run into the situation that the child nodes for your page are missing (for example if you manually
updated the node type in the database) you might have to create the missing child nodes using:

./flow node:repair --node-type Neos.NodeTypes:Page

Fusion code:

footer = Neos.Neos:ContentCollection {
nodePath = ${q(site).find('footer').property('_path')}
collection = ${q(site).children('footer').children()}

}

Of course you have to update the selection in the example if your footer is not stored on the site
root, but for example on a page named ‘my-page’. The selection would then be: ${q(site).find(‘my-
page’).children(‘footer’).children()}.

8.8 Extending the Page

In Neos the page is a simple Node Type named Neos.Neos:Page, you can directly extend this Node Type to add
specific properties. Below you will find a simple example for adding a page background image:

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml)

'Neos.NodeTypes:Page':
ui:
inspector:

groups:

(continues on next page)

368 Chapter 8. How To’s

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

background:
label: 'Background'
position: 900

properties:
backgroundImage:

type: Neos\Media\Domain\Model\ImageInterface
ui:

label: 'Image'
reloadPageIfChanged: TRUE
inspector:
group: 'background'

With this configuration, when you click on the page, you will see the Image editor in the Inspector.

To access the backgroundImage in your page template you can also modify the Neos.Neos:Page Fusion object,
like in the below example:

Fusion (Sites/Vendor.Site/Resources/Private/Fusion/Root.fusion)

prototype(Neos.Neos:Page) {
body.backgroundImage = ${q(node).property('backgroundImage')}

}

With Neos.Media ViewHelper you can display the Image with the follwing HTML snippet:

HTML

{namespace media=Neos\Media\ViewHelpers}
<style>
html {

margin:0;
padding:0;
background: url({media:uri.image(image:backgroundImage)}) no-repeat center

→˓fixed;
-webkit-background-size: cover;
-moz-background-size: cover;
-o-background-size: cover;
background-size: cover;

}
</style>

8.9 Integrating a JavaScript-based slider

If you want to integrate a Slider into your page as content element or as part of your template and want edit it in
the backend you have do some simple steps.

First you have to use a slider javscript plugin which initializes itself when added to the page after page load.
Or you write your own initialization code into a javascript function which you then add as callback for the neos
backend events.

For this example the carousel plugin and styling from bootstrap 3.0 has been used: http://getbootstrap.com/
javascript/#carousel

To create the basic content element you have to add it to your node types.

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml):

'Vendor.Site:Carousel':
superTypes:
'Neos.Neos:Content': TRUE

childNodes:
(continues on next page)

8.9. Integrating a JavaScript-based slider 369

http://getbootstrap.com/javascript/#carousel
http://getbootstrap.com/javascript/#carousel

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

carouselItems:
type: 'Neos.Neos:ContentCollection'

ui:
label: 'Carousel'
group: 'plugins'
icon: 'icon-picture'
inlineEditable: TRUE

Next you need to define the prototype for the slider in typoscript.

Fusion (Sites/Vendor.Site/Resources/Private/Fusion/NodeTypes/Carousel.fusion):

prototype(Vendor.Site:Carousel) {
carouselItems = Neos.Neos:ContentCollection {

nodePath = 'carouselItems'
content.iterationName = 'carouselItemsIteration'
attributes.class = 'carousel-inner'

}

// Collect the carousels children but only images
carouselItemArray = ${q(node).children('carouselItems').children(

→˓'[instanceof Neos.NodeTypes:Image]')}

// Enhance image prototype when inside the carousel
prototype(Neos.NodeTypes:Image) {

// Render images in the carousel with a special template.
templatePath = 'resource://Vendor.Site/Private/Templates/

→˓FusionObjects/CarouselItem.html'

// The first item should later be marked as active
attributes.class = ${'item' + (carouselItemsIteration.isFirst ? '

→˓active' : '')}

// We want to use the item iterator in fluid so we have to store
→˓it as variable.

iteration = ${carouselItemsIteration}
}

}

Now you need to include this at the top of your (Sites/Vendor.Site/Resources/Private/Fusion/Root.fusion):

// Includes all additional ts2 files inside the NodeTypes folder
include: NodeTypes/*.fusion

For rendering you need the fluid templates for the slider.

