

    
      
          
            
  
Neos 4.3 Documentation

Neos is a free enterprise web content management system licensed under the GPL.

This version of the documentation covering Neos 4.3.x has been rendered at: Nov 08, 2021



	Getting Started
	Installation





	Technical Principles




	Creating a Site with Neos
	Node Types

	Fusion

	Rendering Custom Markup

	Content Dimensions

	Multi Site Support

	Content Cache

	Permissions & Access Management





	Extending Neos
	Creating a plugin

	Custom Backend Modules

	Custom Edit/Preview-Modes

	Custom Editors

	Custom Eel Helper

	Custom FlowQuery Operations

	Custom Fusion Objects

	Custom Validators

	Custom ViewHelpers

	Customizing the Inspector

	Data sources

	Interaction with the Neos backend

	Rendering special formats (CSV, JSON, XML, …)

	Neos User Interface Extensibility API

	Writing Tests For Neos





	Inside of Neos
	User Interface Development





	References
	Property Editor Reference

	View Helper Reference

	Fusion Reference

	Eel Helpers Reference

	FlowQuery Operation Reference

	Neos Command Reference

	Validator Reference

	Signal Reference

	Coding Guideline Reference

	Configuration Reference

	Node Migration Reference





	Contribute
	Development

	Documentation





	How To’s
	Neos Best Practices (to be written)

	Adding A Simple Contact Form

	Changing the Body Class with a condition

	Changing Defaults Depending on Content Placement

	Creating a simple Content Element

	Customize Login Screen

	Editing a shared footer across all pages

	Extending the Page

	Integrating a JavaScript-based slider

	Rendering Custom Document Types

	Rendering a Menu

	Rendering a Meta-Navigation

	Tagging assets automatically

	Translating content

	Wrapping a List of Content Elements





	Neos Operations
	Command Line Tools





	Appendixes
	Contributors

	Release Notes

	ChangeLogs










Indices and tables


	Index








            

          

      

      

    

  

    
      
          
            
  
Getting Started



	Installation
	Requirements

	Fundamental Installation

	The Neos Setup Tool












            

          

      

      

    

  

    
      
          
            
  
Installation


Tip

Neos is built on top of the Flow framework. If you run into technical problems,
keep in mind to check the Flow documentation [http://flowframework.readthedocs.org/en/stable/index.html] for possible hints as well.




Requirements

Neos has at least the same system requirements as Flow. You can find them in the
Flow Requirements Documentation [http://flowframework.readthedocs.org/en/stable/TheDefinitiveGuide/PartII/Requirements.html].

The most important requirements are:


	A Webserver (Apache and Nginx are preferred but others work as well)


	A Database (MySQL > 5.7.7, MariaDB > 10.2.2 and PostgreSQL > 9.4 are preferred
but any Database supported by Doctrine DBAL [http://www.doctrine-project.org/projects/dbal.html]
should work as well).


	PHP >= 7.1.0 (make sure the PHP CLI has the same version)


	PHP modules mbstring, tokenizer and pdo_mysql


	PHP functions exec(), shell_exec(), escapeshellcmd() and escapeshellarg()


	It is recommended to install one of the PHP modules imagick or gmagick










Fundamental Installation


	First you need to install the dependency manager Composer (if you don’t have it already):

curl -sS https://getcomposer.org/installer | php





By issuing this command Composer will get downloaded as composer.phar to your working directory.
If you like to have composer installed globally, you can simply move it to a directory within your $PATH environment.

mv composer.phar /usr/local/bin/composer






Note

If you are on Windows please refer to the offical documentation [http://getcomposer.org/doc/00-intro.md#installation-windows] on how to install Composer on Windows





	Go to your htdocs directory and create a new project based on the Neos base distribution:

cd /your/htdocs/
php /path/to/composer.phar create-project neos/neos-base-distribution Neos





Composer will take care of downloading all dependencies for running your Neos installation to the
directory Neos.
You can safely delete the vcs files by answering ‘Y’ to the question ‘Do you want to remove the existing VCS (.git,
.svn..) history? [Y,n]?’.



	Next set up a virtual domain/host in your webserver configuration


	Apache configuration


Set up a virtual host inside your Apache configuration. Set the DocumentRoot to the Web directory inside
the Neos installation. Set the directive AllowOverride to ÀLL to allow access to .htaccess

NameVirtualHost *:80 # if needed

<VirtualHost *:80>
  DocumentRoot "/your/htdocs/Neos/Web/"
  # enable the following line for production context
  #SetEnv FLOW_CONTEXT Production
  ServerName neos.demo
</VirtualHost>

<Directory /your/htdocs/Neos/Web>
  AllowOverride All
</Directory>








Make sure that the mod_rewrite module is loaded and restart apache. For further information on how to set up a
virtual host with apache please refer to the Apache Virtual Host documentation [https://httpd.apache.org/docs/2.2/en/vhosts/].



	nginx configuration

For further information on how to set up a virtual domain with nginx please refer to the nginx  documentation [https://www.linode.com/docs/websites/nginx/how-to-configure-nginx].







	Add an entry to /etc/hosts to make your virtual host reachable:

127.0.0.1 neos.demo





Make sure to use the same name you defined in ServerName in the virtual host configuration above.



	Set file permissions as needed so that the installation is read- and writeable by the webserver’s user and group:

sudo ./flow core:setfilepermissions john www-data www-data





Replace john with your current username and www-data with the webserver’s user and group.

For detailed instructions on setting the needed permissions see  Flow File Permissions [http://flowframework.readthedocs.org/en/stable/TheDefinitiveGuide/PartII/Installation.html#file-permissions]


Note

Setting file permissions is not necessary and not possible on Windows machines.
For Apache to be able to create symlinks, you need to use Windows Vista (or
newer) and Apache needs to be started with Administrator privileges.





	Now go to http://neos.demo/setup and follow the on-screen instructions.






The Neos Setup Tool


	A check for the basic requirements of Flow and Neos will be run. If all is well, you will
see a login screen. If a check failed, hints on solving the issue will be shown and you should
fix what needs to be fixed. Then just reload the page, until all requirements are met.


	The login screen will tell you the location of a file with a generated password. Keep that password
in some secure place, the generated file will be removed upon login! It is possible to have a new password
rendered if you lost it, so don’t worry too much.


[image: Neos login page]



	The NEOS requirements check checks, if you have installed an image manipulation software.


[image: NEOS requirements check]



	Fill in the database credentials in the first step. The selector box will be updated with
accessible databases to choose from, or you can create a new one.


Tip

Configure your MySQL server to use the utf8_unicode_ci collation by default if possible!




[image: Setup database credentials]



	In the next step a user with administrator privileges for editing with Neos is created.


[image: Create admin user]



	The following step allows you to import an existing site or kickstart a new site. To import the
demo site, just make sure it is selected in the selector box and go to the next step.

To kickstart a new site, enter a package and site name in the form before going to the next step.

If you are new to Neos, we recommend to import the existing demo site so you can follow the next
section giving you a basic tour of the user interface.


[image: Create new site or import an existing]



	If all went well you’ll get a confirmation the setup is completed, and you can enter the
frontend or backend of your Neos website.


Warning

If you install the Neos demo site and it is publicly accessible, make sure the “Try me” page in
the page tree is not publicly accessible because it has a form allowing you to create backend
editor accounts with rights to edit website content.)




[image: The Neos start page]

The Neos demo site start page











            

          

      

      

    

  

    
      
          
            
  
Technical Principles







            

          

      

      

    

  

    
      
          
            
  
Creating a Site with Neos

This guide explains how to implement websites with Neos. It specifically
covers the structuring of content using the Neos Content Repository,
and how the content is rendered using Fusion and Fluid.



	Node Types
	Content Structure

	Node Type Definition

	Node Type Constraints

	Node Creation Dialog Configuration

	Translate NodeTypes

	Dynamic Client-side Configuration Processing

	Depending Properties

	Disable NodeTypes





	Fusion
	Inside Fusion

	Eel, FlowQuery and Fizzle





	Rendering Custom Markup
	Templating

	Rendering A Page

	Creating Custom Content Elements

	Adjusting Neos Output





	Content Dimensions
	Introduction

	Dimension Configuration

	Preset Constraints

	Migration of existing content

	Routing

	Limitations





	Multi Site Support
	Separating Assets Between Sites





	Content Cache
	Introduction

	The basics

	Default cache configuration

	Global cache entry identifiers

	Tuning your cache





	Permissions & Access Management
	Introduction

	Adjusting and defining roles

	Node Privileges

	Privilege Matchers

	Asset Privileges

	Restricting Access to Backend Modules

	Limitations

	Further Reading












            

          

      

      

    

  

    
      
          
            
  
Node Types

These are the development guidelines of Neos.



	Content Structure
	Nodes inside the Neos Content Repository





	Node Type Definition

	Node Type Constraints
	Regular Node Type Constraints

	Auto-Created Child Node Constraints

	Override Logic and Default Values

	Examples





	Node Creation Dialog Configuration

	Translate NodeTypes
	Add properties to existing NodeTypes

	Override Translations

	Validate Translations





	Dynamic Client-side Configuration Processing
	A few Practical Examples





	Depending Properties

	Disable NodeTypes
	Hide the NodeType from the user interface

	Completely disallow the direct usage of a NodeType












            

          

      

      

    

  

    
      
          
            
  
Content Structure

Before we can understand how content is rendered, we have to see how it is structured
and organized. These basics are explained in this section.


Nodes inside the Neos Content Repository

The content in Neos is not stored inside tables of a relational database, but
inside a tree-based structure: the so-called Neos Content Repository.

To a certain extent, it is comparable to files in a file-system: They are also
structured as a tree, and are identified uniquely by the complete path towards
the file.


Note

Internally, the Neos ContentRepository currently stores the nodes inside database
tables as well, but you do not need to worry about that as you’ll never deal
with the database directly. This high-level abstraction helps to decouple
the data modelling layer from the data persistence layer.



Each element in this tree is called a Node, and is structured as follows:


	It has a node name which identifies the node, in the same way as a file or
folder name identifies an element in your local file system.


	It has a node type which determines which properties a node has. Think of
it as the type of a file in your file system.


	Furthermore, it has properties which store the actual data of the node.
The node type determines which properties exist for a node. As an example,
a Text node might have a headline and a text property.


	Of course, nodes may have sub nodes underneath them.




If we imagine a classical website with a hierarchical menu structure, then each
of the pages is represented by a Neos ContentRepository Node of type Document. However, not only
the pages themselves are represented as tree: Imagine a page has two columns,
with different content elements inside each of them. The columns are stored as
Nodes of type ContentCollection, and they contain nodes of type Text, Image, or
whatever structure is needed. This nesting can be done indefinitely: Inside
a ContentCollection, there could be another three-column element which again contains
ContentCollection elements with arbitrary content inside.


Predefined Node Types

Neos is shipped with a number of predefined node types. It is helpful to know some of
them, as they can be useful elements to extend, and Neos depends on some of them
for proper behavior.

There are a few core node types which are needed by Neos; these are shipped in Neos.Neos
directly. All other node types such as Text, Image, … are shipped inside the Neos.NodeTypes
package.


Neos.Neos:Node

Neos.Neos:Node is a (more or less internal) base type which should be extended by
all content types which are used in the context of Neos.

It does not define any properties.



Neos.Neos:Document

An important distinction is between nodes which look and behave like pages
and “normal content” such as text, which is rendered inside a page. Nodes which
behave like pages are called Document Nodes in Neos. This means they have a unique,
externally visible URL by which they can be rendered.

The standard page in Neos is implemented by Neos.NodeTypes:Page which directly extends from
Neos.Neos:Document.



Neos.Neos:ContentCollection and Neos.Neos:Content

All content which does not behave like pages, but which lives inside them, is
implemented by two different node types:

First, there is the Neos.Neos:ContentCollection type: A Neos.Neos:ContentCollection has a structural purpose.
It usually contains an ordered list of child nodes which are rendered inside.

Neos.Neos:ContentCollection may be extended by custom types.

Second, the node type for all standard elements (such as text, image, youtube,
…) is Neos.Neos:Content. This is–by far–the most often extended node type.



Extending the NodeTypes

To extend the existing NodeTypes or to create new ones please read at the Node Type Definition reference.







            

          

      

      

    

  

    
      
          
            
  
Node Type Definition

Each Neos ContentRepository Node (we’ll just call it Node in the remaining text) has a specific
node type. Node Types can be defined in any package by declaring them in
Configuration/NodeTypes.yaml. If you have a rather large list of Node Types, you can also split your
NodeType definitions into multiple Configuration/NodeTypes.*.yaml files for organizing them.

Each node type can have one or multiple parent types. If these are specified,
all properties and settings of the parent types are inherited.

A node type definition can look as follows:

'My.Package:SpecialHeadline':
  superTypes:
    'Neos.Neos:Content': true
  ui:
    label: 'Special Headline'
    group: 'general'
  properties:
    headline:
      type: 'string'
      defaultValue: 'My Headline Default'
      ui:
        inlineEditable: true
      validation:
        'Neos.Neos/Validation/StringLengthValidator':
          minimum: 1
          maximum: 255





The following options are allowed:


	abstract
	A boolean flag, marking a node type as abstract. Abstract node types can never be used standalone,
they will never be offered for insertion to the user in the UI, for example.

Abstract node types are useful when using inheritance and composition, so mark base node types and
mixins as abstract.



	aggregate
	A boolean flag, marking a node type as aggregate. If a node type is marked as aggregate, it means that:


	the node type can “live on its own”, i.e. can be part of an external URL


	when moving this node, all node variants are also moved (across all dimensions)


	Recursive copying only happens inside this aggregate, and stops at nested aggregates.




