Neos CMS

Release 4.3.x

Neos Team and Contributors

Nov 08, 2021

Getting Started

1.1

Installation e

Technical Principles

Creating a Site with Neos

3.1 NodeTypes . . . v v v v v i e e e e e e
32 Fusion
3.3 Rendering Custom Markup
3.4 Content Dimensions
3.5 Multi Site Support
3.6 ContentCache
3.7 Permissions & Access Management
Extending Neos

4.1 Creatingaplugin o
4.2 Custom Backend Modules
4.3 Custom Edit/Preview-Modes
44 CustomEditors
45 CustomEelHelper
4.6 Custom FlowQuery Operations
477 Custom FusionObjects
4.8 Custom Validators
49 Custom ViewHelpers
4.10 Customizing the Inspector
411 Datasources v v v it e e e e e e
4.12 Interaction with the Neosbackend
4.13 Rendering special formats (CSV, JSON, XML, ...

4.14 Neos User Interface Extensibility APT
4.15 Writing Tests ForNeos,

Inside of Neos

5.1 User Interface Development
References

6.1 Property Editor Reference
6.2 View HelperReference
6.3 FusionReference
6.4 EelHelpers Reference
6.5 FlowQuery Operation Reference
6.6 Neos Command Reference

CONTENTS

................... 112

6.7 Validator Reference e
6.8 Signal Reference L e e e e e
6.9 Coding Guideline Reference e e
6.10 Configuration Reference L e
6.11 Node Migration Reference e
Contribute

7.1 Development e e e e e e e e e e e e e
7.2 Documentation u i i e e e e e e e e e e e e
How To’s

8.1 Neos Best Practices (tobe written) e e e e e e e
8.2 Adding A Simple Contact Form L
8.3 Changing the Body Class with acondition
8.4 Changing Defaults Depending on Content Placement
8.5 Creating asimple Content Element
8.6 Customize Login Screen L
8.7 Editing a shared footer across all pages
8.8 ExtendingthePage L
8.9 Integrating a JavaScript-based slider
8.10 Rendering Custom Document Types o o v i it e e e e
8.11 RenderingaMenu e e
8.12 Rendering a Meta-Navigation 0 e e e e e
8.13 Tagging assets automatically oL
8.14 Translating CONteNt o v i v it e
8.15 Wrapping a List of Content Elements it

Neos Operations

9.1

Command Line Tools e e e e

10 Appendixes

11 Indices and tables

407
407
409

419
419
419
421
421
422
423
424
425
426
428
429
430
432
434
435

439
439

441

443

Neos CMS, Release 4.3.x

Neos is a free enterprise web content management system licensed under the GPL.

This version of the documentation covering Neos 4.3.x has been rendered at: Nov 08, 2021

CONTENTS 1

Neos CMS, Release 4.3.x

2 CONTENTS

CHAPTER
ONE

GETTING STARTED

1.1 Installation

Tip: Neos is built on top of the Flow framework. If you run into technical problems, keep in mind to check the Flow
documentation for possible hints as well.

1.1.1 Requirements

Neos has at least the same system requirements as Flow. You can find them in the Flow Requirements Documentation.
The most important requirements are:
* A Webserver (Apache and Nginx are preferred but others work as well)

* A Database (MySQL > 5.7.7, MariaDB > 10.2.2 and PostgreSQL > 9.4 are preferred but any Database supported
by Doctrine DBAL should work as well).

e PHP >=7.1.0 (make sure the PHP CLI has the same version)
— PHP modules mbstring, tokenizer and pdo_mysql
— PHP functions exec(), shell_exec(), escapeshellcmd() and escapeshellarg()

— It is recommended to install one of the PHP modules imagick or gmagick

1.1.2 Fundamental Installation

1. First you need to install the dependency manager Composer (if you don’t have it already):

’curl -sS https://getcomposer.org/installer | php

By issuing this command Composer will get downloaded as composer.phar to your working directory. If you
like to have composer installed globally, you can simply move it to a directory within your $PATH environment.

’mv composer.phar /usr/local/bin/composer

Note: If you are on Windows please refer to the offical documentation on how to install Composer on Windows

2. Go to your htdocs directory and create a new project based on the Neos base distribution:

http://flowframework.readthedocs.org/en/stable/index.html
http://flowframework.readthedocs.org/en/stable/index.html
http://flowframework.readthedocs.org/en/stable/TheDefinitiveGuide/PartII/Requirements.html
http://www.doctrine-project.org/projects/dbal.html
http://www.doctrine-project.org/projects/dbal.html
http://getcomposer.org/doc/00-intro.md#installation-windows

Neos CMS, Release 4.3.x

cd /your/htdocs/
php /path/to/composer.phar create-project neos/neos-base-distribution Neos

Composer will take care of downloading all dependencies for running your Neos installation to the directory
Neos. You can safely delete the vcs files by answering ‘Y’ to the question ‘Do you want to remove the existing
VCS (.git, .svn..) history? [Y,n]?’.

3. Next set up a virtual domain/host in your webserver configuration
* Apache configuration

Set up a virtual host inside your Apache configuration. Set the DocumentRoot to the Web
directory inside the Neos installation. Set the directive A11owOverride to ALL to allow access
to .htaccess

NameVirtualHost *:80 # if needed

<VirtualHost »:80>
DocumentRoot "/your/htdocs/Neos/Web/"
enable the following line for production context
#SetEnv FLOW_CONTEXT Production
ServerName neos.demo
</VirtualHost>

<Directory /your/htdocs/Neos/Web>
AllowOverride All
</Directory>

Make sure that the mod_rewrite module is loaded and restart apache. For further information on how
to set up a virtual host with apache please refer to the Apache Virtual Host documentation.

* nginx configuration

For further information on how to set up a virtual domain with nginx please refer to the nginx documenta-
tion.

4. Add an entry to /etc/hosts to make your virtual host reachable:

’127.0.0.1 neos.demo

Make sure to use the same name you defined in ServerName in the virtual host configuration above.

5. Set file permissions as needed so that the installation is read- and writeable by the webserver’s user and group:

’sudo ./flow core:setfilepermissions john www-data www-data

Replace john with your current username and www-data with the webserver’s user and group.

For detailed instructions on setting the needed permissions see Flow File Permissions

Note: Setting file permissions is not necessary and not possible on Windows machines. For Apache to be able
to create symlinks, you need to use Windows Vista (or newer) and Apache needs to be started with Administrator
privileges.

6. Now go to http://neos.demo/setup and follow the on-screen instructions.

4 Chapter 1. Getting Started

https://httpd.apache.org/docs/2.2/en/vhosts/
https://www.linode.com/docs/websites/nginx/how-to-configure-nginx
https://www.linode.com/docs/websites/nginx/how-to-configure-nginx
http://flowframework.readthedocs.org/en/stable/TheDefinitiveGuide/PartII/Installation.html#file-permissions
http://neos.demo/setup

Neos CMS, Release 4.3.x

1.1.3 The Neos Setup Tool

1. A check for the basic requirements of Flow and Neos will be run. If all is well, you will see a login screen. If
a check failed, hints on solving the issue will be shown and you should fix what needs to be fixed. Then just
reload the page, until all requirements are met.