Html (Sites/Vendor.Site/Private/Templates/NodeTypes/Carousel.html)

{namespace neos=Neos\Neos\ViewHelpers}
{namespace fusion=Neos\Fusion\ViewHelpers}
<div{attributes -> f:format.raw()}>

<div class="carousel slide" id="{node.identifier}">
<!-- Indicators -->
<ol class="carousel-indicators">

<f:for each="{carouselItemArray}" as="item" iteration=
→˓"itemIterator">

<li data-target="#{node.identifier}" data-slide-to=
→˓"{itemIterator.index}" class="{f:if(condition: itemIterator.isFirst, then:
→˓'active')}">

</f:for>

(continues on next page)

370 Chapter 8. How To’s

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

<!-- Wrapper for slides -->
{carouselItems -> f:format.raw()}

<!-- Controls -->
<a class="left carousel-control" href="#{node.identifier}" data-

→˓slide="prev">

<a class="right carousel-control" href="#{node.identifier}" data-

→˓slide="next">

</div>

</div>

And now the fluid template for the slider items.

Html (Sites/Vendor.Site/Private/Templates/FusionObjects/CarouselItem.html)

{namespace neos=Neos\Neos\ViewHelpers}
{namespace media=Neos\Media\ViewHelpers}
<div{attributes -> f:format.raw()}>

<f:if condition="{image}">
<f:then>

<media:image image="{image}" alt="{alternativeText}" title=
→˓"{title}" maximumWidth="{maximumWidth}" maximumHeight="{maximumHeight}" />

</f:then>
<f:else>

<img src="{f:uri.resource(package: 'Neos.Neos', path:
→˓'Images/dummy-image.svg')}" title="Dummy image" alt="Dummy image" />

</f:else>
</f:if>
<div class="carousel-caption">

<f:if condition="{hasCaption}">
{neos:contentElement.editable(property: 'caption')}

</f:if>
</div>

</div>

For styling you can simply include the styles provided in bootstrap into your page template.

Html

<link rel="stylesheet" href="{f:uri.resource(path: '3/css/bootstrap.min.css',
→˓package: 'Neos.Twitter.Bootstrap')}" media="all" />

If you want to hide specific parts of a plugin while in backend you can use the provided neos-backend class.

Css

.neos-backend .carousel-control {
display: none;

}

Don’t forget to include the javascript for the plugin from the bootstrap package into your page template.

Html

<script src="{f:uri.resource(path: '3/js/bootstrap.min.js', package: 'Neos.Twitter.
→˓Bootstrap')}"></script>

Now, you should be able to add the new ‘Carousel’ node type as content element.

8.9. Integrating a JavaScript-based slider 371

Neos CMS Documentation, Release 4.0.0

8.10 Rendering Custom Document Types

8.10.1 Select Template based on NodeType

It is possible to select the page rendering configuration based on the node type of the page. Let’s say you have a
custom node type named Your.Site:Page which has Neos.NodeTypes:Page as a supertype. You added
a Your.Site:Employee page which is used for displaying a personal page of employees working in your
company. This page should have a different rendering output compared to your basic page.

The right approach would be to create a Fusion prototype for your default page and employee page like:

prototype(Your.Site:Page) < prototype(Neos.Neos:Page) {
body.templatePath = 'resource://Your.Site/Private/Templates/Page/Default.html'
Your further page configuration here

}

prototype(Your.Site:EmployeePage) < prototype(Your.Site:Page) {
body.templatePath = 'resource://Your.Site/Private/Templates/Page/Employee.html'
Your further employee page configuration here

}

Because Neos provides the documentType matcher out of the box (see Rendering A Page), these prototypes will
be automatically picked up and rendered by Fusion, giving you the possibility to control the rendering for each
page type individually.

8.11 Rendering a Menu

The implementation of a menu is done in Fusion and HTML, this gives an flexibility in what can be rendered.

First of all you have to add a new element (with a name) in Fusion that is of type Menu. Then inside the Fusion
object you can set what kind of rendering (templatePath) to use, an entryLevel and a maximumLevels properties.