The most prominent aggregate is Neos.Neos:Document and everything which inherits from it, like
Neos.NodeTypes:Page.



	superTypes
	An array of parent node types as keys with a boolean value:

'Neos.Neos:Document':
  superTypes:
    'Acme.Demo.ExtraMixin': true

'Neos.Neos:Shortcut':
  superTypes:
    'Acme.Demo.ExtraMixin': false







	constraints
	Constraint definitions stating which nested child node types are allowed. Also see the dedicated chapter
Node Type Constraints for detailed explanation:

constraints:
  nodeTypes:
    # ALLOW text, DISALLOW Image
    'Neos.NodeTypes:Text': true
    'Neos.NodeTypes:Image': false
    # DISALLOW as Fallback (for not-explicitly-listed node types)
    '*': false







	childNodes
	A list of child nodes that are automatically created if a node of this type is created.
For each child the type has to be given. Additionally, for each of these child nodes,
the constraints can be specified to override the “global” constraints per type.
Here is an example:

childNodes:
  someChild:
    type: 'Neos.Neos:ContentCollection'
    constraints:
      nodeTypes:
        # only allow images in this ContentCollection
        'Neos.NodeTypes:Image': true
        '*': false





By using position, it is possible to define the order in which child nodes appear in the structure tree.
An example may look like:

'Neos.NodeTypes:Page':
  childNodes:
    'someChild':
      type: 'Neos.Neos:ContentCollection'
      position: 'before main'





This adds a new ContentCollection called someChild to the default page.
It will be positioned before the main ContentCollection that the default page has.
The position setting follows the same sorting logic used in Fusion
(see the Fusion Reference).



	label
	When displaying a node inside the Neos UI (e.g. tree view, link editor, workspace module) the label option will
be used to generate a human readable text for a specific node instance (in contrast to the ui.label
which is used for all nodes of that type).

The label option accepts an Eel expression that has access to the current node using the node context variable.
It is recommended to customize the label option for node types that do not yield a sufficient description
using the default configuration.

Example:

'Neos.Demo:Flickr':
  label: ${'Flickr plugin (' + q(node).property('tags') + ')'}






	generatorClass
	Alternatively the class of a node label generator implementing
Neos\ContentRepository\Domain\Model\NodeLabelGeneratorInterface can be specified as a nested option.







	options
	Options for third party-code, the Content-Repository ignores those options but Neos or Packages may use this to adjust
their behavior.


	fusion
	Options to control the behavior of fusion-for a specific nodeType.


	prototypeGenerator
	The class that is used to generate the default fusion-prototype for this nodeType.

If this option is set to a className the class has to implement the interface
\Neos\Neos\Domain\Service\DefaultPrototypeGeneratorInterface and is used to generate the prototype-code for this node.

If options.fusion.prototypeGenerator is set to null no prototype is created for this type.

By default Neos has generators for all nodes of type Neos.Neos:Node and creates protoypes based on
Neos.Fusion:Template. A template path is assumed based on the package-prefix and the nodetype-name. All properties
of the node are passed to the template. For the nodeTypes of type Neos.Neos:Document, Neos.Neos:Content and
Neos.Neos:Plugin the corresponding prototype is used as base-prototype.

Example:

prototype(Vendor.Site:Content.SpecialNodeType) < prototype(Neos.Fusion:Content) {
  templatePath = 'resource://Vendor.Site/Private/Templates/NodeTypes/Content.SpecialNodeType.html'
  # all properties of the nodeType are passed to the template
  date = ${q(node).property('date')}
  # inline-editable strings additionally get the convertUris processor
  title = ${q(node).property('title')}
  title.@process.convertUris = Neos.Neos:ConvertUris
}















	ui
	Configuration options related to the user interface representation of the node type


	label
	The human-readable label of the node type



	group
	Name of the group this content element is grouped into for the ‘New Content Element’ dialog.
It can only be created through the user interface if group is defined and it is valid.

All valid groups are given in the Neos.Neos.nodeTypes.groups setting



	position
	Position inside the group this content element is grouped into for the ‘New Content Element’ dialog.
Small numbers are sorted on top.



	icon
	This setting defines the icon that the Neos UI will use to display the node type.

Legacy:
In Neos versions before 4.0 it was required to use icons from the Fontawesome 3 or 4 versions,
prefixed with “icon-”

Current:
In Neos 4.0, Fontawesome 5 was introduced, enabling the usage of all free Fontawesome icons:
https://fontawesome.com/icons?d=gallery&m=free
Those can still be referenced via “icon-[name]”, as the UI includes a fallback to the “fas”
prefix-classes. To be sure which icon will be used, they can also be referenced by their
icon-classes, e.g. “fas fa-check”.



	help
	Configuration of contextual help. Displays a message that is rendered as popover
when the user clicks the help icon in an insert node dialog.


	message
	Help text for the node type. It supports markdown to format the help text and can
be translated (see Translate NodeTypes).



	thumbnail
	This is shown in the popover and can be supplied in two ways:


	as an absolute URL to an image (http://static/acme.com/thumbnails/bar.png)


	as a resource URI (resource://AcmeCom.Website/NodeTypes/Thumbnails/foo.png)





	If the thumbnail setting is undefined but an image matching the nodetype name
	is found, it will be used automatically. It will be looked for in
<packageKey>/Resources/Public/NodeTypes/Thumbnails/<nodeTypeName>.png with
packageKey and nodeTypeName being extracted from the full nodetype name
like this:

AcmeCom.Website:FooWithBar -> AcmeCom.Website and FooWithBar

The image will be downscaled to a width of 342 pixels, so it should either be that
size to be placed above any further help text (if supplied) or be half that size for
the help text to flow around it.











	inlineEditable
	If true, it is possible to interact with this Node directly in the content view.
If false, an overlay is shown preventing any interaction with the node.
If not given, checks if any property is marked as ui.inlineEditable.



	inspector
	These settings configure the inspector in the Neos UI for the node type


	tabs
	Defines an inspector tab that can be used to group property groups of the node type


	label
	The human-readable label for this inspector tab



	position
	Position of the inspector tab, small numbers are sorted on top



	icon
	This setting define the icon to use in the Neos UI for the tab

Currently it’s only possible to use a predefined selection of icons, which
are available in Font Awesome http://fortawesome.github.io/Font-Awesome/3.2.1/icons/.







	groups
	Defines an inspector group that can be used to group properties of the node type


	label
	The human-readable label for this inspector group



	position
	Position of the inspector group, small numbers are sorted on top



	icon
	This setting define the icon to use in the Neos UI for the group



	tab
	The tab the group belongs to. If left empty the group is added to the default tab.



	collapsed
	If the group should be collapsed by default (true or false). If left empty, the group will be expanded.











	creationDialog
	Creation dialog elements configuration. See Node Creation Dialog Configuration for more details.







	properties
	A list of named properties for this node type. For each property the following settings are available.


Note

Your own property names should never start with an underscore _ as that is used for internal
properties or as an internal prefix.




	type
	Data type of this property. This may be a simple type (like in PHP), a fully qualified PHP class name, or one of
these three special types: DateTime, references, or reference. Use DateTime to store dates / time as a
DateTime object. Use reference and references to store references that point to other nodes. reference
only accepts a single node or node identifier, while references accepts an array of nodes or node identifiers.



	defaultValue
	Default value of this property. Used at node creation time. Type must match specified ‘type’.



	ui
	Configuration options related to the user interface representation of the property


	label
	The human-readable label of the property



	help
	Configuration of contextual help. Displays a message that is rendered as popover
when the user clicks the help icon in the inspector.


	message
	Help text for this property. It supports markdown to format the help text and can
be translated (see Translate NodeTypes).







	reloadIfChanged
	If true, the whole content element needs to be re-rendered on the server side if the value
changes. This only works for properties which are displayed inside the property inspector,
i.e. for properties which have a group set.



	reloadPageIfChanged
	If true, the whole page needs to be re-rendered on the server side if the value
changes. This only works for properties which are displayed inside the property inspector,
i.e. for properties which have a group set.



	inlineEditable
	If true, this property is inline editable, i.e. edited directly on the page.



	aloha
	Legacy configuration of rich text editor, works for the sake of backwards compatibility, but it
is advised to use inline.editorOptions instead.





inline



	editor
	A way to override default inline editor loaded for this property.
Two editors are available out of the box: ckeditor (loads CKeditor4) and ckeditor5 (loads CKeditor5).
The default editor is configurable in Settings.yaml under the key Neos.Neos.Ui.frontendConfiguration.defaultInlineEditor.
It is strongly recommended to start using CKeditor5 today, as the CKeditor4 integration will be deprecated and removed in the future versions.
Additional custom inline editors are registered via the inlineEditors registry.
See Neos User Interface Extensibility API for the detailed information on the topic.



	editorOptions
	This section controls the text formatting options the user has available for this property.

Note: When using inline.editorOptions anything defined under the legacy aloha key for a
property is ignored. Keep this in mind when using supertypes and mixins.


	placeholder
	A text that is shown when the field is empty. Supports i18n.



	autoparagraph
	When configured to false, automatic creation of paragraphs is disabled for this property and <enter>
key would create soft line breaks instead (equivalent to configuring an editable on a span tag).



	linking
	A way to configure additional options available for a link, e.g. target or rel attributes.



	formatting
	Various formatting options (see example below for all available options).









Example:

inline:
  editorOptions:
    placeholder: i18n
    autoparagraph: true
    linking:
      anchor: true
      title: true
      relNofollow: true
      targetBlank: true
    formatting:
      strong: true
      em: true
      u: true
      sub: true
      sup: true
      del: true
      p: true
      h1: true
      h2: true
      h3: true
      h4: true
      h5: true
      h6: true
      pre: true
      underline: true
      strikethrough: true
      removeFormat: true
      left: true
      right: true
      center: true
      justify: true
      table: true
      ol: true
      ul: true
      a: true









	inspector
	These settings configure the inspector in the Neos UI for the property.


	group
	Identifier of the inspector group this property is categorized into in the content editing
user interface. If none is given, the property is not editable through the property inspector
of the user interface.

The value here must reference a groups configured in the ui.inspector.groups element of the
node type this property belongs to.



	position
	Position inside the inspector group, small numbers are sorted on top.



	editor
	Name of the JavaScript Editor Class which is instantiated to edit this element in the inspector.



	editorOptions
	A set of options for the given editor, see the Property Editor Reference.



	editorListeners
	Allows to observe changes of other properties in order to react to them. For details see Depending Properties











	validation
	A list of validators to use on the property. Below each validator type any options for the validator
can be given. See below for more information.










Tip

Unset a property by setting the property configuration to null (~).



Here is one of the standard Neos node types (slightly shortened):

'Neos.NodeTypes:Image':
  superTypes:
    'Neos.Neos:Content': true
  ui:
    label: 'Image'
    icon: 'icon-picture'
    inspector:
      groups:
        image:
          label: 'Image'
          icon: 'icon-image'
          position: 5
  properties:
    image:
      type: Neos\Media\Domain\Model\ImageInterface
      ui:
        label: 'Image'
        reloadIfChanged: true
        inspector:
          group: 'image'
    alignment:
      type: string
      defaultValue: ''
      ui:
        label: 'Alignment'
        reloadIfChanged: true
        inspector:
          group: 'image'
          editor: 'Neos.Neos/Inspector/Editors/SelectBoxEditor'
          editorOptions:
            placeholder: 'Default'
            values:
              '':
                label: ''
              center:
                label: 'Center'
              left:
                label: 'Left'
              right:
                label: 'Right'
    alternativeText:
      type: string
      ui:
        label: 'Alternative text'
        reloadIfChanged: true
        inspector:
          group: 'image'
      validation:
        'Neos.Neos/Validation/StringLengthValidator':
          minimum: 1
          maximum: 255
    hasCaption:
      type: boolean
      ui:
        label: 'Enable caption'
        reloadIfChanged: true
        inspector:
          group: 'image'
    caption:
      type: string
      defaultValue: '<p>Enter caption here</p>'
      ui:
        inlineEditable: true








            

          

      

      

    

  

    
      
          
            
  
Node Type Constraints

In a typical Neos project, you will create lots of custom node types. However, many node types should only be
used in a specific context and not everywhere. Neos allows you to define node type constraints, which restrict
the possible node types that can be added as children of a specific node type. There are two ways to do this:


	Regular node type constraints are defined per node type. They apply in any context the node type appears in.


	Additionally, when a node type has auto-created child nodes (see Node Type Definition), you can
define additional constraints that only apply for these child nodes. This allows you to restrict node type
usage depending on the context that the node types are placed in.





Note

Node type constraints are cached in the browser’s session storage.
During development, it’s a good idea to run sessionStorage.clear() in the browser console to remove
the old configuration after you make changes. Alternatively, you can use an anonymous browser tab to
avoid storing outdated node type constraints.




Regular Node Type Constraints

Let’s assume that, inside the “Chapter” node type of the Neos Demo Site (which is a document node), one should only be
able to create nested chapters, and not pages or shortcuts. Using node type constraints, this can be enforced:

'Neos.Demo:Chapter':
  constraints:
    nodeTypes:
      'Neos.Neos:Document': false
      'Neos.Demo:Chapter': true





In the above example, we disable all document node types using 'Neos.Neos:Document': false, and then enable the
Neos.Demo:Chapter node type as well as any node type that inherits from it. The reason why we use
'Neos.Neos:Document': false instead of '*': false here is that by default, only document node types are
allowed as children of other document node types anyway (see further down for more information regarding the defaults).

You might now wonder why it is still possible to create content inside the chapter (because everything except Chapter
is disabled with the above configuration): The reason is that node type constraints are only enforced for nodes which
are not auto-created. Because Neos.Demo:Chapter has an auto-created main ContentCollection, it is still possible
to add content inside. In the following example, we see the node type definition which is shipped with the demo website:

'Neos.Demo:Chapter':
  superTypes:
    'Neos.Neos:Document': true
  childNodes:
    'main':
      type: 'Neos.Neos:ContentCollection'





The main ContentCollection is still added, even though you cannot add any more because ContentCollections are not allowed
according to the node type constraints.