2. The login screen will tell you the location of a file with a generated password. Keep that password in some
secure place, the generated file will be removed upon login! It is possible to have a new password rendered if
you lost it, so don’t worry too much.

cat /Users/golfb/Documents/neos/neos-development-distribution/Data/SetupPassword.txt
he setup password is:

1LbxKwIn

After you successfully logged in, this file is automatically deleted for security reasons.
ake sure to save the setup password for later use.

Login

Enter the setup password to continue:

Password

& Login

A new password has been generated.

e initial password for accessing the setup can be found in

3. The NEOS requirements check checks, if you have installed an image manipulation software.

4. Fill in the database credentials in the first step. The selector box will be updated with accessible databases to
choose from, or you can create a new one.

Tip: Configure your MySQL server to use the ut £8_unicode_ci collation by default if possible!

5. In the next step a user with administrator privileges for editing with Neos is created.

6. The following step allows you to import an existing site or kickstart a new site. To import the demo site, just
make sure it is selected in the selector box and go to the next step.

To kickstart a new site, enter a package and site name in the form before going to the next step.

If you are new to Neos, we recommend to import the existing demo site so you can follow the next section
giving you a basic tour of the user interface.

7. If all went well you’ll get a confirmation the setup is completed, and you can enter the frontend or backend of
your Neos website.

1.1. Installation 5

Neos CMS, Release 4.3.x

Step 1 of 5

Neos requirements check O Logout

Image Manipulation

We checked for supported image manipulation libraries on your server.

Only one is needed and we select the best one available for you.

Using GD in production environment is not recommended as it has some issues and can easily
lead to blank pages due to memory exhaustion.

PHP extension "gd" is installed
PHP extension "gmagick" is not installed
PHP extension "imagick" is not installed

Neos will be configured to use extension "gd"

Warning: If you install the Neos demo site and it is publicly accessible, make sure the “Try me” page in
the page tree is not publicly accessible because it has a form allowing you to create backend editor accounts
with rights to edit website content.)

6 Chapter 1. Getting Started

Neos CMS, Release 4.3.x

Step 2 of 5

Configure database O Logour

Please enter database details below

Connection

DB Driver*

MySQL/MariaDB via PDO

DB Username*

neos

DB Password

DB Host*

127.0.0.1: 8889

Database
DB Name*

« Connection established

neos2017

© The selected database's character set is set to "utf8" which is the recommended setting.

1.1. Installation 7

Neos CMS, Release 4.3.x

Step 3 of 5

Create administrator account O Logout

Enter the personal data and credentials for your backend account:

Personal Data

First name*

Max

Last name*

Mustermann

Credentials

Username*

max123

Password*

Confirmation*

Skip & Next &

Chapter 1. Getting Started

Neos CMS, Release 4.3.x

Step 4 of 5

Create a new site O Logout

There are two ways of creating a site. Choose between the following
Import a site from an existing site package

Select a site package*

Neos.Demo

Delete existing sites

O

Create a new site package with a dummy site

Package Name (in form "Vendor.DomainCom")

Site Name (e.g. "domain.com")

Notice the difference between a site package and a site. A site package is a Flow package that can
be used for creating multiple site instances.

Features Try me Download The book English (US) v

Fig. 1: The Neos demo site start page

1.1. Installation

Neos CMS, Release 4.3.x

10 Chapter 1. Getting Started

CHAPTER
TWO

TECHNICAL PRINCIPLES

11

Neos CMS, Release 4.3.x

12 Chapter 2. Technical Principles

CHAPTER
THREE

CREATING A SITE WITH NEOS

This guide explains how to implement websites with Neos. It specifically covers the structuring of content using the
Neos Content Repository, and how the content is rendered using Fusion and Fluid.

3.1 Node Types

These are the development guidelines of Neos.

3.1.1 Content Structure

Before we can understand how content is rendered, we have to see how it is structured and organized. These basics
are explained in this section.

Nodes inside the Neos Content Repository
The content in Neos is not stored inside tables of a relational database, but inside a tree-based structure: the so-called
Neos Content Repository.

To a certain extent, it is comparable to files in a file-system: They are also structured as a tree, and are identified
uniquely by the complete path towards the file.

Note: Internally, the Neos ContentRepository currently stores the nodes inside database tables as well, but you do not
need to worry about that as you’ll never deal with the database directly. This high-level abstraction helps to decouple
the data modelling layer from the data persistence layer.

Each element in this tree is called a Node, and is structured as follows:

* It has a node name which identifies the node, in the same way as a file or folder name identifies an element in
your local file system.

¢ It has a node type which determines which properties a node has. Think of it as the type of a file in your file
system.

 Furthermore, it has properties which store the actual data of the node. The node type determines which properties
exist for a node. As an example, a Text node might have a headline and a text property.

¢ Of course, nodes may have sub nodes underneath them.

If we imagine a classical website with a hierarchical menu structure, then each of the pages is represented by a Neos
ContentRepository Node of type Document. However, not only the pages themselves are represented as tree: Imagine
a page has two columns, with different content elements inside each of them. The columns are stored as Nodes of type

13

Neos CMS, Release 4.3.x

ContentCollection, and they contain nodes of type Text, Image, or whatever structure is needed. This nesting
can be done indefinitely: Inside a ContentCollection, there could be another three-column element which again
contains ContentCollection elements with arbitrary content inside.

Predefined Node Types

Neos is shipped with a number of predefined node types. It is helpful to know some of them, as they can be useful
elements to extend, and Neos depends on some of them for proper behavior.

There are a few core node types which are needed by Neos; these are shipped in Neos . Neos directly. All other node
types such as Text, Image, ... are shipped inside the Neos .NodeTypes package.

Neos.Neos:Node

Neos.Neos:Node is a (more or less internal) base type which should be extended by all content types which are
used in the context of Neos.

It does not define any properties.

Neos.Neos:Document

An important distinction is between nodes which look and behave like pages and “normal content” such as text, which
is rendered inside a page. Nodes which behave like pages are called Document Nodes in Neos. This means they have
a unique, externally visible URL by which they can be rendered.

The standard page in Neos is implemented by Neos.NodeTypes:Page which directly extends from Neos.
Neos:Document.

Neos.Neos:ContentCollection and Neos.Neos:Content

All content which does not behave like pages, but which lives inside them, is implemented by two different node types:

First, there is the Neos.Neos:ContentCollection type: A Neos.Neos:ContentCollection has a
structural purpose. It usually contains an ordered list of child nodes which are rendered inside.

Neos.Neos:ContentCollection may be extended by custom types.

Second, the node type for all standard elements (such as text, image, youtube, ...) is Neos.Neos:Content. This
is—by far—the most often extended node type.

Extending the NodeTypes

To extend the existing NodeTypes or to create new ones please read at the Node Type Definition reference.

14 Chapter 3. Creating a Site with Neos

Neos CMS, Release 4.3.x

3.1.2 Node Type Definition

Each Neos ContentRepository Node (we’ll just call it Node in the remaining text) has a specific node type. Node
Types can be defined in any package by declaring them in Configuration/NodeTypes.yaml. If you have
a rather large list of Node Types, you can also split your NodeType definitions into multiple Configuration/
NodeTypes. x .yaml files for organizing them.