Fusion code:

mainMenu = Menu
mainMenu {

templatePath = 'resource://VendorName.VendorSite/Private/Templates/
→˓FusionObjects/MainMenu.html'

entryLevel = 1
maximumLevels = 0

}

372 Chapter 8. How To’s

Neos CMS Documentation, Release 4.0.0

The example above sets first a templatePath for the mainMenu object, then the level to start finding nodes from is
set to level 1. It will only take nodes on the current level because of the property maximumLevels is set to 0.

If you want a custom rendering of my menu items then you need to add a template. This template renders a ul list
that has a link to a node.

Full HTML code:

{namespace neos=Neos\Neos\ViewHelpers}
<ul class="nav">

<f:for each="{items}" as="item">
<li class="menu-item">

<neos:link.node node="{item.node}" />

</f:for>

What is done is first to include a viewhelper to being able to link my nodes inside the HTML. The namespace in
the example is neos to clarify from where the viewhelper is taken.

Viewhelper include:

{namespace neos=Neos\Neos\ViewHelpers}

The next thing is to iterate through the nodes found by Fusion.

Iterating through nodes:

<f:for each="{items}" as="item">
...

</f:for>

What then is done inside the iteration is that first we wrap our node with a li tag with a class called menu-item.
Then we use our viewhelper to (which namespace is neos in this example) link it to a node in Neos. The linking
is set in the parameter node, the you can chose what should be shown as a text for the link. In this case the label
(default) of the node is the text.

Wrapping and linking of node:

<li class="menu-item">
<neos:link.node node="{item.node}" />

8.12 Rendering a Meta-Navigation

To render a meta navigation (ex: footer navigation) in Neos all you need to use is Fusion and HTML.

A common fact is that most sites have footer where all pages are using the same content or information. So a
common issue is how to solve this in the best possible way.

VendorName.VendorSite/Resources/Private/Fusion/Root.fusion

Fusion code:

page.body {
metaMenu = Menu
metaMenu {

entryLevel = 2
templatePath = 'resource://VendorName.VendorSite/Private
/Templates/FusionObjects/MetaMenu.html'
maximumLevels = 1
startingPoint = ${q(site).children('[uriPathSegment="metamenu"]').get(0)}

(continues on next page)

8.12. Rendering a Meta-Navigation 373

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

}
}

The first thing that we define inside the page.body is a Menu object that is called metaMenu. The options available
in this example is:

• entryLevel: On which level in the page structure the menu should start.

• templatePath: The path to the template where the rendering is done.

• maximumLevels: How many levels the menu can show.

• startingPoint: The starting point of the menu, in this case the node with name ‘nameOfNode’ is the starting
point.

HTML template code:

{namespace neos=Neos\Neos\ViewHelpers}
<nav class="nav">

<ul class="nav nav-pills">
<f:for each="{items}" as="item" iteration="menuItemIterator">

<li class="{item.state}">
<neos:link.node node="{item.node}" />

</f:for>

</nav>

What is done is first to include a view helper to be able to link to nodes inside the HTML. The namespace in the
example is neos to clarify from where the viewhelper is taken.

Viewhelper include:

{namespace neos=Neos\Neos\ViewHelpers}

The next thing is to iterate through the nodes found by Fusion.

Iterating through nodes:

<f:for each="{items}" as="item">
...

</f:for>

What then is done inside the iteration is that first we wrap our node with a li tag with a class called menu-item.
Then we use our view helper to (which namespace is neos that is clarified) link it to a node in Neos. The linking
is set in the parameter node, the you can choose what should be shown as a text for the link. In this case the label
(default) of the node is the text.

Wrapping and linking of node:

<li class="{item.state}">
<neos:link.node node="{item.node}" />

The last thing to do is to include the meta menu to our page layout(s).

Include meta menu:

{parts.metaMenu -> f:format.raw()}

374 Chapter 8. How To’s

Neos CMS Documentation, Release 4.0.0

8.13 Tagging assets automatically

Uploaded assets like images, documents or media files can be assigned to Tags and AssetCollections manually
in the Media module. Especially for sites with many assets it is useful to automate this in order to keep files
organized.

8.13.1 Asset Collection based on site

Sites can already be assigned to an AssetCollection in the Sites Management module. If that is the case, any asset
uploaded to a node within that site will automatically be added to the corresponding AssetCollection. This is
especially useful in order to keep files of multi-site installations separated.