Auto-Created Child Node Constraints

Let’s assume that our chapter node type should only contain text within its main ContentCollection. This is possible using
additional constraints for each auto-created child node. These constraints will only be applied for the configured
auto-created child nodes - not for any others, even if they are of the same type.

'Neos.Demo:Chapter':
  childNodes:
    'main':
      type: 'Neos.Neos:ContentCollection'
      constraints:
        nodeTypes:
          '*': false
          'Neos.NodeTypes:Text': true







Override Logic and Default Values

The following logic applies for node type constraints:


	Constraints are only enforced for child nodes which are not auto-created.


	You can specify node types explicitly or use ‘*’ to allow/deny all node types.


	Setting the value to true is an explicit allow


	Setting the value to false is an explicit deny


	The default is to always deny (in case ‘*’ is not specified).


	More specific constraints override less specific constraints. Specificity is deduced from the inheritance
hierarchy of the node types. This means that e.g. setting ‘*’: false will only apply if no more specific
constraint has been set, such as ‘Neos.Neos:Document’: true.


	Node type constraints are inherited from parent node types. If your node type has listed Neos.Neos:Document
as a superType, its constraints will apply for your node type as well.




The last rule is especially important, since most node types you define will have either Neos.NodeTypes:Page
(which, in turn, inherits from Neos.Neos:Document`) or ``Neos.Neos:Content as superTypes. You should know which
constraints are defined per default in order to effectively override them. These are the current defaults for these
two node types - this is taken from NodeTypes.yaml in the Neos.Neos package.

'Neos.Neos:Document':
  constraints:
    nodeTypes:
      '*': false
      'Neos.Neos:Document': true





The document node type, by default, allows any other document node type below it. This means that if you want to
disable all document node types under your custom one, setting '*': false will have no effect on anything inheriting from
Neos.Neos:Document - the more specific constraint 'Neos.Neos:Document': true will override it. You will need to set
'Neos.Neos:Document': false instead.

The default content node type, on the other hand, only has the catch-all constraint. If you want to enable any child nodes,
you can simply allow them.

'Neos.Neos:Content':
  constraints:
    nodeTypes:
      '*': false







Examples

You can use YAML references (with the &xyz and *xyz syntax) to re-use constraints. Here’s how to
disallow nested Two/Three/FourColumn inside a multi column element:

'Neos.NodeTypes:Column':
  childNodes:
    column0:
      constraints: &columnConstraints
        nodeTypes:
          'Neos.NodeTypes:TwoColumn': false
          'Neos.NodeTypes:ThreeColumn': false
          'Neos.NodeTypes:FourColumn': false
    column1:
      constraints: *columnConstraints
    column2:
      constraints: *columnConstraints
    column3:
      constraints: *columnConstraints









            

          

      

      

    

  

    
      
          
            
  
Node Creation Dialog Configuration

When creating new nodes, you have the possibility to provide additional data that will be
passed to nodeCreationHandlers.

Creation dialog supports most of the inspector editors, except of those that require
to show a secondary inspector view. See Property Editor Reference for more details about
configuring inspector editors.

For example, this functionality is used in Neos to ask users for title before creating document nodes:

'Neos.Neos:Document':
  ui:
    group: 'general'
    creationDialog:
      elements:
        title:
          type: string
          ui:
            label: i18n
            editor: 'Neos.Neos/Inspector/Editors/TextFieldEditor'
          validation:
            'Neos.Neos/Validation/NotEmptyValidator': []
  options:
    nodeCreationHandlers:
      documentTitle:
        nodeCreationHandler: 'Neos\Neos\Ui\NodeCreationHandler\DocumentTitleNodeCreationHandler'





You may register multiple nodeCreationHandlers per nodetype. Each nodeCreationHandler must implement
NodeCreationHandlerInterface. It gets the newly created $node and the $data coming from
the creation dialog.


Note

elements of the creation dialog define an arbitrary set of data that will be passed to a
nodeCreationHandler, they will not automatically set node properties in any way. To take action based
on that data you would need to write a custom node creation handler or use a package that already provides
such functionality, e.g. Flowpack.NodeTemplates (https://github.com/Flowpack/Flowpack.NodeTemplates).






            

          

      

      

    

  

    
      
          
            
  
Translate NodeTypes

To use the translations for NodeType labels or help messages you have to enable it for each label
or message by setting the value to the predefined value “i18n”.

NodeTypes.yaml

Vendor.Site:YourContentElementName:
  ui:
    help:
      message: 'i18n'
    inspector:
      tabs:
        yourTab:
          label: 'i18n'
      groups:
        yourGroup:
          label: 'i18n'
  properties:
    yourProperty:
      type: string
        ui:
          label: 'i18n'
          help:
            message: 'i18n'





That will instruct Neos to look for translations of these labels. To register an xliff file
for this NodeTypes you have to add the following configuration to the Settings.yaml of your package:

Neos:
  Neos:
    userInterface:
      translation:
        autoInclude:
          'Vendor.Site': ['NodeTypes/*']





Inside of the xliff file Resources/Private/Translations/en/NodeTypes/YourContentElementName.xlf the
translated labels for help, properties, groups, tabs and views are defined in the xliff
as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">
        <file original="" product-name="Vendor.Site" source-language="en" datatype="plaintext">
                <body>
                        <trans-unit id="ui.help.message" xml:space="preserve">
                                <source>Your help message here</source>
                        </trans-unit>
                        <trans-unit id="tabs.myTab" xml:space="preserve">
                                <source>Your Tab Title</source>
                        </trans-unit>
                        <trans-unit id="groups.myTab" xml:space="preserve">
                                <source>Your Group Title</source>
                        </trans-unit>
                        <trans-unit id="properties.myProperty" xml:space="preserve">
                                <source>Your Property Title</source>
                        </trans-unit>
                        <trans-unit id="properties.myProperty.ui.help.message" xml:space="preserve">
                                <source>Your help message here</source>
                        </trans-unit>
                </body>
        </file>
</xliff>






Add properties to existing NodeTypes

For adding properties to existing NodeTypes the use of mixins is encouraged.

NodeTypes.yaml

Vendor.Site:YourNodetypeMixin:
  abstract: true
  properties:
    demoProperty:
      type: string
        ui:
          label: 'i18n'

Neos.Neos:Page:
  superTypes:
    'Vendor.Site:YourNodetypeMixin': true





That way you can add the translations for the added properties to the file
Resources/Private/Translations/en/NodeTypes/YourNodetypeMixin.xlf.



Override Translations

To override translations entirely or to use custom id’s the label property can also
contain a path of the format Vendor.Package:Xliff.Path.And.Filename:labelType.identifier.
The string consists of three parts delimited by ::


	First, the Package Key


	Second, the path towards the xliff file, replacing slashes by dots (relative to Resources/Private/Translations/<language>).


	Third, the key inside the xliff file.




For the example above that would be Vendor.Site:NodeTypes.YourContentElementName:properties.title:

properties:
  title:
    type: string
      ui:
        label: 'Vendor.Site:NodeTypes.YourContentElementName:properties.title'





If you e.g. want to relabel an existing node property of a different package (like the Neos.NodeTypes:Page),
you always have to specify the full translation key (pointing to your package’s XLIFF files then).



Validate Translations

To validate that all labels are translated Neos has the following setting in Settings.yaml:

.. code-block:: yaml







	Neos:
	
	Neos:
	
	userInterface:
	scrambleTranslatedLabels: true
















If that setting is enabled all already translated labels are replaced with ###### – that way you can easily identify the labels that still lack translations.


Note

Make sure to flush the browser caches after working with the translation to make sure that the browser always
shows the latest translations.







            

          

      

      

    

  

    
      
          
            
  
Dynamic Client-side Configuration Processing


Note

This API is rather low-level and still experimental, we might change
some of the implementation details or compliment it with a more high-level API.



All configuration values that begin with ClientEval: are dynamically evaluated on
the client side. They are written in plain JavaScript (evaluated with eval) and
have node variable in the scope pointing to the currently focused node, with all
transient inspector changes applied. For now it is only related to the nodetypes
inspector configuration, but in the future may be extended to the other parts of
the user interface.


A few Practical Examples


Hiding one property when the other one is not set

Here is an example how to hide the property borderColor if borderWidth is empty
by changing its group name to a non-existant value:

'Some.Package:NodeType':
  properties:
    borderWidth:
      type: integer
      ui:
        inspector:
          group: 'style'
    borderColor:
      type: string
      ui:
        inspector:
          hidden: 'ClientEval:node.properties.borderWidth ? true : false







Dependent SelectBoxes

If you are using select box editors with data sources (see Data sources for more details) you can use
client-side processing to adjust dataSourceAdditionalData when properties are changed in the inspector. The
following example demonstrates this. It defines two properties (serviceType and contractType) where changes to the
first property cause the searchTerm on the second properties’ data source to be updated. That in turn triggers
a refresh of the available options from the data source.

properties:
  serviceType:
    type: string
    ui:
      label: 'Service Type'
      inspector:
        group: product
        editor: 'Content/Inspector/Editors/SelectBoxEditor'
        editorOptions:
          allowEmpty: true
          placeholder: 'Service Type'
          dataSourceIdentifier: 'acme-servicetypes'
  contractType:
    type: string
    ui:
      label: 'Contract Type'
      inspector:
        group: product
        editor: 'Content/Inspector/Editors/SelectBoxEditor'
        editorOptions:
          allowEmpty: true
          placeholder: 'Contract Type'
          dataSourceIdentifier: 'acme-contracttypes'
          dataSourceAdditionalData:
            searchTerm: 'ClientEval:node.properties.serviceType'










            

          

      

      

    

  

    
      
          
            
  
Depending Properties


Note

This API is outdated and works only in the legacy (Ember) version of the
Neos User Interface. For a relevant version of the API see
Dynamic Client-side Configuration Processing.




Note

This API is still experimental, we might change details about the handler
signature and implementation to reduce the amount of exposed internal code. The
UI code is undergoing major changes right now which also might make adjustments
necessary.



Sometimes it might be necessary to depend one property editor on another,
such as two select boxes where one selection is not meaningful without the other.
For that you can setup listeners that get triggered each time a property changes.

Here is an example of the configuration:

'Some.Package:NodeType':
  properties:
    border-width:
      type: integer
    border-color:
      type: string
      ui:
        label: i18n
        inspector:
          editorListeners:
            activeWithNonEmptyValue:
              property: 'border-width'
              handler: 'Some.Package/Handlers/BorderHandler'
              handlerOptions:
                something: true





This sets up a listener named activeWithNonEmptyValue. The name can be freely chosen.
This allows to override specific listeners in other packages by refering to that name.
The property setting defines the name of the property on the same Node that will be
observed. That means any change to this property will trigger the configured handler.

Configuring the handler means defining a require path to the handler object just like
with Custom Editors for properties. Namespaces can be registered like this:

Neos:
  Neos:
    userInterface:
      requireJsPathMapping:
        'Some.Package/Handlers': 'resource://Some.Package/Public/Scripts/Inspector/Handlers'





The handler should be compatible to RequireJS and be an Ember.Object that has a handle function.
The handlerOptions configured for the listener in the NodeType configuration will be given to the
handler upon creation and are available in the handle method.

A code example for a handler:

define(
[
    'emberjs'
],
function (Ember) {
    return Ember.Object.extend({
        handle: function(listeningEditor, newValue, property, listenerName) {
            if (this.get('something') === true) {
                listeningEditor.set('disabled', (newValue === null || newValue === ''));
            }
        }
    });
});





The handle function receives the following arguments:


	listeningEditor - The property editor this listener is configured for, in the above example it will
be the border-color editor.


	newValue will be the value of the observed property, which is the border-width probpery in the
above example.


	property is the name of the observed property, literally border-width in the above example.


	listenerName is the configured name of the listener in question, literally activeWithNonEmptyValue
in the example above.




If you are using select box editors with data sources (see Data sources for more details) you can use
editor listeners to adjust dataSourceAdditionalData when properties are changed in the inspector. The
following example shows this. It defines two properties (serviceType and contractType) where changes to the
first property cause the searchTerm on the second properties’ data source to be updated. That in turn triggers
a refresh of the available options from the data source.

properties:
  serviceType:
    type: string
    ui:
      label: 'Service Type'
      inspector:
        group: product
        editor: 'Content/Inspector/Editors/SelectBoxEditor'
        editorOptions:
          allowEmpty: true
          placeholder: 'Service Type'
          dataSourceIdentifier: 'acme-servicetypes'
  contractType:
    type: string
    ui:
      label: 'Contract Type'
      inspector:
        group: product
        editor: 'Content/Inspector/Editors/SelectBoxEditor'
        editorOptions:
          allowEmpty: true
          placeholder: 'Contract Type'
          dataSourceIdentifier: 'acme-contracttypes'
          dataSourceAdditionalData:
            searchTerm: ~
        editorListeners:
          updateForSourceData:
            property: 'serviceType'
            handler: 'Neos.Demo/Handlers/TeaserOptionsHandler'





define(['emberjs'], function (Ember) {
  return Ember.Object.extend({
    handle: function(listeningEditor, newValue, property, listenerName) {
      listeningEditor.set('dataSourceAdditionalData.searchTerm', newValue);
    }
  });
});








            

          

      

      

    

  

    
      
          
            
  
Disable NodeTypes

To hide an existing NodeType (e.g. one that comes with Neos already) you have 2 options.


Hide the NodeType from the user interface

NodeTypes.yaml

'Vendor.Site:YourContentElementName':
  ui: ~





Nodes of this type will still remain valid in the database and being rendered to the frontend. But they will not be
shown anymore in the dialog for adding nodes.



Completely disallow the direct usage of a NodeType

NodeTypes.yaml

'Vendor.Site:YourContentElementName':
  abstract: TRUE





As abstract NodeTypes are not valid to be used directly this will hide the NodeType in the user interface AND
additionally make all existing nodes of this type invalid. If you run a node:repair all existing nodes of this type will
be removed.