Each node type can have one or multiple parent types. If these are specified, all properties and settings of the parent
types are inherited.

A node type definition can look as follows:

'My.Package:SpecialHeadline':
superTypes:
'Neos.Neos:Content': true
ui:
label: 'Special Headline'
group: 'general'
properties:
headline:
type: 'string'
defaultValue: 'My Headline Default'
ui:
inlineEditable: true
validation:
'Neos.Neos/Validation/StringLengthvValidator':
minimum: 1
maximum: 255

The following options are allowed:

abstract A boolean flag, marking a node type as abstract. Abstract node types can never be used standalone, they
will never be offered for insertion to the user in the UI, for example.

Abstract node types are useful when using inheritance and composition, so mark base node types and mixins as
abstract.

aggregate A boolean flag, marking a node type as aggregate. If a node type is marked as aggregate, it means that:
* the node type can “live on its own”, i.e. can be part of an external URL
* when moving this node, all node variants are also moved (across all dimensions)
* Recursive copying only happens inside this aggregate, and stops at nested aggregates.

The most prominent aggregate is Neos.Neos:Document and everything which inherits from it, like
Neos.NodeTypes:Page.

superTypes An array of parent node types as keys with a boolean value:

'Neos.Neos:Document ':
superTypes:
'"Acme.Demo.ExtraMixin': true

'Neos.Neos:Shortcut':
superTypes:
'Acme.Demo.ExtraMixin': false

constraints Constraint definitions stating which nested child node types are allowed. Also see the dedicated
chapter Node Type Constraints for detailed explanation:

3.1. Node Types 15

Neos CMS, Release 4.3.x

constraints:
nodeTypes:
ALLOW text, DISALLOW Image
'Neos.NodeTypes:Text': true
'Neos.NodeTypes:Image': false
DISALLOW as Fallback (for not-explicitly-listed node types)
'x': false

childNodes A list of child nodes that are automatically created if a node of this type is created. For each child
the t ype has to be given. Additionally, for each of these child nodes, the constraints can be specified to
override the “global” constraints per type. Here is an example:

childNodes:
someChild:
type: 'Neos.Neos:ContentCollection'
constraints:
nodeTypes:
only allow images in this ContentCollection
'Neos.NodeTypes:Image': true
'x': false

By using position, it is possible to define the order in which child nodes appear in the structure tree. An
example may look like:

'Neos.NodeTypes:Page':
childNodes:
'someChild':
type: 'Neos.Neos:ContentCollection'
position: 'before main'

This adds a new ContentCollection called someChild to the default page. It will be positioned before the main
ContentCollection that the default page has. The position setting follows the same sorting logic used in Fusion
(see the Fusion Reference).

label When displaying a node inside the Neos UI (e.g. tree view, link editor, workspace module) the 1abel option
will be used to generate a human readable text for a specific node instance (in contrast to the ui . label which
is used for all nodes of that type).

The label option accepts an Eel expression that has access to the current node using the node context variable.
It is recommended to customize the label option for node types that do not yield a sufficient description using
the default configuration.

Example:

'Neos.Demo:Flickr':
label: E{’Flickr plugin (' + g(node) .property('tags') + ') '}

generatorClass Alternatively the class of a node label generator implementing Neos\
ContentRepository\Domain\Model\NodeLabelGeneratorInterface can be specified
as a nested option.

options Options for third party-code, the Content-Repository ignores those options but Neos or Packages may use
this to adjust their behavior.

fusion Options to control the behavior of fusion-for a specific nodeType.

prototypeGenerator The class that is used to generate the default fusion-prototype for this node-
Type.

16 Chapter 3. Creating a Site with Neos

Neos CMS, Release 4.3.x

If this option is set to a className the class has to implement the interface \Neos\Neos\Domain\
Service\DefaultPrototypeGeneratorInterface and is used to generate the prototype-
code for this node.

If options.fusion.prototypeGenerator is set to null no prototype is created for this
type.

By default Neos has generators for all nodes of type Neos . Neos : Node and creates protoypes based
on Neos.Fusion:Template. A template path is assumed based on the package-prefix and the
nodetype-name. All properties of the node are passed to the template. For the nodeTypes of type
Neos.Neos:Document, Neos.Neos:Content and Neos.Neos:Plugin the corresponding
prototype is used as base-prototype.

Example:

prototype (Vendor.Site:Content.SpecialNodeType) < prototype (Neos.
—Fusion:Content) {

templatePath = 'resource://Vendor.Site/Private/Templates/NodeTypes/
—Content .SpecialNodeType.html'

all properties of the nodeType are passed to the template

date = E{q(node).property(’date')}

inline—editable strings additionally get the convertUris processor

title = E{q(node).property('title')}

title.l@process.convertUris = Neos.Neos:ConvertUris

ui Configuration options related to the user interface representation of the node type

label The human-readable label of the node type

group Name of the group this content element is grouped into for the ‘New Content Element’ dialog. It can
only be created through the user interface if group is defined and it is valid.

All valid groups are given in the Neos .Neos.nodeTypes.groups setting

position Position inside the group this content element is grouped into for the ‘New Content Element’
dialog. Small numbers are sorted on top.

icon This setting defines the icon that the Neos UI will use to display the node type.

Legacy: In Neos versions before 4.0 it was required to use icons from the Fontawesome 3 or 4 versions,
prefixed with “icon-"

Current: In Neos 4.0, Fontawesome 5 was introduced, enabling the usage of all free Fontawesome icons:
https://fontawesome.com/icons?d=gallery&m=free Those can still be referenced via “icon-[name]”, as the
Ul includes a fallback to the “fas” prefix-classes. To be sure which icon will be used, they can also be
referenced by their icon-classes, e.g. “fas fa-check”.

help Configuration of contextual help. Displays a message that is rendered as popover when the user clicks
the help icon in an insert node dialog.

message Help text for the node type. It supports markdown to format the help text and can be translated
(see Translate NodeTypes).

thumbnail This is shown in the popover and can be supplied in two ways:
* as an absolute URL to an image (http://static/acme.com/thumbnails/bar.png)

e asaresource URI (resource://AcmeCom.Website/NodeTypes/Thumbnails/foo.
png)

3.1.