For more fine-granular manipulation the ContentController::assetUploaded signal can be used to
alter assets based on the node they were attached to:

8.13.2 Hooking into the asset creation

In order to hook into the asset creation, a new signal/slot connection has to be established. For this a new Pack-
age.php (usually in Packages/Site/The.Site/Classes/) has to be added:

Example: Package.php

<?php
namespace Some\Package;

use Neos\Flow\Core\Bootstrap;
use Neos\Flow\Package\Package as BasePackage;
use Neos\Neos\Controller\Backend\ContentController;

class Package extends BasePackage
{

public function boot(Bootstrap $bootstrap)
{

$dispatcher = $bootstrap->getSignalSlotDispatcher();
$dispatcher->connect(ContentController::class, 'assetUploaded',

→˓AssetManipulator::class, 'manipulateAsset');
}

}

Note: If you created a new Package.php file you need to run ./flow flow:package:rescan in order for Flow to
pick it up!

The slot gets called with the following arguments:

• The Asset instance that is about to be persisted

• The NodeInterface instance the asset has been attached to

• The node property name (string) the asset has been assigned to

So the signature of the slot method could look like this:

function theSlot(Asset $asset, NodeInterface $node, string $propertyName)

This allows for manipulation of the asset based on the node property it has been assigned to.

8.13. Tagging assets automatically 375

Neos CMS Documentation, Release 4.0.0

8.13.3 Example: Tagging employee images

Imagine you have a node type Employee with the following setup:

'Some.Package:Employee':
superTypes:
'Neos.Neos:Content': true

ui:
label: 'Employee'
inspector:

groups:
'employee':
label: 'Employee'

properties:
'image':

type: 'Neos\Media\Domain\Model\ImageInterface'
ui:

label: 'Employee profile picture'
reloadIfChanged: true
inspector:
group: 'employee'
editorOptions:
features:
mediaBrowser: false

The following code would automatically tag this with the employee tag (if it exists):

Example: AssetManipulator.php

<?php
namespace Some\Package;

use Neos\ContentRepository\Domain\Model\NodeInterface;
use Neos\Flow\Annotations as Flow;
use Neos\Media\Domain\Model\Asset;
use Neos\Media\Domain\Repository\TagRepository;

/**
* @Flow\Scope("singleton")

*/
class AssetManipulator
{

/**
* @Flow\Inject

* @var TagRepository

*/
protected $tagRepository;

public function assignTag(Asset $asset, NodeInterface $node, string
→˓$propertyName)

{
if (!$node->getNodeType()->isOfType('Some.Package:Employee') ||

→˓$propertyName !== 'image') {
return;

}
$employeeTag = $this->tagRepository->findOneByLabel('employee');
if ($employeeTag === null) {

return;
}
$asset->addTag($employeeTag);

}
}

376 Chapter 8. How To’s

Neos CMS Documentation, Release 4.0.0

Alternatively, the slot could also assign the asset to AssetCollections or alter the asset’s title or caption.

8.14 Translating content

Translations for content are based around the concept of Content Dimensions. The dimension language can be
used for most translation scenarios. This cookbook shows how to set up the dimension, migrate existing content
to use dimensions and how to work with translations.

8.14.1 Dimension configuration

The first step is to configure a language dimension with a dimension preset for each language. This should be
done in the file Configuration/Settings.yaml of your site package:

Neos:
ContentRepository:
contentDimensions:

'language':
label: 'Language'
icon: 'icon-language'
default: 'en'
defaultPreset: 'en'
presets:
'en':
label: 'English'
values: ['en']
uriSegment: 'english'

'fr':
label: 'Français'
values: ['fr', 'en']
uriSegment: 'francais'

'de':
label: 'Deutsch'
values: ['de', 'en']
uriSegment: 'deutsch'

This will configure a dimension language with a default dimension value of en, a default preset en and some
presets for the actual available dimension configurations. Each of these presets represents one language that is
available for display on the website.

As soon as a dimension with presets is configured, the content module will show a dimension selector to select
presets for each dimension. This can be used in combination with a language menu on the website.