Note

Do not delete the complete NodeType via ~ because this will break all NodeTypes that inherit from this one.







            

          

      

      

    

  

    
      
          
            
  
Fusion



	Inside Fusion
	Goals of Fusion

	Fusion files

	Fusion Objects

	Fusion Prototypes

	Namespaces of Fusion objects

	Setting Properties On a Fusion Object

	Default Context Variables

	Processors

	Conditions

	Apply

	Debugging

	Domain-specific languages in Fusion





	Eel, FlowQuery and Fizzle
	Eel - Embedded Expression Language

	FlowQuery

	Fizzle












            

          

      

      

    

  

    
      
          
            
  
Inside Fusion

In this chapter, Fusion will be explained in a step-by-step fashion, focusing on the different
internal parts, the syntax of these and the semantics.

Fusion is fundamentally a hierarchical, prototype based processing language:


	It is hierarchical because the content it should render is also hierarchically structured.


	It is prototype based because it allows to define properties for all instances of a certain
Fusion object type. It is also possible to define properties not for all instances, but only
for instances inside a certain hierarchy. Thus, the prototype definitions are hierarchically-scoped
as well.


	It is a processing language because it processes the values in the context into a single output
value.




In the first part of this chapter, the syntactic and semantic features of the Fusion, Eel and FlowQuery
languages are explained. Then, the focus will be on the design decisions and goals of Fusion, to provide
a better understanding of the main objectives while designing the language.


Goals of Fusion

Fusion should cater to both planned and unplanned extensibility. This means it should provide
ways to adjust and extend its behavior in places where this is to be expected. At the same time it
should also be possible to adjust and extend in any other place without having to apply dirty hacks.

Fusion should be usable in standalone, extensible applications outside of Neos. The use of a
flexible language for configuration of (rendering) behavior is beneficial for most complex applications.

Fusion should make out-of-band rendering easy to do. This should ease content generation for
technologies like AJAX or edge-side includes (ESI).

Fusion should make multiple renderings of the same content possible. It should allow placement
of the same content (but possibly in different representations) on the same page multiple times.

Fusion’s syntax should be familiar to the user, so that existing knowledge can be leveraged.
To achieve this, Fusion takes inspiration from CSS selectors, jQuery and other technologies that
are in widespread use in modern frontend development.



Fusion files

Fusion is read from files. In the context of Neos, some of these files are loaded automatically,
and Fusion files can be split into parts to organize things as needed.


Automatic Fusion file inclusion

All Fusion files are expected to be in the package subfolder Resources/Private/Fusion. Neos will
automatically include the file Root.fusion for the current site package (package which resides in
Packages/Sites and has the type “neos-site” in its composer manifest).

To automatically include Root.fusion files from other packages, you will need to add those packages to
the configuration setting Neos.Neos.fusion.autoInclude:

# Settings.yaml

Neos:
  Neos:
    fusion:
      autoInclude:
        Your.Package: true





Neos will then autoinclude Root.fusion files from these packages in the order defined by package management.
Files with a name other than Root.fusion will never be auto-included even with that setting. You
will need to include them manually in your Root.fusion.



Manual Fusion file inclusion

In any Fusion file further files can be included using the include statement. The path is either
relative to the current file or can be given with the resource wrapper:

include: NodeTypes/CustomElements.fusion
include: resource://Acme.Demo/Private/Fusion/Quux.fusion





In addition to giving exact filenames, globbing is possible in two variants:

# Include all .fusion files in NodeTypes
include: NodeTypes/*

# Include all .fusion files in NodeTypes and it's subfolders recursively
include: NodeTypes/**/*





The first includes all Fusion files in the NodeTypes folder, the latter will recursively include all
Fusion files in NodeTypes and any folders below.

The globbing can be combined with the resource wrapper:

include: resource://Acme.Demo/Private/Fusion/NodeTypes/*
include: resource://Acme.Demo/Private/Fusion/**/*








Fusion Objects

Fusion is a language to describe Fusion objects. A Fusion object has some properties
which are used to configure the object. Additionally, a Fusion object has access to a context,
which is a list of variables. The goal of a Fusion object is to take the variables from the
context, and transform them to the desired output, using its properties for configuration as needed.

Thus, Fusion objects take some input which is given through the context and the properties, and
produce a single output value. Internally, they can modify the context, and trigger rendering of
nested Fusion objects: This way, a big task (like rendering a whole web page) can be split into
many smaller tasks (render a single image, render some text, …): The results of the small tasks are
then put together again, forming the final end result.

Fusion object nesting is a fundamental principle of Fusion. As Fusion objects call nested
Fusion objects, the rendering process forms a tree of Fusion objects.

Fusion objects are implemented by a PHP class, which is instantiated at runtime. A single PHP class
is the basis for many Fusion objects. We will highlight the exact connection between Fusion
objects and their PHP implementations later.

A Fusion object can be instantiated by assigning it to a Fusion path, such as:

foo = Page
# or:
my.object = Text
# or:
my.image = Neos.Neos.ContentTypes:Image





The name of the to-be-instantiated Fusion prototype is listed without quotes.

By convention, Fusion paths (such as my.object) are written in lowerCamelCase, while
Fusion prototypes (such as Neos.Neos.ContentTypes:Image) are written in UpperCamelCase.

It is possible to set properties on the newly created Fusion objects:

foo.myProperty1 = 'Some Property which Page can access'
my.object.myProperty1 = "Some other property"
my.image.width = ${q(node).property('foo')}





Property values that are strings have to be quoted (with either single or double quotes). A property
can also be an Eel expression (which are explained in Eel, FlowQuery and Fizzle.)

To reduce typing overhead, curly braces can be used to “abbreviate” long Fusion paths:

my {
  image = Image
  image.width = 200

  object {
    myProperty1 = 'some property'
  }
}





Instantiating a Fusion object and setting properties on it in a single pass is also possible.
All three examples mean exactly the same:

someImage = Image
someImage.foo = 'bar'

# Instantiate object, set property one after each other
someImage = Image
someImage {
  foo = 'bar'
}

# Instantiate an object and set properties directly
someImage = Image {
  foo = 'bar'
}






Fusion Objects are Side-Effect Free

When Fusion objects are rendered, they are allowed to modify the Fusion context
(they can add or override variables); and can invoke other Fusion objects.
After rendering, however, the parent Fusion object must make sure to clean up the context,
so that it contains exactly the state it had before the rendering.

The API helps to enforce this, as the Fusion context is a stack: The only thing the
developer of a Fusion object needs to make sure is that if he adds some variable to
the stack, effectively creating a new stack frame, he needs to remove exactly this stack
frame after rendering again.

This means that a Fusion object can only manipulate Fusion objects below it,
but not following or preceding it.

In order to enforce this, Fusion objects are furthermore only allowed to communicate
through the Fusion Context; and they are never allowed to be invoked directly: Instead,
all invocations need to be done through the Fusion Runtime.

All these constraints make sure that a Fusion object is side-effect free, leading
to an important benefit: If somebody knows the exact path towards a Fusion object together
with its context, it can be rendered in a stand-alone manner, exactly as if it was embedded
in a bigger element. This enables, for example, rendering parts of pages with different cache life-
times, or the effective implementation of AJAX or ESI handlers reloading only parts of a
website.




Fusion Prototypes

When a Fusion object is instantiated (i.e. when you type someImage = Image) the
Fusion Prototype for this object is copied and is used as a basis for the new object.
The prototype is defined using the following syntax:

prototype(MyImage) {
        width = '500px'
        height = '600px'
}





When the above prototype is instantiated, the instantiated object will have all the properties
of the copied prototype. This is illustrated through the following example:

someImage = MyImage
# now, someImage will have a width of 500px and a height of 600px

someImage.width = '100px'
# now, we have overridden the height of "someImage" to be 100px.






Prototype- vs. class-based languages

There are generally two major “flavours” of object-oriented languages. Most languages
(such as PHP, Ruby, Perl, Java, C++) are class-based, meaning that they explicitly
distinguish between the place where behavior for a given object is defined (the “class”)
and the runtime representation which contains the data (the “instance”).

Other languages such as JavaScript are prototype-based, meaning that there is no distinction
between classes and instances: At object creation time, all properties and methods of
the object’s prototype (which roughly corresponds to a “class”) are copied (or otherwise
referenced) to the instance.

Fusion is a prototype-based language because it copies the Fusion Prototype
to the instance when an object is evaluated.



Prototypes in Fusion are mutable, which means that they can easily be modified:

prototype(MyYouTube) {
        width = '100px'
        height = '500px'
}

# you can change the width/height
prototype(MyYouTube).width = '400px'
# or define new properties:
prototype(MyYouTube).showFullScreen = ${true}





Defining and instantiating a prototype from scratch is not the only way to define and
instantiate them. You can also use an existing Fusion prototype as basis
for a new one when needed. This can be done by inheriting from a Fusion prototype
using the < operator:

prototype(MyImage) < prototype(Neos.Neos:Content)

# now, the MyImage prototype contains all properties of the Template
# prototype, and can be further customized.





This implements prototype inheritance, meaning that the “subclass” (MyImage in the example
above) and the “parent class (Content) are still attached to each other: If a property
is added to the parent class, this also applies to the subclass, as in the following example:

prototype(Neos.Neos:Content).fruit = 'apple'
prototype(Neos.Neos:Content).meal = 'dinner'

prototype(MyImage) < prototype(Neos.Neos:Content)
# now, MyImage also has the properties "fruit = apple" and "meal = dinner"

prototype(Neos.Neos:Content).fruit = 'Banana'
# because MyImage *extends* Content, MyImage.fruit equals 'Banana' as well.

prototype(MyImage).meal = 'breakfast'
prototype(Neos.Fusion:Content).meal = 'supper'
# because MyImage now has an *overridden* property "meal", the change of
# the parent class' property is not reflected in the MyImage class





Prototype inheritance can only be defined globally, i.e. with a statement of the
following form:

prototype(Foo) < prototype(Bar)





It is not allowed to nest prototypes when defining prototype inheritance, so the
following examples are not valid Fusion and will result in an exception:

prototype(Foo) < some.prototype(Bar)
other.prototype(Foo) < prototype(Bar)
prototype(Foo).prototype(Bar) < prototype(Baz)





While it would be theoretically possible to support this, we have chosen not to do
so in order to reduce complexity and to keep the rendering process more understandable.
We have not yet seen a Fusion example where a construct such as the above would be
needed.


Hierarchical Fusion Prototypes

One way to flexibly adjust the rendering of a Fusion object is done through
modifying its Prototype in certain parts of the rendering tree. This is possible
because Fusion prototypes are hierarchical, meaning that prototype(...)
can be part of any Fusion path in an assignment; even multiple times:

prototype(Foo).bar = 'baz'
prototype(Foo).some.thing = 'baz2'

some.path.prototype(Foo).some = 'baz2'

prototype(Foo).prototype(Bar).some = 'baz2'
prototype(Foo).left.prototype(Bar).some = 'baz2'






	prototype(Foo).bar is a simple, top-level prototype property assignment. It means:
For all objects of type Foo, set property bar. The second example is another variant
of this pattern, just with more nesting levels inside the property assignment.


	some.path.prototype(Foo).some is a prototype property assignment inside some.path.
It means: For all objects of type Foo which occur inside the Fusion path some.path,
the property some is set.


	prototype(Foo).prototype(Bar).some is a prototype property assignment inside another
prototype. It means: For all objects of type Bar which occur somewhere inside an
object of type Foo, the property some is set.


	This can both be combined, as in the last example inside prototype(Foo).left.prototype(Bar).some.





Internals of hierarchical prototypes

A Fusion object is side-effect free, which means that it can be rendered deterministically
knowing only its Fusion path and the context. In order to make this work with hierarchical
prototypes, we need to encode the types of all Fusion objects above the current one into the
current path. This is done using angular brackets:

a1/a2<Foo>/a3/a4<Bar>





When this path is rendered, a1/a2 is rendered as a Fusion object of type Foo – which is needed
to apply the prototype inheritance rules correctly.

Those paths are rarely visible on the “outside” of the rendering process, but might at times
appear in exception messages if rendering fails. For those cases it is helpful to know their
semantics.

Bottom line: It is not important to know exactly how the a rendering Fusion object’s Fusion path
is constructed. Just pass it on, without modification to render a single element out of band.






Namespaces of Fusion objects

The benefits of namespacing apply just as well to Fusion objects as they apply to other languages.
Namespacing helps to organize the code and avoid name clashes.

In Fusion the namespace of a prototype is given when the prototype is declared. The
following declares a YouTube prototype in the Acme.Demo namespace:

prototype(Acme.Demo:YouTube) {
        width = '100px'
        height = '500px'
}





The namespace is, by convention, the package key of the package in which the Fusion
resides.

Fully qualified identifiers can be used everywhere an identifier is used:

prototype(Neos.Neos:ContentCollection) < prototype(Neos.Neos:Collection)





In Fusion a default namespace of Neos.Fusion is set. So whenever Value is used in
Fusion, it is a shortcut for Neos.Fusion:Value.

Custom namespace aliases can be defined using the following syntax:

namespace: Foo = Acme.Demo

# the following two lines are equivalent now
video = Acme.Demo:YouTube
video = Foo:YouTube






Warning

These declarations are scoped to the file they are in and have to be declared in every fusion file where they shall be used.





Setting Properties On a Fusion Object

Although the Fusion object can read its context directly, it is good practice to
instead use properties for configuration:

# imagine there is a property "foo=bar" inside the Fusion context at this point
myObject = MyObject

# explicitly take the "foo" variable's value from the context and pass it into the "foo"
# property of myObject. This way, the flow of data is more visible.
myObject.foo = ${foo}





While myObject could rely on the assumption that there is a foo variable inside the Fusion
context, it has no way (besides written documentation) to communicate this to the outside world.