Node Types 17

https://fontawesome.com/icons?d=gallery&m=free

Neos CMS, Release 4.3.x

If the thumbnail setting is undefined but an image matching the nodetype name is found, it
will be used automatically. It will be looked for in <packageKey>/Resources/
Public/NodeTypes/Thumbnails/<nodeTypeName>.png with packageKey and
nodeTypeName being extracted from the full nodetype name like this:

AcmeCom.Website:FooWithBar ->AcmeCom.Website and FooWithBar

The image will be downscaled to a width of 342 pixels, so it should either be that size to be placed
above any further help text (if supplied) or be half that size for the help text to flow around it.

inlineEditable If frue, it is possible to interact with this Node directly in the content view. If false, an
overlay is shown preventing any interaction with the node. If not given, checks if any property is marked
asui.inlineEditable.

inspector These settings configure the inspector in the Neos UI for the node type
tabs Defines an inspector tab that can be used to group property groups of the node type
label The human-readable label for this inspector tab
position Position of the inspector tab, small numbers are sorted on top
icon This setting define the icon to use in the Neos Ul for the tab

Currently it’s only possible to use a predefined selection of icons, which are available in Font
Awesome http://fortawesome.github.io/Font- Awesome/3.2.1/icons/.

groups Defines an inspector group that can be used to group properties of the node type
label The human-readable label for this inspector group
position Position of the inspector group, small numbers are sorted on top
icon This setting define the icon to use in the Neos UI for the group
tab The tab the group belongs to. If left empty the group is added to the default tab.

collapsed If the group should be collapsed by default (true or false). If left empty, the group will
be expanded.

creationDialog Creation dialog elements configuration. See Node Creation Dialog Configuration for
more details.

properties A list of named properties for this node type. For each property the following settings are available.

Note: Your own property names should never start with an underscore __ as that is used for internal properties
or as an internal prefix.

type Data type of this property. This may be a simple type (like in PHP), a fully qualified PHP class name, or
one of these three special types: DateTime, references, or reference. Use DateTime to store
dates / time as a DateTime object. Use reference and references to store references that point to
other nodes. reference only accepts a single node or node identifier, while references accepts an
array of nodes or node identifiers.

defaultValue Default value of this property. Used at node creation time. Type must match specified ‘type’.
ui Configuration options related to the user interface representation of the property
label The human-readable label of the property

help Configuration of contextual help. Displays a message that is rendered as popover when the user
clicks the help icon in the inspector.

18 Chapter 3. Creating a Site with Neos

http://fortawesome.github.io/Font-Awesome/3.2.1/icons/

Neos CMS, Release 4.3.x

message Help text for this property. It supports markdown to format the help text and can be
translated (see Translate NodeTypes).

reloadIfChanged If frue, the whole content element needs to be re-rendered on the server side if the
value changes. This only works for properties which are displayed inside the property inspector, i.e.
for properties which have a group set.

reloadPageIfChanged If frue, the whole page needs to be re-rendered on the server side if the value
changes. This only works for properties which are displayed inside the property inspector, i.e. for
properties which have a group set.

inlineEditable If true, this property is inline editable, i.e. edited directly on the page.

aloha Legacy configuration of rich text editor, works for the sake of backwards compatibility, but it is
advised to use inline.editorOptions instead.

inline
editor A way to override default inline editor loaded for this property. Two edi-
tors are available out of the box: ckeditor (loads CKeditor4) and ckeditor5 (loads
CKeditor5). The default editor is configurable in Settings.yaml under the key
Neos.Neos.Ui.frontendConfiguration.defaultinlineEditor. It is strongly recommended to start
using CKeditor5 today, as the CKeditor4 integration will be deprecated and removed in the

future versions. Additional custom inline editors are registered via the inlineEditors registry.
See Neos User Interface Extensibility API for the detailed information on the topic.

editorOptions This section controls the text formatting options the user has available for
this property.

Note: When using inline.editorOptions anything defined under the legacy aloha key for a
property is ignored. Keep this in mind when using supertypes and mixins.

placeholder A text thatis shown when the field is empty. Supports i18n.

autoparagraph When configured to false, automatic creation of paragraphs is disabled
for this property and <enter> key would create soft line breaks instead (equivalent to con-
figuring an editable on a span tag).

linking A way to configure additional options available for a link, e.g. target or rel at-
tributes.

formatting Various formatting options (see example below for all available options).

Example:

inline:
editorOptions:
placeholder: i118n
autoparagraph: true
linking:
anchor: true
title: true
relNofollow: true
targetBlank: true
formatting:
strong: true
em: true
u: true
sub: true
sup: true
del: true

(continues on next page)

3.1. Node Types 19

Neos CMS, Release 4.3.x

(continued from previous page)

p: true

hl: true
h2: true
h3: true
h4: true
h5: true
h6: true

pre: true
underline: true
strikethrough: true
removeFormat: true
left: true

right: true

center: true
Justify: true
table: true

ol: true
ul: true
a: true

inspector These settings configure the inspector in the Neos UI for the property.

group Identifier of the inspector group this property is categorized into in the content editing user
interface. If none is given, the property is not editable through the property inspector of the user
interface.

The value here must reference a groups configured in the ui . inspector.groups element of
the node type this property belongs to.

position Position inside the inspector group, small numbers are sorted on top.

editor Name of the JavaScript Editor Class which is instantiated to edit this element in the inspec-
tor.

editorOptions A set of options for the given editor, see the Property Editor Reference.

editorListeners Allows to observe changes of other properties in order to react to them. For
details see Depending Properties

validation A list of validators to use on the property. Below each validator type any options for the validator
can be given. See below for more information.

Tip: Unset a property by setting the property configuration to null (~).

Here is one of the standard Neos node types (slightly shortened):

'Neos.NodeTypes:Image':
superTypes:
'Neos.Neos:Content': true
ui:
label: 'Image'
icon: 'icon-picture'
inspector:
groups:
image:
label: 'Image'
icon: 'icon-image'

(continues on next page)

20 Chapter 3. Creating a Site with Neos

Neos CMS, Release 4.3.x

(continued from previous page)

position: 5
properties:
image:
type: Neos\Media\Domain\Model\ImageInterface
ui:
label: 'Image'
reloadIfChanged: true
inspector:
group: 'image'
alignment:
type: string
defaultValue: ''
ui:
label: 'Alignment'
reloadIfChanged: true
inspector:
group:
editor:

'image'
'Neos.Neos/Inspector/Editors/SelectBoxEditor'
editorOptions:
placeholder:
values:
label: "'
center:
label:
left:
label:
right:
label:
alternativeText:
type: string
ui:
label:
reloadIfChanged: true
inspector:
'image'

'Default’

'Center’
'Left'

'"Right'

'Alternative text'

group:
validation:
'Neos.Neos/Validation/StringLengthValidator':
minimum: 1
maximum: 255

hasCaption:
type: boolean
ui:
label: 'Enable caption'
reloadIfChanged: true
inspector:
group: 'image'
caption:
type: string
defaultValue: '<p>Enter caption here</p>'
ui:
inlineEditable: true

3.1. Node Types

21

Neos CMS, Release 4.3.x

3.1.3 Node Type Constraints

In a typical Neos project, you will create lots of custom node types. However, many node types should only be used
in a specific context and not everywhere. Neos allows you to define node type constraints, which restrict the possible
node types that can be added as children of a specific node type. There are two ways to do this:

* Regular node type constraints are defined per node type. They apply in any context the node type appears in.

* Additionally, when a node type has auto-created child nodes (see Node Type Definition), you can define addi-
tional constraints that only apply for these child nodes. This allows you to restrict node type usage depending
on the context that the node types are placed in.

Note: Node type constraints are cached in the browser’s session storage. During development, it’s a good idea to
run sessionStorage.clear () in the browser console to remove the old configuration after you make changes.
Alternatively, you can use an anonymous browser tab to avoid storing outdated node type constraints.