8.14.2 Migration of existing content

Existing content of a site needs to be migrated to use the dimension default value, otherwise no nodes would be
found. This can be done with a node migration which is included in the Neos.ContentRepository package:

./flow node:migrate 20150716212459

This migration has to be applied whenever a new dimension is configured to set the default value on all existing
nodes.

8.14.3 Integrate Language Menu

A simple language menu can be displayed on the site by using the Neos.Neos:DimensionsMenu Fusion
object:

8.14. Translating content 377

Neos CMS Documentation, Release 4.0.0

page {
body {

parts {
languageMenu = Neos.Neos:DimensionsMenu {

dimension = 'language'
}

}
}

}

This will render a with links to node variants in other languages of the current document node with a label
from a dimension preset. Of course the template can be customized for custom output with the templatePath
property.

8.14.4 Working with translated content

All content that needs to be translated should go into the default preset first. After selecting a different preset
either using the dimension selector or a language menu, the default content will shine through. As soon as a shine-
through node is updated, it will be automatically copied to a new node variant with the most specific dimension
value in the fallback list.

8.15 Wrapping a List of Content Elements

Create a simple Wrapper that can contain multiple content Elements.

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml)

'Vendor:Box':
superTypes:
'Neos.Neos:Content': TRUE

ui:
group: structure
label: Box
icon: icon-columns
inlineEditable: true

childNodes:
column0:

type: 'Neos.Neos:ContentCollection'

Fusion (Sites/Vendor.Site/Resources/Private/Fusion/NodeTypes.fusion)

prototype(Vendor:Box) < prototype(Neos.Neos:Content) {
templatePath = 'resource://Vendor.Site/Private/Templates/FusionObjects/Box.

→˓html'
columnContent = Neos.Neos:ContentCollection
columnContent {

nodePath = 'column0'
}

}

Html (Sites/Vendor.Site/Private/Templates/FusionObjects/Box.html)

{namespace fusion=Neos\Fusion\ViewHelpers}

<div class="container box">
<div class="column">

<fusion:render path="columnContent" />
</div>

</div>

378 Chapter 8. How To’s

Neos CMS Documentation, Release 4.0.0

8.15.1 Extending it to use an option

You can even simply extend the box to provide a checkbox for different properties.

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml)

'Vendor:Box':
superTypes:
'Neos.Neos:Content': TRUE

ui:
group: structure
label: Box
icon: icon-columns
inlineEditable: TRUE
inspector:

groups:
display:
label: Display
position: 5

properties:
collapsed:

type: boolean
ui:

label: Collapsed
reloadIfChanged: TRUE
inspector:
group: display

childNodes:
column0:

type: 'Neos.Neos:ContentCollection'

Fusion (Sites/Vendor.Site/Resources/Private/Fusion/NodeTypes.fusion)

prototype(Vendor:Box) < prototype(Neos.Neos:Content) {
templatePath = 'resource://Vendor.Site/Private/Templates/FusionObjects/Box.

→˓html'
columnContent = Neos.Neos:ContentCollection
columnContent {

nodePath = 'column0'
}
collapsed = ${q(node).property('collapsed')}

}

Html (Sites/Vendor.Site/Private/Templates/FusionObjects/Box.html)

{namespace fusion=Neos\Fusion\ViewHelpers}

<f:if condition="{collapsed}">
<button>open the collapsed box via js</button>

</f:if>
<div class="container box {f:if(condition: collapsed, then: 'collapsed', else: '')}
→˓">

<div class="column">
<fusion:render path="columnContent" />

</div>
</div>

8.15. Wrapping a List of Content Elements 379

Neos CMS Documentation, Release 4.0.0

380 Chapter 8. How To’s

CHAPTER 9

Neos Operations

9.1 Command Line Tools

Neos comes with a number of command line tools to ease setup and maintenance. These tools can be used
manually or be added to automated deployments or cron jobs. This section gives a high level overview of the
available tools.

More detailed instructions on the use of the command line tools can be displayed using the help command:

./flow help # lists all available command

./flow help <packageKey> # lists commands provided in package

./flow help <commandIdentifier> # show help for specific command

Here is an example:

./flow help user:addrole

Add a role to a user

COMMAND:
neos.neos:user:addrole

USAGE:
./flow user:addrole [<options>] <username> <role>

ARGUMENTS:
--username The username of the user
--role Role to be added to the user, for example

"Neos.Neos:Administrator" or just "Administrator

OPTIONS:
--authentication-provider Name of the authentication provider to use. Example:

"Neos.Neos:Backend

DESCRIPTION:
This command allows for adding a specific role to an existing user.