Therefore, a Fusion object’s implementation should only use properties of itself to determine
its output, and be independent of what is stored in the context.

However, in the prototype of a Fusion object it is perfectly legal to store the mapping
between the context variables and Fusion properties, such as in the following example:

# this way, an explicit default mapping between a context variable and a property of the
# Fusion object is created.
prototype(MyObject).foo = ${foo}





To sum it up: When implementing a Fusion object, it should not access its context variables
directly, but instead use a property. In the Fusion object’s prototype, a default mapping
between a context variable and the prototype can be set up.



Default Context Variables

Neos exposes some default variables to the Fusion context that can be used to control page rendering
in a more granular way.


	node can be used to get access to the current node in the node tree and read its properties.
It is of type NodeInterface and can be used to work with node data, such as:

# Make the node available in the template
node = ${node}

# Expose the "backgroundImage" property to the rendering using FlowQuery
backgroundImage = ${q(node).property('backgroundImage')}





To see what data is available on the node, you can expose it to the template as above and wrap it in a debug view helper:

{node -> f:debug()}







	documentNode contains the closest parent document node - broadly speaking, it is the page the current node is on.
Just like node, it is a NodeInterface and can be provided to the rendering in the same way:

# Expose the document node to the template
documentNode = ${documentNode}

# Display the document node path
nodePath = ${documentNode.path}





documentNode is in the end just a shorthand to get the current document node faster. It could be replaced with:

# Expose the document node to the template using FlowQuery and a Fizzle operator
documentNode = ${q(node).closest('[instanceof Neos.Neos:Document]').get(0)}







	request is an instance of Neos\Flow\Mvc\ActionRequest and allows you to access the current request from within Fusion.
Use it to provide request variables to the template:

# This would provide the value sent by an input field with name="username".
userName = ${request.arguments.username}

# request.format contains the format string of the request, such as "html" or "json"
requestFormat = ${request.format}





Another use case is to trigger an action, e.g. a search, via a custom Eel helper:

searchResults = ${Search.query(site).fulltext(request.arguments.searchword).execute()}





A word of caution: You should never trigger write operations from Fusion, since it can be called multiple times (or not at all, because of caching)
during a single page render. If you want a request to trigger a persistent change on your site, it’s better to use a Plugin.






Manipulating the Fusion Context

The Fusion context can be manipulated directly through the use of the @context
meta-property:

myObject = MyObject
myObject.@context.bar = ${foo * 2}





In the above example, there is now an additional context variable bar with twice the value
of foo.

This functionality is especially helpful if there are strong conventions regarding the Fusion
context variables. This is often the case in standalone Fusion applications, but for Neos, this
functionality is hardly ever used.


Warning

In order to prevent unwanted side effects, it is not possible to access context variables from within @context on the same level. This means that the following will never return the string Hello World!

@context.contextOne = ‘World!’
@context.contextTwo = ${‘Hello ‘ + contextOne}
output = ${contextTwo}






Processors

Processors allow the manipulation of values in Fusion properties. A processor is applied to
a property using the @process meta-property:

myObject = MyObject {
        property = 'some value'
        property.@process.1 = ${'before ' + value + ' after'}
}
# results in 'before some value after'





Multiple processors can be used, their execution order is defined by the numeric position given
in the Fusion after @process. In the example above a @process.2 would run on the results of @process.1.

Additionally, an extended syntax can be used as well:

myObject = MyObject {
        property = 'some value'
        property.@process.someWrap {
                expression = ${'before ' + value + ' after'}
                @position = 'start'
        }
}





This allows to use string keys for the processor name, and support @position arguments as explained for Arrays.

Processors are Eel Expressions or Fusion objects operating on the value property of the context. Additionally,
they can access the current Fusion object they are operating on as this.



Conditions

Conditions can be added to all values to prevent evaluation of the value. A condition is applied to
a property using the @if meta-property:

myObject = Menu {
        @if.1 = ${q(node).property('showMenu') == true}
}
# results in the menu object only being evaluated if the node's showMenu property is not ``false``
# the php rules for mapping values to boolean are used internally so following values are
# considered beeing false: ``null, false, '', 0, []``





Multiple conditions can be used, and if one of them doesn’t return true the condition stops evaluation.



Apply

@apply allows to override multiple properties of a fusion-prototype with a single expression. This is useful
when complex data structures are mapped to fusion prototypes.

The example shows the rendering of a teaserList-array by using a Teaser-Component and passing all keys from each
teaser to the fusion Object:

teasers = Neos.Fusion:Collection {
        collection = ${teaserList}
        itemName = 'teaser'
        itemRenderer = Vendor.Site:Teaser {
                @apply.teaser = ${teaser}
        }
}





The code avoids passing down each fusion-property explicitly to the child component. A similar concept with different
syntax from the JavaScript world is known as ES6-Spreads.

Another use-case is to use Neos.Fusion:Renderer to render a prototype while type and properties are based on data
from the context:

example = Neos.Fusion:Renderer {
        type = ${data.type}
        element.@apply.properties = ${data.properties}
}





That way some meta-programming can used in fusion and both prototype and properties are decided late in the rendering
by the fusion runtime.


How it works

The keys below @apply are evaluated before the fusion-object and the @context and are initialized.
Each key below @apply must return a key-value map (values other than an array it are ignored). During
the evaluation of each fusion-path the values from @apply are always checked first.

If a property is defined via @apply this value is returned without evaluating the fusionPath.

The @process and @if-rules of the original fusion-key are still applied even if a value from @apply
is returned.

Since @apply is evaluated first the overwritten values are already present during the evaluation of @context
and will overlay the properties of this if they are accessed.

@apply supports the same extended syntax and ordering as fusion processors and supports multiple keys.
The evaluation order is defined via @position, the keys that are evaluated last will override previously defined keys.
This is also similar to the rules for @process:

test = Vendor.Site:Prototype {
        @apply.contextValue {
                @position = 'start'
                expression = ${ arrayValueFromContext }
        }
        @apply.fusionObject {
                @position = 'end'
                expression = Neos.Fusion:RawArray {
                        value = "altered value"
                }
        }
}





Other than @context @apply is only valid for a single fusion path, so when subpathes or children are
rendered they are not affected by the parents @apply unless they are explicitly passed down.




Debugging

To show the result of Fusion Expressions directly you can use the Neos.Fusion:Debug Fusion-Object:

debugObject = Neos.Fusion:Debug {
        # optional: set title for the debug output
        # title = 'Debug'

        # optional: show result as plaintext
        # plaintext = TRUE

        # If only the "value"-key is given it is debugged directly,
        # otherwise all keys except "title" and "plaintext" are debugged.
        value = "hello neos world"

        # Additional values for debugging
        documentTitle = ${q(documentNode).property('title')}
        documentPath = ${documentNode.path}
}
# the value of this object is the formatted debug output of all keys given to the object







Domain-specific languages in Fusion

Fusion allows the implementation of domain-specific sublanguages. Those DSLs can take a piece of code, that
is optimized to express a specific class of problems, and return the equivalent fusion-code that is cached and executed
by the Fusion-runtime afterwards.

Fusion-DSLs use the syntax of tagged template literals from ES6 and can be used in all value assignments:

value = dslIdentifier`... the code that is passed to the dsl ...`





If such a syntax-block is detected fusion will:


	Lookup the key dslIdentifier in the Setting Neos.Fusion.dsl to find the matching dsl-implementation.


	Instantiate the dsl-implementation class that was found registered.


	Check that the dsl-implementation satisfies the interface \Neos\Fusion\Core\DslInterface


	Pass the code between the backticks to the dsl-implementation.


	Finally parse the returned Fusion-code




Fusion DSLs cannot extend the fusion-language and -runtime itself, they are meant to enable a more efficient syntax
for specific problems.





            

          

      

      

    

  

    
      
          
            
  
Eel, FlowQuery and Fizzle


Eel - Embedded Expression Language

Besides simple Fusion assignments such as myObject.foo = 'bar', it is possible to write
expressions using the Eel language such as myObject.foo = ${q(node).property('bar')}.

The Embedded Expression Language (Eel) is a building block for creating Domain Specific Languages.
It provides a rich syntax for arbitrary expressions, such that the author of the DSL can focus
on its Semantics.

In this section, the focus lies on the use of Eel inside Fusion.


Syntax

Every Eel expression in Fusion is surrounded by ${...}, which is the delimiter for Eel
expressions. Basically, the Eel syntax and semantics is like a condensed version of JavaScript:


	Most things you can write as a single JavaScript expression (that is, without a ;) can also
be written as Eel expression.


	Eel does not throw an error if null values are dereferenced, i.e. inside ${foo.bar}
with foo being null. Instead, null is returned. This also works for calling undefined
functions.


	Eel does not support control structures or variable declarations.


	Eel supports the common JavaScript arithmetic and comparison operators, such as +-*/% for
arithmetic and == != > >= < <= for comparison operators. Operator precedence is as expected,
with multiplication binding higher than addition. This can be adjusted by using brackets. Boolean
operators && and || are supported.


	Eel supports the ternary operator to allow for conditions <condition> ? <ifTrue> : <ifFalse>.


	When object access is done (such as foo.bar.baz) on PHP objects, getters are called automatically.


	Object access with the offset notation is supported as well: foo['bar']




This means the following expressions are all valid Eel expressions:

${foo.bar}         // Traversal
${foo.bar()}       // Method call
${foo.bar().baz()} // Chained method call

${foo.bar("arg1", true, 42)} // Method call with arguments

${12 + 18.5}         // Calculations are possible
${foo == bar}      // ... and comparisons

${foo.bar(12+18.5, foo == bar)} // and of course also use it inside arguments

${[foo, bar]}           // Array Literal
${{foo: bar, baz: test}} // Object Literal







Semantics inside Fusion

Eel does not define any functions or variables by itself. Instead, it exposes the Eel context
array, meaning that functions and objects which should be accessible can be defined there.

Because of that, Eel is perfectly usable as a “domain-specific language construction kit”, which
provides the syntax, but not the semantics of a given language.

For Eel inside Fusion, the semantics are as follows:


	All variables of the Fusion context are made available inside the Eel context.


	The special variable this always points to the current Fusion object implementation.


	The function q() is available, which wraps its argument into a FlowQuery
object. FlowQuery is explained below.




By default the following Eel helpers are available in the default context for Eel expressions:


	String, exposing Neos\Eel\Helper\StringHelper


	Array, exposing Neos\Eel\Helper\ArrayHelper


	Date, exposing Neos\Eel\Helper\DateHelper


	Configuration, exposing Neos\Eel\Helper\ConfigurationHelper


	Math, exposing Neos\Eel\Helper\MathHelper


	Json, exposing Neos\Eel\Helper\JsonHelper


	Security, exposing Neos\Eel\Helper\SecurityHelper


	Translation, exposing Neos\Flow\I18n\EelHelper\TranslationHelper


	Neos.Node, exposing Neos\Neos\Fusion\Helper\NodeHelper


	Neos.Link, exposing Neos\Neos\Fusion\Helper\LinkHelper


	Neos.Array, exposing Neos\Neos\Fusion\Helper\ArrayHelper


	Neos.Rendering, exposing Neos\Neos\Fusion\Helper\RenderingHelper




See: Eel Helpers Reference

This is configured via the setting Neos.Fusion.defaultContext.

Additionally, the defaultContext contains the request object,
where you have also access to Arguments. e.g.
${request.httpRequest.arguments.nameOfYourGetArgument}




FlowQuery

FlowQuery, as the name might suggest, is like jQuery for Flow. It’s syntax
has been heavily influenced by jQuery.

FlowQuery is a way to process the content (being a Neos ContentRepository node within Neos) of the Eel
context. FlowQuery operations are implemented in PHP classes. For any FlowQuery operation
to be available, the package containing the operation must be installed. Any package can
add their own FlowQuery operations. A set of basic operations is always available as part
of the Neos.Eel package itself.

In Neos.Neos, the following FlowQuery operations are defined:


	property
	Adjusted to access properties of a Neos ContentRepository node. If property names are prefixed with an
underscore, internal node properties like start time, end time, and hidden are accessed.



	filter
	Used to check a value against a given constraint. The filters expressions are
given in Fizzle, a language inspired by CSS selectors. The Neos-specific
filter changes instanceof to work on node types instead of PHP classes.



	children
	Returns the children of a Neos ContentRepository node. They are optionally filtered with a
filter operation to limit the returned result set.



	parents
	Returns the parents of a Neos ContentRepository node. They are optionally filtered with a
filter operation to limit the returned result set.





A reference of all FlowQuery operations defined in Neos.Eel and Neos.Neos can be
found in the FlowQuery Operation Reference.


Operation Resolving

When multiple packages define an operation with the same short name, they are
resolved using the priority each implementation defines, higher priorities have
higher precedence when operations are resolved.

The OperationResolver loops over the implementations sorted by order and asks
them if they can evaluate the current context. The first operation that answers this
check positively is used.