Regular Node Type Constraints

Let’s assume that, inside the “Chapter” node type of the Neos Demo Site (which is a document node), one should only
be able to create nested chapters, and not pages or shortcuts. Using node type constraints, this can be enforced:

'Neos.Demo:Chapter':

constraints:
nodeTypes:
'Neos.Neos:Document': false
'Neos.Demo:Chapter': true
In the above example, we disable all document node types using 'Neos.Neos:Document': false, and then
enable the Neos .Demo:Chapter node type as well as any node type that inherits from it. The reason why we
use 'Neos.Neos:Document': falseinsteadof '«': false here is that by default, only document node

types are allowed as children of other document node types anyway (see further down for more information regarding
the defaults).

You might now wonder why it is still possible to create content inside the chapter (because everything except Chapter
is disabled with the above configuration): The reason is that node type constraints are only enforced for nodes which
are not auto-created. Because Neos.Demo:Chapter has an auto-created main ContentCollection, itis
still possible to add content inside. In the following example, we see the node type definition which is shipped with
the demo website:

'Neos.Demo:Chapter':
superTypes:
'Neos.Neos:Document': true
childNodes:
'main':
type: 'Neos.Neos:ContentCollection'

The main ContentCollection is still added, even though you cannot add any more because ContentCollections are not
allowed according to the node type constraints.

22 Chapter 3. Creating a Site with Neos

Neos CMS, Release 4.3.x

Auto-Created Child Node Constraints

Let’s assume that our chapter node type should only contain text within its main ContentCollection. This is possible
using additional constraints for each auto-created child node. These constraints will only be applied for the configured
auto-created child nodes - not for any others, even if they are of the same type.

'Neos.Demo:Chapter':
childNodes:
'main':
type: 'Neos.Neos:ContentCollection'
constraints:
nodeTypes:
'x': false
'Neos.NodeTypes:Text': true

Override Logic and Default Values

The following logic applies for node type constraints:
* Constraints are only enforced for child nodes which are not auto-created.
* You can specify node types explicitly or use ‘*’ to allow/deny all node types.
* Setting the value to frue is an explicit allow
* Setting the value to false is an explicit deny
* The default is to always deny (in case ‘*’ is not specified).

* More specific constraints override less specific constraints. Specificity is deduced from the inheritance hierarchy
of the node types. This means that e.g. setting “*’: false will only apply if no more specific constraint has been
set, such as ‘Neos.Neos:Document’: true.

* Node type constraints are inherited from parent node types. If your node type has listed Neos.Neos:Document
as a superType, its constraints will apply for your node type as well.

The last rule is especially important, since most node types you define will have either Neos .NodeTypes:Page
(which, in turn, inherits from Neos.Neos:Document') or ' “Neos.Neos:Content as superTypes. You
should know which constraints are defined per default in order to effectively override them. These are the current
defaults for these two node types - this is taken from NodeTypes . yaml in the Neos.Neos package.

'Neos.Neos:Document':
constraints:
nodeTypes:
'x': false
'Neos.Neos:Document': true

The document node type, by default, allows any other document node type below it. This means that if you want

to disable all document node types under your custom one, setting '+': false will have no effect on anything
inheriting from Neos .Neos : Document - the more specific constraint 'Neos .Neos:Document': true will
override it. You will need to set 'Neos.Neos:Document': false instead.

The default content node type, on the other hand, only has the catch-all constraint. If you want to enable any child
nodes, you can simply allow them.

'Neos.Neos:Content':
constraints:
nodeTypes:

'x': false

3.1. Node Types 23

Neos CMS, Release 4.3.x

Examples

You can use YAML references (with the s xyz and *xyz syntax) to re-use constraints. Here’s how to disallow nested
Two/Three/FourColumn inside a multi column element:

'Neos.NodeTypes:Column':

childNodes:
columnO:
constraints: &columnConstraints
nodeTypes:
'Neos.NodeTypes:TwoColumn': false
'Neos.NodeTypes:ThreeColumn': false
'Neos.NodeTypes:FourColumn': false
columnl:
constraints: *columnConstraints
column2 :
constraints: *columnConstraints
column3:

constraints: xcolumnConstraints

3.1.4 Node Creation Dialog Configuration
When creating new nodes, you have the possibility to provide additional data that will be passed to
nodeCreationHandlers.

Creation dialog supports most of the inspector editors, except of those that require to show a secondary inspector view.
See Property Editor Reference for more details about configuring inspector editors.

For example, this functionality is used in Neos to ask users for title before creating document nodes:

'Neos.Neos:Document':
ui:
group: 'general'
creationDialog:
elements:
title:
type: string
ui:
label: i118n
editor: 'Neos.Neos/Inspector/Editors/TextFieldEditor'
validation:
'Neos.Neos/Validation/NotEmptyValidator': []
options:
nodeCreationHandlers:
documentTitle:
nodeCreationHandler: 'Neos\Neos\Ui\NodeCreationHandler\
—DocumentTitleNodeCreationHandler'

You may register multiple nodeCreationHandlers per nodetype. Each nodeCreationHandler must implement
NodeCreationHandlerInterface. It gets the newly created Snode and the $data coming from the creation
dialog.

Note: elements of the creation dialog define an arbitrary set of data that will be passed to a nodeCreationHandler,
they will not automatically set node properties in any way. To take action based on that data you would need to write a
custom node creation handler or use a package that already provides such functionality, e.g. Flowpack.NodeTemplates

24 Chapter 3. Creating a Site with Neos

Neos CMS, Release 4.3.x

(https://github.com/Flowpack/Flowpack.NodeTemplates).

3.1.5 Translate NodeTypes

To use the translations for NodeType labels or help messages you have to enable it for each label or message by setting
the value to the predefined value “i18n”.

NodeTypes.yaml

Vendor.Site:YourContentElementName:
ui:
help:
message: 'il8n'
inspector:
tabs:
yourTab:
label: 'il8n'
groups:
yourGroup:
label: 'il8n'
properties:
yourProperty:
type: string
ui:
label: 'il8n'
help:
message: 'il8n'

That will instruct Neos to look for translations of these labels. To register an xliff file for this NodeTypes you have to
add the following configuration to the Settings.yaml of your package:

Neos:
Neos:
userInterface:
translation:
autoInclude:
'Vendor.Site': ['NodeTypes/*']

Inside of the xliff file Resources/Private/Translations/en/NodeTypes/YourContentElementName.xIf the translated
labels for help, properties, groups, tabs and views are defined in the xliff as follows:

<?xml version="1.0" encoding="UTF-8"?>
<x1iff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">
<file original="" product-name="Vendor.Site" source-language="en" datatype=
—"plaintext">
<body>
<trans—-unit id="ui.help.message" xml:space="preserve">
<source>Your help message here</source>
</trans—-unit>
<trans-unit id="tabs.myTab" xml:space="preserve">
<source>Your Tab Title</source>
</trans-unit>
<trans-unit id="groups.myTab" xml:space="preserve">
<source>Your Group Title</source>
</trans—-unit>
<trans-unit id="properties.myProperty" xml:space="preserve">

(continues on next page)

3.1. Node Types 25

https://github.com/Flowpack/Flowpack.NodeTemplates

Neos CMS, Release 4.3.x

(continued from previous page)

<source>Your Property Title</source>
</trans-unit>
<trans—-unit id="properties.myProperty.ui.help.message"
—xml:space="preserve">
<source>Your help message here</source>
</trans—-unit>
</body>
</file>
</x1iff>

Add properties to existing NodeTypes

For adding properties to existing NodeTypes the use of mixins is encouraged.