Roles can optionally be specified as a comma separated list. For all roles
→˓provided by Neos, the role

(continues on next page)

381

Neos CMS Documentation, Release 4.0.0

(continued from previous page)

namespace "Neos.Neos:" can be omitted.

If an authentication provider was specified, the user will be determined by an
→˓account identified by "username"
related to the given provider. However, once a user has been found, the new role

→˓will be added to all
existing accounts related to that user, regardless of its authentication

→˓provider.

9.1.1 User Management

These commands allow to manage users. To create an user with administrative privileges, this is needed:

./flow user:create john@doe.com pazzw0rd John Doe --roles Neos.Neos:Administrator

Command Description
user:list List all users
user:show Shows the given user
user:create Create a new user
user:delete Delete a user (with globbing)
user:activate Activate a user (with globbing)
user:deactivate Deactivate a user (with globbing)
user:setpassword Set a new password for the given user
user:addrole Add a role to a user (with globbing)
user:removerole Remove a role from a user (with globbing)

9.1.2 Workspace Management

The commands to manage workspaces reflect what is possible in the Neos user interface. They allow to list, create
and delete workspaces as well as publish and discard changes.

One notable difference is that rebasing a workspace is possible from the command line even if it contains unpub-
lished changes.

Command Description
workspace:publish Publish changes of a workspace
workspace:discard Discard changes in workspace
workspace:create Create a new workspace
workspace:delete Deletes a workspace
workspace:rebase Rebase a workspace
workspace:list Display a list of existing workspaces

382 Chapter 9. Neos Operations

Neos CMS Documentation, Release 4.0.0

9.1.3 Site Management

Command Description
domain:add Add a domain record
domain:list Display a list of available domain records
domain:delete Delete a domain record (with globbing)
domain:activate Activate a domain record (with globbing)
domain:deactivate Deactivate a domain record (with globbing)
site:import Import sites content
site:export Export sites content
site:prune Remove all content and related data (with globbing)
site:list Display a list of available sites

9.1. Command Line Tools 383

Neos CMS Documentation, Release 4.0.0

384 Chapter 9. Neos Operations

CHAPTER 10

Appendixes

385

Neos CMS Documentation, Release 4.0.0

386 Chapter 10. Appendixes

CHAPTER 11

Indices and tables

• genindex

387

	Getting Started
	Installation

	Technical Principles
	Creating a Site with Neos
	Node Types
	Fusion
	Rendering Custom Markup
	Content Dimensions
	Multi Site Support
	Content Cache
	Permissions & Access Management

	Extending Neos
	Creating a plugin
	Custom Backend Modules
	Custom Edit/Preview-Modes
	Custom Editors
	Custom Eel Helper
	Custom FlowQuery Operations
	Custom Fusion Objects
	Custom Validators
	Custom ViewHelpers
	Customizing the Inspector
	Data sources
	Interaction with the Neos backend
	Rendering special formats (CSV, JSON, XML, …)
	Neos User Interface Extensibility API
	Writing Tests For Neos

	Inside of Neos
	User Interface Development

	References
	Property Editor Reference
	View Helper Reference
	Fusion Reference
	Eel Helpers Reference
	FlowQuery Operation Reference
	Neos Command Reference
	Validator Reference
	Signal Reference
	Coding Guideline Reference
	Configuration Reference
	Node Migration Reference

	Contribute
	Development
	Documentation

	How To’s
	Neos Best Practices (to be written)
	Adding A Simple Contact Form
	Changing the Body Class with a condition
	Changing Defaults Depending on Content Placement
	Creating a simple Content Element
	Customize Login Screen
	Editing a shared footer across all pages
	Extending the Page
	Integrating a JavaScript-based slider
	Rendering Custom Document Types
	Rendering a Menu
	Rendering a Meta-Navigation
	Tagging assets automatically
	Translating content
	Wrapping a List of Content Elements

	Neos Operations
	Command Line Tools

	Appendixes
	Indices and tables