FlowQuery by Example

Any context variable can be accessed directly:

${myContextVariable}





and the current node is available as well:

${node}





There are various ways to access its properties. Direct access is possible, but should
be avoided. It is better to use FlowQuery instead:

${q(node).getProperty('foo')} // Possible, but discouraged
${q(node).property('foo')} // Better: use FlowQuery instead





Through this a node property can be fetched and assigned to a variable:

text = ${q(node).property('text')}





Fetching all parent nodes of the current node:

${q(node).parents()}





Here are two equivalent ways to fetch the first node below the left child node:

${q(node).children('left').first()}
${q(node).children().filter('left').first()}





Fetch all parent nodes and add the current node to the selected set:

${node.parents().add(node)}





The next example combines multiple operations. First it fetches all children of the
current node that have the name comments. Then it fetches all children of those
nodes that have a property spam with a value of false. The result of that is then
passed to the count() method and the count of found nodes is assigned to the
variable ‘numberOfComments’:

numberOfComments = ${q(node).children('comments').children("[spam = false]").count()}





The following expands a little more on that. It assigns a set of nodes to the collection
property of the comments object. This set of nodes is either fetched from different places,
depending on whether the current node is a ContentCollection node or not. If it is, the
children of the current node are used directly. If not, the result of this.getNodePath()
is used to fetch a node below the current node and those children are used. In both cases
the nodes are again filtered by a check for their property spam being false.

comments.collection = ${q(node).is('[instanceof Neos.Neos:ContentCollection]') ?
        q(node).children("[spam = false]") : q(node).children(this.getNodePath()).children("[spam = false]")}





Querying for nodes of two or more different node types

elements = ${q(node).filter('[instanceof Neos.NodeTypes:Text],[instanceof Neos.NodeTypes:TextWithImage]').get()}








Fizzle

Filter operations as already shown are written in Fizzle. It has been inspired by
the selector syntax known from CSS.


Property Name Filters

The first component of a filter query can be a Property Name filter. It is given
as a simple string. Checks against property paths are not currently possible:

foo          //works
foo.bar      //does not work
foo.bar.baz  //does not work





In the context of Neos the property name is rarely used, as FlowQuery operates on
Neos ContentRepository nodes and the children operation has a clear scope. If generic PHP objects are
used, the property name filter is essential to define which property actually contains
the children.



Attribute Filters

The next component are Attribute filters. They can check for the presence and against
the values of attributes of context elements:

baz[foo]
baz[answer = 42]
baz[foo = "Bar"]
baz[foo = 'Bar']
baz[foo != "Bar"]
baz[foo ^= "Bar"]
baz[foo $= "Bar"]
baz[foo *= "Bar"]





As the above examples show, string values can be quoted using double or single quotes.


Available Operators

The operators for checking against attribute are as follows:


	=
	Strict equality of value and operand



	!=
	Strict inequality of value and operand



	$=
	Value ends with operand (string-based)



	^=
	Value starts with operand (string-based)



	*=
	Value contains operand (string-based)



	instanceof
	Checks if the value is an instance of the operand





For the latter the behavior is as follows: if the operand is one of the strings
object, array, int(eger), float, double, bool(ean) or string the value is checked
for being of the specified type. For any other strings the value is used as
class name with the PHP instanceof operation to check if the value matches.




Using Multiple Filters

It is possible to combine multiple filters:


	[foo][bar][baz]
	All filters have to match (AND)



	[foo],[bar],[baz]
	Only one filter has to match (OR)










            

          

      

      

    

  

    
      
          
            
  
Rendering Custom Markup

These are the development guidelines of Neos.



	Templating
	What Does it Do?

	Basic Concepts

	Passing Data to the View

	Layouts

	Writing Your Own ViewHelper

	Widgets

	XSD schema generation





	Rendering A Page
	The root path

	The root Neos.Fusion:Case object

	The page path and Neos.Neos:Page object

	Rendering custom document types

	Further Reading





	Creating Custom Content Elements
	Creating a Simple Content Element

	Creating Editable Content Elements

	Creating Nested Content Elements

	Content Element Group

	Extending The Inspector





	Adjusting Neos Output
	Page Template

	Menu Rendering

	Content Element Rendering

	Including CSS and JavaScript in a Neos Site

	CSS and JavaScript restrictions in a Neos Site

	Adjusting the HTTP response












            

          

      

      

    

  

    
      
          
            
  
Templating

Templating is done in Fluid, which is a next-generation templating engine. It
has several goals in mind:


	Simplicity


	Flexibility


	Extensibility


	Ease of use




This templating engine should not be bloated, instead, we try to do it “The Zen
Way” - you do not need to learn too many things, thus you can concentrate on getting
your things done, while the template engine handles everything you do not want to
care about.


What Does it Do?

In many MVC systems, the view currently does not have a lot of functionality. The
standard view usually provides a render method, and nothing more. That makes it
cumbersome to write powerful views, as most designers will not write PHP code.

That is where the Template Engine comes into play: It “lives” inside the View, and
is controlled by a special TemplateView which instantiates the Template Parser,
resolves the template HTML file, and renders the template afterwards.

Below, you’ll find a snippet of a real-world template displaying a list of blog
postings. Use it to check whether you find the template language intuitive:

{namespace f=Neos\FluidAdaptor\ViewHelpers}
<html>
<head><title>Blog</title></head>
<body>
<h1>Blog Postings</h1>
<f:for each="{postings}" as="posting">
  <h2>{posting.title}</h2>
  <div class="author">{posting.author.name} {posting.author.email}</div>
  <p>
    <f:link.action action="details" arguments="{id : posting.id}">
      {posting.teaser}
    </f:link.action>
  </p>
</f:for>
</body>
</html>






	The Namespace Import makes the \Neos\FluidAdaptor\ViewHelper namespace available
under the shorthand f.


	The <f:for> essentially corresponds to foreach ($postings as $posting) in PHP.


	With the dot-notation ({posting.title} or {posting.author.name}), you
can traverse objects. In the latter example, the system calls $posting->getAuthor()->getName().


	The <f:link.action /> tag is a so-called ViewHelper. It calls arbitrary PHP
code, and in this case renders a link to the “details”-Action.




There is a lot more to show, including:


	Layouts


	Custom View Helpers


	Boolean expression syntax




We invite you to explore Fluid some more, and please do not hesitate to give feedback!



Basic Concepts

This section describes all basic concepts available. This includes:


	Namespaces


	Variables / Object Accessors


	View Helpers


	Arrays





Namespaces

Fluid can be extended easily, thus it needs a way to tell where a certain tag
is defined. This is done using namespaces, closely following the well-known
XML behavior.

Namespaces can be defined in a template in two ways:


	{namespace f=NeosFluidAdaptorViewHelpers}
	This is a non-standard way only understood by Fluid. It links the f
prefix to the PHP namespace \Neos\FluidAdaptor\ViewHelpers.



	<html xmlns:foo=”http://some/unique/namespace”>
	The standard for declaring a namespace in XML. This will link the foo
prefix to the URI http://some/unique/namespace and Fluid can look up
the corresponding PHP namespace in your settings (so this is a two-piece
configuration). This makes it possible for your XML editor to validate the
template files and even use an XSD schema for auto completion.





A namespace linking f to \Neos\FluidAdaptor\ViewHelpers is imported by
default. All other namespaces need to be imported explicitly.

If using the XML namespace syntax the default pattern
http://typo3.org/ns/<php namespace> is resolved automatically by the
Fluid parser. If you use a custom XML namespace URI you need to configure the
URI to PHP namespace mapping. The YAML syntax for that is:

Neos:
  Fluid:
    namespaces:
      'http://some/unique/namespace': 'My\Php\Namespace'







Variables and Object Accessors

A templating system would be quite pointless if it was not possible to display some
external data in the templates. That’s what variables are for.

Suppose you want to output the title of your blog, you could write the following
snippet into your controller:

$this->view->assign('blogTitle', $blog->getTitle());





Then, you could output the blog title in your template with the following snippet:

<h1>This blog is called {blogTitle}</h1>





Now, you might want to extend the output by the blog author as well. To do this,
you could repeat the above steps, but that would be quite inconvenient and hard to read.


Note

The semantics between the controller and the view should be the following:
The controller instructs the view to “render the blog object given to it”,
and not to “render the Blog title, and the blog posting 1, …”.

Passing objects to the view instead of simple values is highly encouraged!



That is why the template language has a special syntax for object access. A nicer
way of expressing the above is the following:

// This should go into the controller:
$this->view->assign('blog', $blog);





<!-- This should go into the template: -->
<h1>This blog is called {blog.title}, written by {blog.author}</h1>





Instead of passing strings to the template, we are passing whole objects around
now - which is much nicer to use both from the controller and the view side. To
access certain properties of these objects, you can use Object Accessors. By writing
{blog.title}, the template engine will call a getTitle() method on the blog
object, if it exists. Besides, you can use that syntax to traverse associative arrays
and public properties.


Tip

Deep nesting is supported: If you want to output the email address of the blog
author, then you can use {blog.author.email}, which is roughly equivalent
to $blog->getAuthor()->getEmail().





View Helpers

All output logic is placed in View Helpers.

The view helpers are invoked by using XML tags in the template, and are implemented
as PHP classes (more on that later).

This concept is best understood with an example:

{namespace f=Neos\FluidAdaptor\ViewHelpers}
<f:link.action controller="Administration">Administration</f:link.action>





The example consists of two parts:


	Namespace Declaration as explained earlier.


	Calling the View Helper with the <f:link.action...> ... </f:link.action>
tag renders a link.




Now, the main difference between Fluid and other templating engines is how the
view helpers are implemented: For each view helper, there exists a corresponding
PHP class. Let’s see how this works for the example above:

The <f:link.action /> tag is implemented in the class \Neos\FluidAdaptor\ViewHelpers\Link\ActionViewHelper.


Note

The class name of such a view helper is constructed for a given tag as follows:


	The first part of the class name is the namespace which was imported (the namespace
prefix f was expanded to its full namespace Neos\FluidAdaptor\ViewHelpers)


	The unqualified name of the tag, without the prefix, is capitalized (Link),
and the postfix ViewHelper is appended.






The tag and view helper concept is the core concept of Fluid. All output logic is
implemented through such ViewHelpers / tags! Things like if/else, for, … are
all implemented using custom tags - a main difference to other templating languages.


Note

Some benefits of the class-based approach approach are:


	You cannot override already existing view helpers by accident.


	It is very easy to write custom view helpers, which live next to the standard view helpers


	All user documentation for a view helper can be automatically generated from the
annotations and code documentation.






Most view helpers have some parameters. These can be plain strings, just like in
<f:link.action controller="Administration">...</f:link.action>, but as well
arbitrary objects. Parameters of view helpers will just be parsed with the same rules
as the rest of the template, thus you can pass arrays or objects as parameters.

This is often used when adding arguments to links:

<f:link.action controller="Blog" action="show" arguments="{singleBlog: blogObject}">
  ... read more
</f:link.action>





Here, the view helper will get a parameter called arguments which is of type array.


Warning

Make sure you do not put a space before or after the opening or closing
brackets of an array. If you type arguments=" {singleBlog : blogObject}"
(notice the space before the opening curly bracket), the array is automatically
casted to a string (as a string concatenation takes place).

This also applies when using object accessors: <f:do.something with="{object}" />
and <f:do.something with=" {object}" /> are substantially different: In
the first case, the view helper will receive an object as argument, while in
the second case, it will receive a string as argument.

This might first seem like a bug, but actually it is just consistent that it
works that way.





Boolean Expressions

Often, you need some kind of conditions inside your template. For them, you will
usually use the <f:if> ViewHelper. Now let’s imagine we have a list of blog
postings and want to display some additional information for the currently selected
blog posting. We assume that the currently selected blog is available in {currentBlogPosting}.
Now, let’s have a look how this works:

<f:for each="{blogPosts}" as="post">
  <f:if condition="{post} == {currentBlogPosting}">... some special output here ...</f:if>
</f:for>





In the above example, there is a bit of new syntax involved: {post} == {currentBlogPosting}.
Intuitively, this says “if the post I’’m currently iterating over is the same as
currentBlogPosting, do something.”

Why can we use this boolean expression syntax? Well, because the IfViewHelper
has registered the argument condition as boolean. Thus, the boolean expression
syntax is available in all arguments of ViewHelpers which are of type boolean.

All boolean expressions have the form X <comparator> Y, where:


	<comparator> is one of the following: ==, >, >=, <, <=, % (modulo)


	X and Y are one of the following:


	a number (integer or float)


	a string (in single or double quotes)


	a JSON array


	a ViewHelper


	an Object Accessor (this is probably the most used example)


	inline notation for ViewHelpers










Inline Notation for ViewHelpers

In many cases, the tag-based syntax of ViewHelpers is really intuitive, especially
when building loops, or forms. However, in other cases, using the tag-based syntax
feels a bit awkward – this can be demonstrated best with the <f:uri.resource>-
ViewHelper, which is used to reference static files inside the Public/ folder of
a package. That’s why it is often used inside <style> or <script>-tags,
leading to the following code:

<link rel="stylesheet" href="<f:uri.resource path='myCssFile.css' />" />





You will notice that this is really difficult to read, as two tags are nested into
each other. That’s where the inline notation comes into play: It allows the usage
of {f:uri.resource()} instead of <f:uri.resource />. The above example can
be written like the following:

<link rel="stylesheet" href="{f:uri.resource(path:'myCssFile.css')}" />





This is readable much better, and explains the intent of the ViewHelper in a much
better way: It is used like a helper function.

The syntax is still more flexible: In real-world templates, you will often find
code like the following, formatting a DateTime object (stored in {post.date}
in the example below):

<f:format.date format="d-m-Y">{post.date}</f:format.date>





This can also be re-written using the inline notation:

{post.date -> f:format.date(format:'d-m-Y')}





This is also a lot better readable than the above syntax.


Tip

This can also be chained indefinitely often, so one can write:

{post.date -> foo:myHelper() -> bar:bla()}





Sometimes you’ll still need to further nest ViewHelpers, that is when the design
of the ViewHelper does not allow that chaining or provides further arguments. Have
in mind that each argument itself is evaluated as Fluid code, so the following
constructs are also possible:

{foo: bar, baz: '{planet.manufacturer -> f:someother.helper(test: \'stuff\')}'}
{some: '{f:format.stuff(arg: \'foo'\)}'}







To wrap it up: Internally, both syntax variants are handled equally, and every
ViewHelper can be called in both ways. However, if the ViewHelper “feels” like a
tag, use the tag-based notation, if it “feels” like a helper function, use the
Inline Notation.