NodeTypes.yaml

Vendor.Site:YourNodetypeMixin:
abstract: true
properties:
demoProperty:
type: string
ui:
label: 'il8n'

Neos.Neos:Page:
superTypes:
'Vendor.Site:YourNodetypeMixin': true

That way you <can add the translations for the added properties to the file Re-
sources/Private/Translations/en/NodeTypes/YourNodetypeMixin.xIf.

Override Translations

To override translations entirely or to use custom id’s the label property can also contain a path of the format Vendor .
Package:Xliff.Path.And.Filename:labelType.identifier. The string consists of three parts de-
limited by ::

¢ First, the Package Key

» Second, the path towards the xliff file, replacing slashes by dots (relative to Resources/Private/
Translations/<language>).

¢ Third, the key inside the xIiff file.

For the example above that would be Vendor.Site:NodeTypes.YourContentElementName:properties.
title:

properties:
title:
type: string
ui:
label: 'Vendor.Site:NodeTypes.YourContentElementName:properties.title'

If you e.g. want to relabel an existing node property of a different package (like the Neos .NodeTypes:Page), you
always have to specify the full translation key (pointing to your package’s XLIFF files then).

26 Chapter 3. Creating a Site with Neos

Neos CMS, Release 4.3.x

Validate Translations

To validate that all labels are translated Neos has the following setting in Settings.yaml:

. code-block:: yaml

Neos:
Neos:
userInterface: scrambleTranslatedLabels: true

If that setting is enabled all already translated labels are replaced with ###### — that way you can easily identify the
labels that still lack translations.

Note: Make sure to flush the browser caches after working with the translation to make sure that the browser always
shows the latest translations.

3.1.6 Dynamic Client-side Configuration Processing

Note: This API is rather low-level and still experimental, we might change some of the implementation details or
compliment it with a more high-level API.

All configuration values that begin with ClientEval: are dynamically evaluated on the client side. They are written
in plain JavaScript (evaluated with eval) and have node variable in the scope pointing to the currently focused node,
with all transient inspector changes applied. For now it is only related to the nodetypes inspector configuration, but in
the future may be extended to the other parts of the user interface.

A few Practical Examples
Hiding one property when the other one is not set

Here is an example how to hide the property borderColor if borderWidth is empty by changing its group name
to a non-existant value:

'Some.Package:NodeType':
properties:
borderWidth:
type: integer
ui:
inspector:
group: 'style'
borderColor:
type: string
ui:
inspector:
hidden: 'ClientEval:node.properties.borderWidth ? true : false

3.1. Node Types 27

Neos CMS, Release 4.3.x

Dependent SelectBoxes

If you are using select box editors with data sources (see Data sources for more details) you can use client-side
processing to adjust dataSourceAdditionalData when properties are changed in the inspector. The following
example demonstrates this. It defines two properties (serviceType and contractType) where changes to the first property
cause the searchTerm on the second properties’ data source to be updated. That in turn triggers a refresh of the
available options from the data source.

properties:
serviceType:
type: string
ui:
label: 'Service Type'
inspector:
group: product
editor: 'Content/Inspector/Editors/SelectBoxEditor'
editorOptions:
allowEmpty: true
placeholder: 'Service Type'
dataSourcelIdentifier: 'acme-servicetypes'
contractType:
type: string
ui:
label: 'Contract Type'
inspector:
group: product
editor: 'Content/Inspector/Editors/SelectBoxEditor'
editorOptions:
allowEmpty: true
placeholder: 'Contract Type'
dataSourceIdentifier: 'acme-contracttypes'
dataSourceAdditionalData:
searchTerm: 'ClientEval:node.properties.serviceType'

3.1.7 Depending Properties

Note: This API is outdated and works only in the legacy (Ember) version of the Neos User Interface. For a relevant
version of the API see Dynamic Client-side Configuration Processing.

Note: This API is still experimental, we might change details about the handler signature and implementation to
reduce the amount of exposed internal code. The UI code is undergoing major changes right now which also might
make adjustments necessary.

Sometimes it might be necessary to depend one property editor on another, such as two select boxes where one
selection is not meaningful without the other. For that you can setup listeners that get triggered each time a property
changes.

Here is an example of the configuration:

'Some.Package:NodeType':
properties:
border-width:

(continues on next page)

28 Chapter 3. Creating a Site with Neos

Neos CMS, Release 4.3.x

(continued from previous page)

type: integer
border-color:
type: string
ui:
label: il8n
inspector:
editorListeners:
activeWithNonEmptyValue:
property: 'border-width'
handler: 'Some.Package/Handlers/BorderHandler'
handlerOptions:
something: true

This sets up a listener named activeWithNonEmptyValue. The name can be freely chosen. This allows to
override specific listeners in other packages by refering to that name. The property setting defines the name of the
property on the same Node that will be observed. That means any change to this property will trigger the configured
handler.

Configuring the handler means defining a require path to the handler object just like with Custom Editors for
properties. Namespaces can be registered like this:

Neos:
Neos:
userInterface:
requireJdsPathMapping:
'Some.Package/Handlers': 'resource://Some.Package/Public/Scripts/Inspector/
—Handlers'

The handler should be compatible to RequireJS and be an Ember.Object that has a handle function. The
handlerOptions configured for the listener in the NodeType configuration will be given to the handler upon
creation and are available in the handle method.

A code example for a handler:

define (
[

'emberjs'
]I
function (Ember) {

return Ember.Object.extend ({

handle: function(listeningEditor, newValue, property, listenerName) {
if (this.get ('something') === true) {
listeningEditor.set ('disabled’', (newValue === null || newValue === "'

The handle function receives the following arguments:

* listeningEditor - The property editor this listener is configured for, in the above example it will be the
border-color editor.

* newValue will be the value of the observed property, which is the border-width probpery in the above
example.

* property is the name of the observed property, literally border-width in the above example.

3.1. Node Types 29

Neos CMS, Release 4.3.x

e listenerName is the configured name of the listener in question, literally act iveWithNonEmptyValue
in the example above.

If you are using select box editors with data sources (see Data sources for more details) you can use editor listeners
to adjust dataSourceAdditionalData when properties are changed in the inspector. The following example
shows this. It defines two properties (serviceType and contractType) where changes to the first property cause the
searchTerm on the second properties’ data source to be updated. That in turn triggers a refresh of the available
options from the data source.

properties:
serviceType:
type: string
ui:
label: 'Service Type'
inspector:
group: product
editor: 'Content/Inspector/Editors/SelectBoxEditor'
editorOptions:
allowEmpty: true
placeholder: 'Service Type'
dataSourceldentifier: 'acme-servicetypes'

contractType:
type: string
ui:

label: 'Contract Type'
inspector:
group: product
editor: 'Content/Inspector/Editors/SelectBoxEditor'
editorOptions:
allowEmpty: true
placeholder: 'Contract Type'
dataSourcelIdentifier: 'acme-contracttypes'
dataSourceAdditionalData:
searchTerm: ~
editorListeners:
updateForSourceData:
property: 'serviceType'
handler: 'Neos.Demo/Handlers/TeaserOptionsHandler'

define(['emberijs'], function (Ember) ({
return Ember.Object.extend ({
handle: function(listeningEditor, newValue, property, listenerName) {
listeningEditor.set ('dataSourceAdditionalData.searchTerm', newValue);

30 Chapter 3. Creating a Site with Neos

Neos CMS, Release 4.3.x

3.1.8 Disable NodeTypes

To hide an existing NodeType (e.g. one that comes with Neos already) you have 2 options.