Arrays

Some view helpers, like the SelectViewHelper (which renders an HTML select
dropdown box), need to get associative arrays as arguments (mapping from internal
to displayed name). See the following example for how this works:

<f:form.select options="{edit: 'Edit item', delete: 'Delete item'}" />





The array syntax used here is very similar to the JSON object syntax. Thus, the
left side of the associative array is used as key without any parsing, and the
right side can be either:


	a number:

{a : 1,
 b : 2
}







	a string; Needs to be in either single- or double quotes. In a double-quoted
string, you need to escape the " with a \ in front (and vice versa for single
quoted strings). A string is again handled as Fluid Syntax, this is what you
see in example c:

{a : 'Hallo',
 b : "Second string with escaped \" (double quotes) but not escaped ' (single quotes)"
 c : "{firstName} {lastName}"
}







	a boolean, best represented with their integer equivalents:

{a : 'foo',
 notifySomebody: 1
 useLogging: 0
}







	a nested array:

{a : {
        a1 : "bla1",
        a2 : "bla2"
  },
 b : "hallo"
}







	a variable reference (=an object accessor):

{blogTitle : blog.title,
 blogObject: blog
}










Note

All these array examples will result into an associative array. If you have to supply
a non-associative, i.e. numerically-indexed array, you’ll write {0: 'foo', 1: 'bar', 2: 'baz'}.






Passing Data to the View

You can pass arbitrary objects to the view, using $this->view->assign($identifier, $object)
from within the controller. See the above paragraphs about Object Accessors for details
how to use the passed data.



Layouts

In almost all web applications, there are many similarities between each page.
Usually, there are common templates or menu structures which will not change for
many pages.

To make this possible in Fluid, we created a layout system, which we will
introduce in this section.


Writing a Layout

Every layout is placed in the Resources/Private/Layouts directory, and has the
file ending of the current format (by default .html). A layout is a normal Fluid
template file, except there are some parts where the actual content of the target
page should be inserted:

<html>
<head><title>My fancy web application</title></head>
<body>
<div id="menu">... menu goes here ...</div>
<div id="content">
  <f:render section="content" />
</div>
</body>
</html>





With this tag, a section from the target template is rendered.



Using a Layout

Using a layout involves two steps:


	Declare which layout to use: <f:layout name="..." /> can be written anywhere
on the page (though we suggest to write it on top, right after the namespace
declaration) - the given name references the layout.


	Provide the content for all sections used by the layout using the <f:section>...</f:section>
tag: <f:section name="content">...</f:section>




For the above layout, a minimal template would look like the following:

<f:layout name="example.html" />

<f:section name="content">
  This HTML here will be outputted to inside the layout
</f:section>








Writing Your Own ViewHelper

As we have seen before, all output logic resides in View Helpers. This includes
the standard control flow operators such as if/else, HTML forms, and much more.
This is the concept which makes Fluid extremely versatile and extensible.

If you want to create a view helper which you can call from your template (as a
tag), you just write a plain PHP class which needs to inherit from
Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper (or its subclasses). You need to implement
only one method to write a view helper:

public function render()






Rendering the View Helper

We refresh what we have learned so far: When a user writes something like
<blog:displayNews /> inside a template (and has imported the blog namespace
to Neos\Blog\ViewHelpers), Fluid will automatically instantiate the class
Neos\Blog\ViewHelpers\DisplayNewsViewHelper, and invoke the render() method on it.

This render() method should return the rendered content as string.

You have the following possibilities to access the environment when rendering your view helper:


	$this->arguments is an associative array where you will find the values for
all arguments you registered previously.


	$this->renderChildren() renders everything between the opening and closing
tag of the view helper and returns the rendered result (as string).


	$this->templateVariableContainer is an instance of Neos\FluidAdaptor\Core\ViewHelper\TemplateVariableContainer,
with which you have access to all variables currently available in the template,
and can modify the variables currently available in the template.





Note

If you add variables to the TemplateVariableContainer, make sure to remove
every variable which you added again. This is a security measure against side-effects.

It is also not possible to add a variable to the TemplateVariableContainer if
a variable of the same name already exists - again to prevent side effects and
scope problems.





Implementing a for ViewHelper

Now, we will look at an example: How to write a view helper giving us the foreach
functionality of PHP.

A loop could be called within the template in the following way:

<f:for each="{blogPosts}" as="blogPost">
  <h2>{blogPost.title}</h2>
</f:for>





So, in words, what should the loop do?

It needs two arguments:


	each: Will be set to some object or array which can be iterated over.


	as: The name of a variable which will contain the current element being iterated over




It then should do the following (in pseudo code):

foreach ($each as $$as) {
  // render everything between opening and closing tag
}





Implementing this is fairly straightforward, as you will see right now:

class ForViewHelper extends \Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper {

  /**
   * Renders a loop
   *
   * @param array $each Array to iterate over
   * @param string $as Iteration variable
   */
  public function render(array $each, $as) {
        $out = '';
        foreach ($each as $singleElement) {
          $this->variableContainer->add($as, $singleElement);
          $out .= $this->renderChildren();
          $this->variableContainer->remove($as);
        }
        return $out;
  }

}






	The PHPDoc is part of the code! Fluid extracts the argument data types from the PHPDoc.


	You can simply register arguments to the view helper by adding them as method
arguments of the render() method.


	Using $this->renderChildren(), everything between the opening and closing
tag of the view helper is rendered and returned as string.






Declaring Arguments

We have now seen that we can add arguments just by adding them as method arguments
to the render() method. There is, however, a second method to register arguments.

You can also register arguments inside a method called initializeArguments().
Call $this->registerArgument($name, $dataType, $description, $isRequired, $defaultValue=NULL) inside.

It depends how many arguments a view helper has. Sometimes, registering them as
render() arguments is more beneficial, and sometimes it makes more sense to
register them in initializeArguments().



AbstractTagBasedViewHelper

Many view helpers output an HTML tag - for example <f:link.action ...> outputs
a <a href="..."> tag. There are many ViewHelpers which work that way.

Very often, you want to add a CSS class or a target attribute to an <a href="...">
tag. This often leads to repetitive code like below. (Don’t look at the code too
thoroughly, it should just demonstrate the boring and repetitive task one would
have without the AbstractTagBasedViewHelper):

class ActionViewHelper extends \Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper {

  public function initializeArguments() {
        $this->registerArgument('class', 'string', 'CSS class to add to the link');
        $this->registerArgument('target', 'string', 'Target for the link');
        ... and more ...
  }

  public function render() {
        $output = '<a href="..."';
        if ($this->arguments['class']) {
          $output .= ' class="' . $this->arguments['class'] . '"';
        }
        if ($this->arguments['target']) {
          $output .= ' target="' . $this->arguments['target'] . '"';
        }
        $output .= '>';
        ... and more ...
        return $output;
  }

}





Now, the AbstractTagBasedViewHelper introduces two more methods you can use
inside initializeArguments():


	registerTagAttribute($name, $type, $description, $required): Use this method
to register an attribute which should be directly added to the tag.


	registerUniversalTagAttributes(): If called, registers the standard HTML
attributes class, id, dir, lang, style, title.




Inside the AbstractTagBasedViewHelper, there is a TagBuilder available
(with $this->tag) which makes building a tag a lot more straightforward.

With the above methods, the Link\ActionViewHelper from above can be condensed as follows:

class ActionViewHelper extends \Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper {

        public function initializeArguments() {
                $this->registerUniversalTagAttributes();
        }

        /**
         * Render the link.
         *
         * @param string $action Target action
         * @param array $arguments Arguments
         * @param string $controller Target controller. If NULL current controllerName is used
         * @param string $package Target package. if NULL current package is used
         * @param string $subpackage Target subpackage. if NULL current subpackage is used
         * @param string $section The anchor to be added to the URI
         * @return string The rendered link
         */
        public function render($action = NULL, array $arguments = array(),
                               $controller = NULL, $package = NULL, $subpackage = NULL,
                                   $section = '') {
                $uriBuilder = $this->controllerContext->getURIBuilder();
                $uri = $uriBuilder->uriFor($action, $arguments, $controller, $package, $subpackage, $section);
                $this->tag->addAttribute('href', $uri);
                $this->tag->setContent($this->renderChildren());

                return $this->tag->render();
        }

}





Additionally, we now already have support for all universal HTML attributes.


Tip

The TagBuilder also makes sure that all attributes are escaped properly,
so to decrease the risk of Cross-Site Scripting attacks, make sure to use it
when building tags.




additionalAttributes

Sometimes, you need some HTML attributes which are not part of the standard.
As an example: If you use the Dojo JavaScript framework, using these non-standard
attributes makes life a lot easier.

We think that the templating framework should not constrain the user in his
possibilities – thus, it should be possible to add custom HTML attributes as well,
if they are needed. Our solution looks as follows:

Every view helper which inherits from AbstractTagBasedViewHelper has a special
argument called additionalAttributes which allows you to add arbitrary HTML
attributes to the tag.

If the link tag from above needed a new attribute called fadeDuration, which
is not part of HTML, you could do that as follows:

<f:link.action action="..." additionalAttributes="{fadeDuration : 800}">
        Link with fadeDuration set
</f:link.action>





This attribute is available in all tags that inherit from Neos\FluidAdaptor\Core\ViewHelper\AbstractTagBasedViewHelper.




AbstractConditionViewHelper

If you want to build some kind of if/else condition, you should base the ViewHelper
on the AbstractConditionViewHelper, as it gives you convenient methods to render
the then or else parts of a ViewHelper. Let’s look at the <f:if>-ViewHelper
for a usage example, which should be quite self-explanatory:

class IfViewHelper extends \Neos\FluidAdaptor\Core\ViewHelper\AbstractConditionViewHelper {

        /**
         * renders <f:then> child if $condition is true, otherwise renders <f:else> child.
         *
         * @param boolean $condition View helper condition
         * @return string the rendered string
         */
        public function render($condition) {
                if ($condition) {
                        return $this->renderThenChild();
                } else {
                        return $this->renderElseChild();
                }
        }

}





By basing your condition ViewHelper on the AbstractConditionViewHelper,
you will get the following features:


	Two API methods renderThenChild() and renderElseChild(), which should be
used in the then / else case.


	The ViewHelper will have two arguments defined, called then and else,
which are very helpful in the Inline Notation.


	The ViewHelper will automatically work with the <f:then> and <f:else>-Tags.







Widgets

Widgets are special ViewHelpers which encapsulate complex functionality. It can
be best understood what widgets are by giving some examples:


	<f:widget.paginate> renders a paginator, i.e. can be used to display large
amounts of objects. This is best known from search engine result pages.


	<f:widget.autocomplete> adds autocompletion functionality to a text field.


	More widgets could include a Google Maps widget, a sortable grid, …




Internally, widgets consist of an own Controller and View.


Using Widgets

Using widgets inside your templates is really simple: Just use them like standard
ViewHelpers, and consult their documentation for usage examples. An example for
the <f:widget.paginate> follows below:

<f:widget.paginate objects="{blogs}" as="paginatedBlogs" configuration="{itemsPerPage: 10}">
  // use {paginatedBlogs} as you used {blogs} before, most certainly inside
  // a <f:for> loop.
</f:widget.paginate>





In the above example, it looks like {blogs} contains all Blog objects, thus
you might wonder if all objects were fetched from the database. However, the blogs
are not fetched from the database until you actually use them, so the Paginate Widget
will adjust the query sent to the database and receive only the small subset of objects.

So, there is no negative performance overhead in using the Paginate Widget.



Writing widgets

We already mentioned that a widget consists of a controller and a view, all triggered
by a ViewHelper. We’ll now explain these different components one after each other,
explaining the API you have available for creating your own widgets.


ViewHelper

All widgets inherit from Neos\FluidAdaptor\Core\Widget\AbstractWidgetViewHelper.
The ViewHelper of the widget is the main entry point; it controls the widget and
sets necessary configuration for the widget.

To implement your own widget, the following things need to be done:


	The controller of the widget needs to be injected into the $controller property.


	Inside the render()-method, you should call $this->initiateSubRequest(),
which will initiate a request to the controller which is set in the $controller
property, and return the Response object.


	By default, all ViewHelper arguments are stored as Widget Configuration, and
are also available inside the Widget Controller. However, to modify the Widget
Configuration, you can override the getWidgetConfiguration() method and return
the configuration which you need there.




There is also a property $ajaxWidget, which we will explain later in Ajax Widgets.




Controller

A widget contains one controller, which must inherit from Neos\FluidAdaptor\Core\Widget\AbstractWidgetController,
which is an ActionController. There is only one difference between the normal
ActionController and the AbstractWidgetController: There is a property
$widgetConfiguration, containing the widget’s configuration which was set in the ViewHelper.



Fluid Template

The Fluid templates of a widget are normal Fluid templates as you know them, but
have a few ViewHelpers available additionally:


	<f:widget.uri>
	Generates an URI to another action of the widget.



	<f:widget.link>
	Generates a link to another action of the widget.



	<f:renderChildren>
	Can be used to render the child nodes of the Widget ViewHelper,
possibly with some more variables declared.







Ajax Widgets

Widgets have special support for AJAX functionality. We’ll first explain what needs
to be done to create an AJAX compatible widget, and then explain it with an example.

To make a widget AJAX-aware, you need to do the following:


	Set $ajaxWidget to TRUE inside the ViewHelper. This will generate an unique
AJAX Identifier for the Widget, and store the WidgetConfiguration in the user’s
session on the server.


	Inside the index-action of the Widget Controller, generate the JavaScript which
triggers the AJAX functionality. There, you will need a URI which returns the
AJAX response. For that, use the following ViewHelper inside the template:

<f:widget.uri ajax="TRUE" action="..." arguments="..." />







	Inside the template of the AJAX request, <f:renderChildren> is not available,
because the child nodes of the Widget ViewHelper are not accessible there.