Hide the NodeType from the user interface

NodeTypes.yaml

'Vendor.Site:YourContentElementName' :
ui: ~

Nodes of this type will still remain valid in the database and being rendered to the frontend. But they will not be shown
anymore in the dialog for adding nodes.

Completely disallow the direct usage of a NodeType

NodeTypes.yaml

'Vendor.Site:YourContentElementName' :
abstract: TRUE

As abstract NodeTypes are not valid to be used directly this will hide the NodeType in the user interface AND addi-
tionally make all existing nodes of this type invalid. If you run a node:repair all existing nodes of this type will be
removed.

Note: Do not delete the complete NodeType via ~ because this will break all NodeTypes that inherit from this one.

3.2 Fusion

3.2.1 Inside Fusion
In this chapter, Fusion will be explained in a step-by-step fashion, focusing on the different internal parts, the syntax
of these and the semantics.
Fusion is fundamentally a hierarchical, prototype based processing language:
e Itis hierarchical because the content it should render is also hierarchically structured.

¢ It is prototype based because it allows to define properties for all instances of a certain Fusion object type. It is
also possible to define properties not for all instances, but only for instances inside a certain hierarchy. Thus,
the prototype definitions are hierarchically-scoped as well.

e Itis a processing language because it processes the values in the context into a single output value.

In the first part of this chapter, the syntactic and semantic features of the Fusion, Eel and FlowQuery languages are
explained. Then, the focus will be on the design decisions and goals of Fusion, to provide a better understanding of
the main objectives while designing the language.

3.2. Fusion 31

Neos CMS, Release 4.3.x

Goals of Fusion

Fusion should cater to both planned and unplanned extensibility. This means it should provide ways to adjust and
extend its behavior in places where this is to be expected. At the same time it should also be possible to adjust and
extend in any other place without having to apply dirty hacks.

Fusion should be usable in standalone, extensible applications outside of Neos. The use of a flexible language for
configuration of (rendering) behavior is beneficial for most complex applications.

Fusion should make out-of-band rendering easy to do. This should ease content generation for technologies like
AJAX or edge-side includes (ESI).

Fusion should make multiple renderings of the same content possible. It should allow placement of the same content
(but possibly in different representations) on the same page multiple times.

Fusion’s syntax should be familiar to the user, so that existing knowledge can be leveraged. To achieve this, Fusion
takes inspiration from CSS selectors, jQuery and other technologies that are in widespread use in modern frontend
development.

Fusion files

Fusion is read from files. In the context of Neos, some of these files are loaded automatically, and Fusion files can be
split into parts to organize things as needed.

Automatic Fusion file inclusion

All Fusion files are expected to be in the package subfolder Resources/Private/Fusion. Neos will automatically include
the file Root.fusion for the current site package (package which resides in Packages/Sites and has the type “neos-site”
in its composer manifest).

To automatically include Root.fusion files from other packages, you will need to add those packages to the configura-
tion setting Neos .Neos. fusion.autoInclude:

Settings.yaml

Neos:
Neos:
fusion:
autoInclude:
Your.Package: true

Neos will then autoinclude Root.fusion files from these packages in the order defined by package management. Files
with a name other than Root.fusion will never be auto-included even with that setting. You will need to include them
manually in your Root.fusion.

Manual Fusion file inclusion

In any Fusion file further files can be included using the include statement. The path is either relative to the current
file or can be given with the resource wrapper:

include: NodeTypes/CustomElements.fusion
include: resource://Acme.Demo/Private/Fusion/Quux.fusion

In addition to giving exact filenames, globbing is possible in two variants:

32 Chapter 3. Creating a Site with Neos

Neos CMS, Release 4.3.x

Include all .fusion files in NodeTypes
include: NodeTypes/*

Include all .fusion files in NodeTypes and it's subfolders recursively
include: NodeTypes/*x*/x*

The first includes all Fusion files in the NodeTypes folder, the latter will recursively include all Fusion files in Node-
Types and any folders below.

The globbing can be combined with the resource wrapper:

include: resource://Acme.Demo/Private/Fusion/NodeTypes/
include: resource://Acme.Demo/Private/Fusion/+*/x

Fusion Objects

Fusion is a language to describe Fusion objects. A Fusion object has some properties which are used to configure the
object. Additionally, a Fusion object has access to a context, which is a list of variables. The goal of a Fusion object is
to take the variables from the context, and transform them to the desired output, using its properties for configuration
as needed.

Thus, Fusion objects take some input which is given through the context and the properties, and produce a single
output value. Internally, they can modify the context, and trigger rendering of nested Fusion objects: This way, a big
task (like rendering a whole web page) can be split into many smaller tasks (render a single image, render some text,
...): The results of the small tasks are then put together again, forming the final end result.

Fusion object nesting is a fundamental principle of Fusion. As Fusion objects call nested Fusion objects, the rendering
process forms a tree of Fusion objects.

Fusion objects are implemented by a PHP class, which is instantiated at runtime. A single PHP class is the basis for
many Fusion objects. We will highlight the exact connection between Fusion objects and their PHP implementations
later.

A Fusion object can be instantiated by assigning it to a Fusion path, such as:

foo = Page

or:

my.object = Text

or:

my .1image = Neos.Neos.ContentTypes:Image

The name of the to-be-instantiated Fusion prototype is listed without quotes.

By convention, Fusion paths (such as my.object) are written in lowerCamelCase, while Fusion prototypes
(such as Neos .Neos.ContentTypes: Image) are written in UpperCamelCase.

It is possible to set properties on the newly created Fusion objects:

foo.myPropertyl = 'Some Property which Page can access'
my.object .myPropertyl = "Some other property"
my.image.width = E{q(node).property('foo')}

Property values that are strings have to be quoted (with either single or double quotes). A property can also be an Eel
expression (which are explained in Eel, FlowQuery and Fizzle.)

To reduce typing overhead, curly braces can be used to “abbreviate” long Fusion paths:

3.2. Fusion 33

Neos CMS, Release 4.3.x

my {
image = Image
image.width = 200

object {
myPropertyl = 'some property'

Instantiating a Fusion object and setting properties on it in a single pass is also possible. All three examples mean
exactly the same:

somelmage = Image
someImage.foo = 'bar'

Instantiate object, set property one after each other
somelmage = Image
someImage {

foo = 'bar'

Instantiate an object and set properties directly
someImage = Image {
foo = 'bar'

Fusion Objects are Side-Effect Free

When Fusion objects are rendered, they are allowed to modify the Fusion context (they can add or override variables);
and can invoke other Fusion objects. After rendering, however, the parent Fusion object must make sure to clean up
the context, so that it contains exactly the state it had before the rendering.

The API helps to enforce this, as the Fusion context is a stack: The only thing the developer of a Fusion object needs
to make sure is that if he adds some variable to the stack, effectively creating a new stack frame, he needs to remove
exactly this stack frame after rendering again.

This means that a Fusion object can only manipulate Fusion objects below it, but not following or preceding it.

In order to enforce this, Fusion objects are furthermore only allowed to communicate through the Fusion Context; and
they are never allowed to be invoked directly: Instead, all invocations need to be done through the Fusion Runtime.

All these constraints make sure that a Fusion object is side-effect free, leading to an important benefit: If somebody
knows the exact path towards a Fusion object together with its context, it can be rendered in a stand-alone manner,
exactly as if it was embedded in a bigger element. This enables, for example, rendering parts of pages with different
cache life- times, or the effective implementation of AJAX or ESI handlers reloading only parts of a website.

34 Chapter 3. Creating a Site with Neos

Neos CMS, Release 4.3.x

Fusion Prototypes

When a Fusion object is instantiated (i.e. when you type someImage = Image) the Fusion Prototype for this
object is copied and is used as a basis for the new object. The prototype is defined using the following syntax:

prototype (MyImage) {
width = '"500px’
height = '"600px"

When the above prototype is instantiated, the instantiated object will have all the properties of the copied prototype.
This is illustrated through the following example:

somelImage = MyImage
now, somelImage will have a width of 500px and a height of 600px

someImage.width = "'100px'
now, we have overridden the height of "someImage" to be 100px.

Prototype- vs. class-based languages

There are generally two major “flavours” of object-oriented languages. Most languages (such as PHP, Ruby, Perl, Java,
C++) are class-based, meaning that they explicitly distinguish between the place where behavior for a given object is
defined (the “class”) and the runtime representation which contains the data (the “instance”).

Other languages such as JavaScript are prototype-based, meaning that there is no distinction between classes and
instances: At object creation time, all properties and methods of the object’s profotype (which roughly corresponds to
a “class”) are copied (or otherwise referenced) to the instance.

Fusion is a prototype-based language because it copies the Fusion Prototype to the instance when an object is evalu-
ated.

Prototypes in Fusion are mutable, which means that they can easily be modified:

prototype (MyYouTube) {
width = '"100px"'
height = '"500px'

you can change the width/height

prototype (MyYouTube) .width = '"400px"'

or define new properties:

prototype (MyYouTube) . showFullScreen = E{true}

Defining and instantiating a prototype from scratch is not the only way to define and instantiate them. You can also
use an existing Fusion prototype as basis for a new one when needed. This can be done by inheriting from a Fusion
prototype using the < operator:

prototype (MyImage) < prototype (Neos.Neos:Content)

now, the MyImage prototype contains all properties of the Template
prototype, and can be further customized.

This implements prototype inheritance, meaning that the “subclass” (My Image in the example above) and the “parent
class (Content) are still attached to each other: If a property is added to the parent class, this also applies to the
subclass, as in the following example:

3.2. Fusion 35

Neos CMS, Release 4.3.x

prototype (Neos.Neos:Content) . fruit = 'apple'
prototype (Neos.Neos:Content) .meal = 'dinner'

prototype (MyImage) < prototype (Neos.Neos:Content)

now, MyImage also has the properties "fruit = apple" and "meal = dinner"
prototype (Neos.Neos:Content) . fruit = 'Banana'

because MyImage xextends+* Content, MyImage.fruit equals 'Banana' as well.

prototype (MyImage) .meal = 'breakfast'

prototype (Neos.Fusion:Content) .meal = 'supper'

because MyImage now has an #overridden* property "meal", the change of
the parent class' property 1is not reflected in the MyImage class

Prototype inheritance can only be defined globally, i.e. with a statement of the following form:

prototype (Foo) < prototype (Bar)

It is not allowed to nest prototypes when defining prototype inheritance, so the following examples are not valid
Fusion and will result in an exception:

prototype (Foo) < some.prototype (Bar)
other.prototype (Foo) < prototype (Bar)
prototype (Foo) .prototype (Bar) < prototype (Baz)

While it would be theoretically possible to support this, we have chosen not to do so in order to reduce complexity and
to keep the rendering process more understandable. We have not yet seen a Fusion example where a construct such as
the above would be needed.

Hierarchical Fusion Prototypes

One way to flexibly adjust the rendering of a Fusion object is done through modifying its Prototype in certain parts
of the rendering tree. This is possible because Fusion prototypes are hierarchical, meaning that prototype (.. .)
can be part of any Fusion path in an assignment; even multiple times:

prototype (Foo) .bar = 'baz'
prototype (Foo) .some.thing = 'baz2'
some.path.prototype (Foo) .some = 'baz2'
prototype (Foo) .prototype (Bar) .some = 'baz2'
prototype (Foo) .left.prototype (Bar) .some = 'baz2'

* prototype (Foo) .bar is a simple, top-level prototype property assignment. It means: For all objects of
type Foo, set property bar. The second example is another variant of this pattern, just with more nesting levels
inside the property assignment.

e some.path.prototype (Foo) . some is a prototype property assignment inside some.path. It means: For
all objects of type Foo which occur inside the Fusion path some.path, the property some is set.

* prototype (Foo) .prototype (Bar) . some is a prototype property assignment inside another prototype.
It means: For all objects of type Bar which occur somewhere inside an object of type Foo, the property some is
set.

* This can both be combined, as in the last example inside prototype (Foo) .left.prototype (Bar) .
some.

36 Chapter 3. Creating a Site with Neos

Neos CMS, Release 4.3.x

Internals of hierarchical prototypes

A Fusion object is side-effect free, which means that it can be rendered deterministically knowing only its Fusion path
and the context. In order to make this work with hierarchical prototypes, we need to encode the types of all Fusion
objects above the current one into the current path. This is done using angular brackets:

al/a2<Foo>/a3/ad<Bar>

When this path is rendered, a1 /a2 is rendered as a Fusion object of type Foo — which is needed to apply the prototype
inheritance rules correctly.

Those paths are rarely visible on the “outside” of the rendering process, but might at times appear in exception mes-
sages if rendering fails. For those cases it is helpful to know their semantics.

Bottom line: It is not important to know exactly how the a rendering Fusion object’s Fusion path is constructed. Just
pass it on, without modification to render a single element out of band.

Namespaces of Fusion objects
The benefits of namespacing apply just as well to Fusion objects as they apply to other languages. Namespacing helps
to organize the code and avoid name clashes.

In Fusion the namespace of a prototype is given when the prototype is declared. The following declares a YouTube
prototype in the Acme . Demo namespace:

prototype (Acme.Demo:YouTube) {
width = "100px'
height = '500px'

The namespace is, by convention, the package key of the package in which the Fusion resides.

Fully qualified identifiers can be used everywhere an identifier is used:

prototype (Neos.Neos:ContentCollection) < prototype (Neos.Neos:Collection)

In Fusi