XSD schema generation

A XSD schema file for your ViewHelpers can be created by executing

./flow documentation:generatexsd <Your>\\<Package>\\ViewHelpers
        --target-file /some/directory/your.package.xsd





Then import the XSD file in your favorite IDE and map it to the namespace
http://neos.io/ns/<Your/Package>/ViewHelpers. Add the namespace to your
Fluid template by adding the xmlns attribute to the root tag (usually
<xml …> or <html …>).


Note

You are able to use a different XML namespace pattern by specifying the
-–xsd-namespace argument in the generatexsd command.



If you want to use this inside partials, you can use the “section” argument of
the render ViewHelper in order to only render the content of the partial.

Partial:

<html xmlns:x="http://neos.io/ns/Your/Package/ViewHelpers">
<f:section name="content">
        <x:yourViewHelper />
</f:section>





Template:

<f:render partial="PartialName" section="content" />









            

          

      

      

    

  

    
      
          
            
  
Rendering A Page

This section explains how pages are rendered in Neos. More precisely, we show how to render a node of type
Neos.Neos:Document. The default page type in Neos (Neos.NodeTypes:Page) inherits from this type.
If you create custom document node types, they need to be a subtype of Neos.Neos:Document as well.
This section also explains how to implement custom rendering for your own document node types.


[image: Rendering flow example]


	An URL is requested from Neos through an HTTP request.


	The requested URL is resolved to a node. This works via the Frontend NodeController and the NodeConverter
of the Neos CR by translating the URL path to a node path, and then finding the node with this path. The document
node resolution is completely done in the Neos core - usually, site integrators do not need to modify it.


	The document node is passed to Fusion, which is the Neos rendering engine. Rendering always starts at the Fusion
path root. This rendering process is explained in detail below.


	Fusion can render Fluid templates, which in turn can call Fusion again to render parts of themselves. This can go
back and forth multiple times, even recursively.


	Once Fusion has traversed the rendering tree fully, rendering is done and the rendered output (usually HTML, but
Fusion can render arbitrary text formats) is sent back to the requester.





The root path

You may already have seen a Root.fusion that contain a path page which is filled with an object of type Neos.Neos:Page.
Here, the Neos.Neos:Page Fusion object is assigned to the path page, telling the system that the Fusion object
Page is responsible for further rendering:

page = Neos.Neos:Page {
  head {
    [...]
  }
  body {
    [...]
  }
}





Let’s investigate how this rendering process happens.
Fusion always starts rendering at the fusion path root. You can verify this by simply replacing the code in your
Root.fusion file with this snippet:

root = "Hello World!"





All page rendering will disappear and only the words “Hello World” will be rendered by Neos.

Using the  page path is not the recommended way to render your document node types anymore. We encourage you to define a prototype named after your document node type extending Neos.Neos:Page. Read Rendering Custom Document Types for further details and how to achieve this.



The root Neos.Fusion:Case object

The root path contains, by default, a Neos.Fusion:Case object. Here is a section from this object - to see the full implementation, check out the file DefaultFusion.fusion in the package Neos.Neos, path Resources\Private\Fusion.

root = Neos.Fusion:Case {

  [...more matchers before...]

  documentType {
    condition = Neos.Fusion:CanRender {
      type = ${q(documentNode).property('_nodeType.name')}
    }
    type = ${q(documentNode).property('_nodeType.name')}
  }

  default {
    condition = TRUE
    renderPath = '/page'
  }
}





If you do not know what a Case object does, you might want to have a look at the Fusion Reference.
All paths in the Case object (so-called matchers) check a certain condition - the condition path in the matcher.
Matchers are evaluated one after another, until one condition evaluates to TRUE. If it does, matcher’s type,
renderer or renderPath path (whichever exists) will be evaluated. If no other condition matches, the default
matcher is evaluated and points Fusion to the path page. Rendering then continues with the page path, which is
by default generated in your site package’s Root.fusion file. This is why, if you don’t do anything else, rendering
begins at your page path.

The current best practice is to use the documentType matcher by defining your own Fusion prototypes for each document
type. This approach will be covered further below.



The page path and Neos.Neos:Page object

The minimally needed Fusion for rendering a page looks as follows:

page = Page {
  body {
    templatePath = 'resource://My.Package/Private/Templates/PageTemplate.html'
  }
}





Page expects one parameter to be set: The path of the Fluid template which is rendered inside the <body> of the
resulting HTML page.

If the template above is an empty file, the output shows how minimal Neos impacts the generated markup:

<!DOCTYPE html>
<html>
  <!--
      This website is powered by Neos, the Open Source Content Application Platform licensed under the GNU/GPL.
      Neos is based on Flow, a powerful PHP application framework licensed under the MIT license.

      More information and contribution opportunities at https://www.neos.io
  -->
  <head>
    <meta charset="UTF-8" />
  </head>
  <body>
    <script src="/_Resources/Static/Packages/Neos.Neos/JavaScript/LastVisitedNode.js" data-neos-node="a319a653-ef38-448d-9d19-0894299068aa"></script>
  </body>
</html>





It becomes clear that Neos gives as much control over the markup as possible to the integrator: No body markup, no
styles, only little Javascript to record the last visited page to redirect back to it after logging in. Except for
the charset meta tag nothing related to the content is output by default.

If the template file is filled with the following content:

<h1>{title}</h1>





the body would contain a heading to output the title of the current page:

<body>
  <h1>My first page</h1>
</body>





Again, no added CSS classes, no wraps. Why {title} outputs the page title is covered in detail below.


Adding pre-rendered output to the page template

Of course the current template is still quite boring; it does not show any content or any menu. In order to change that,
the Fluid template is adjusted as follows:

{namespace fusion=Neos\Fusion\ViewHelpers}
{parts.menu -> f:format.raw()}
<h1>{title}</h1>
{content.main -> f:format.raw()}





Placeholders for the menu and the content have been added. Because the parts.menu and content.main refer to a
rendered Fusion path, the output needs to be passed through the f:format.raw() ViewHelper. The Fusion needs to be
adjusted as well:

page = Neos.Neos:Page {
  body {
    templatePath = 'resource://My.Package/Private/Templates/PageTemplate.html'

    parts {
      menu = Neos.Neos:Menu
    }

    content {
      main = Neos.Neos:PrimaryContent {
        nodePath = 'main'
      }
    }
  }
}





In the above Fusion, a Fusion object at page.body.parts.menu is defined to be of type Neos.Neos:Menu.
It is exactly this Fusion object which is rendered, by specifying its relative path inside
{parts.menu -> f:format.raw()}.

Furthermore, the Neos.Neos:PrimaryContent Fusion object is used to render a Neos ContentRepository
ContentCollection node. Through the nodePath property, the name of the Neos ContentRepository
ContentCollection node to render is specified. As a result, the web page now contains a menu and the contents
of the main content collection.

The use of content and parts here is just a convention, the names can be
chosen freely. In the example content is used for the section where content is later
placed, and parts is for anything that is not content in the sense that it
will directly be edited in the content module of Neos.



The Neos.Neos:Page object in more detail

To understand what the Neos.Neos:Page object actually does, it makes sense to look at its definition. We can find the
Page prototype in the file Page.fusion in the path Resources\Private\Fusion inside the Neos.Neos
package. Here is a snippet taken from this object’s definition:

prototype(Neos.Neos:Page) < prototype(Neos.Fusion:Http.Message) {

  # The content of the head tag, integrators can add their own head content in this array.
  head = Neos.Fusion:Array {
    # Link tags for stylesheets in the head should go here
    stylesheets = Neos.Fusion:Array

    # Script includes in the head should go here
    javascripts = Neos.Fusion:Array {
      @position = 'after stylesheets'
    }
  }

  # Content of the body tag. To be defined by the integrator.
  body = Neos.Fusion:Template {
    node = ${node}
    site = ${site}

    # Script includes before the closing body tag should go here
    javascripts = Neos.Fusion:Array

    # This processor appends the rendered javascripts Array to the rendered template
    @process.appendJavaScripts = ${value + this.javascripts}
  }
}





By looking at this definition, we understand a bit more about how page rendering actually works. Neos.Neos:Page
inherits from Neos.Fusion:Http.Message, which in turn inherits from Neos.Fusion:Array. Array fusion objects
just render their keys one after another, so the Page object just outputs whatever is in it. The Neos.Neos:Page object
renders the HTML framework, such as doctype, head and body tags, and also defines the default integration points for
site integrators - head and body as well as their inner objects. It is not by coincidence that these exact paths
are pre-filled with sensible defaults in site package’s generated default Root.fusion files.

We can also see that the body object is a Neos.Fusion:Template, which is why we have to set the template path
to a Fluid template which will be rendered as the body.




Rendering custom document types

There are two basic approaches to render different document types. We currently recommend to create a Fusion
prototype per custom page type, which is since Neos 4.0 automatically picked up by Neos (see below). The “old” way
involves adding one root matcher per document type, explicitly checking for the node type in the condition, and
redirecting Fusion to another render path. It is documented here for completeness’ sake, but we do not recommend to use
it anymore.


Prototype-based rendering

Since Neos 4.0, the root Case object ships with a documentType matcher, which will automatically pick up and
render Fusion prototypes with the same name as the corresponding document node type, if they exist. This snippet
of Fusion in the root Case is responsible for it:

root = Neos.Fusion:Case {

  [...]

  documentType {
    condition = Neos.Fusion:CanRender {
      type = ${q(documentNode).property('_nodeType.name')}
    }
    type = ${q(documentNode).property('_nodeType.name')}
  }

  [...]
}





This means that if you have a custom page type Your.Site:CustomPage, you simply have to create a Fusion prototype
with a matching name to get different rendering for it. We explain how to do this in more detail in the “How To” section
of the docs: Rendering Custom Document Types



Explicit path rendering (discouraged)

Before document-based rendering, you had to add your own matchers to the root object to get different rendering:

root.customPageType1 {
  condition = ${q(node).is('[instanceof Your.Site:CustomPage]')}
  renderPath = '/custom1'
}

custom1 < page
custom1 {
  # output modified here...
}





There are a number of disadvantages of doing this, which is why we recommend to stick to prototype-based rendering:


	We are polluting the root namespace, adding to the danger of path collision


	We need to copy and modify the page object for each new document type, which becomes messy


	The order of path copying is important, therefore introducing possibly unwanted side effects







Further Reading

Details on how Fusion works and can be used can be found in the section Inside Fusion.
Adjusting Neos Output shows how page, menu and content markup can be adjusted freely.





            

          

      

      

    

  

    
      
          
            
  
Creating Custom Content Elements

Neos ships with commonly used, predefined content elements, but it is easily possible
to amend and even completely replace them.

Defining new content elements is usually a three-step process:


	Defining a Neos ContentRepository Node Type, listing the properties and types of the node.


	Defining a Fusion object which is responsible for rendering this content type.
Usually, this is a wrapper for a Fluid Template which then defines the rendered
markup.


	Add a Fluid Template which contains the markup being rendered





Creating a Simple Content Element

The following example creates a new content element Acme.Demo:YouTube which needs
the YouTube URL and then renders the video player.

First, the Neos ContentRepository Node Type needs to be defined in NodeTypes.yaml. This can be done
in your site package or in a package dedicated to content elements, if reuse is foreseeable.

'Acme.Demo:YouTube':
  superTypes:
   'Neos.Neos:Content': TRUE
  ui:
    group: 'general'
    label: 'YouTube Video'
    inspector:
      groups:
        video:
          label: 'Video'
          icon: 'icon-film'
  properties:
    videoUrl:
      type: string
      ui:
        label: 'Video URL'
        reloadIfChanged: TRUE
        inspector:
          group: 'video'





The declaration of node types with all required and optional properties is documented in
Node Type Definition.

Next the Fusion rendering for the content element has to be defined. By convention,
a Fusion object with the same name as the content element is used for rendering; thus
in this case a Fusion object My.Package:YouTube:

prototype(Acme.Demo:YouTube) < prototype(Neos.Neos:Content) {
        templatePath = 'resource://Acme.Demo/Private/Templates/FusionObjects/YouTube.html'
        videoUrl = ${q(node).property('videoUrl')}
        width = '640'
        height = '360'
}





A new Fusion object prototype with the name My.Package:YouTube is declared, inheriting
from the pre-defined Template Fusion object which provides rendering through Fluid.

The templatePath property of the YouTube Fusion object is set to point to the
Fluid template to use for rendering. All (other) properties which are set on the Template
Fusion object are directly made available inside Fluid as variables – and
because the YouTube Fusion object extends the Template Fusion object, this
rule also applies there.

Thus, the last line defines a videoUrl variable to be available inside Fluid, which is
set to the result of the Eel expression ${q(node).property(‘videoUrl’)}. Eel is explained
in depth in Eel, FlowQuery and Fizzle, but this is a close look at the used expression
q(node).property(‘videoUrl’):


	The q() function wraps its argument, in this case the Neos ContentRepository Node which is currently rendered,
into FlowQuery.


	FlowQuery defines the property(…) operation used to access the property of a node.




To sum it up: The expression ${q(node).property(‘videoUrl’)} is an Eel expression, in which
FlowQuery is called to return the property videoUrl of the current node.

The final step in creating the YouTube content element is defining the YouTube.html Fluid
template, f.e. with the following content:

<iframe width="{width}" height="{height}" src="{videoUrl}" frameborder="0" allowfullscreen></iframe>





In the template the {videoUrl} variable which has been defined in Fusion is used as we need it.


What are the benefits of indirection through Fusion?

In the above example the videoUrl property of the Node is not directly rendered inside the
Fluid template. Instead Fusion is used to pass the videoUrl from the Node into the Fluid
template.

While this indirection might look superfluous at first sight, it has important benefits:


	The Fluid Template does not need to know anything about Nodes. It just needs to know
that it outputs a certain property, but not where it came from.


	Because the rendering is decoupled from the data storage this way, the Fusion object can be
instantiated directly, manually setting a videoUrl:

page.body.parts.teaserVideo = My.Package:YouTube {
  videoUrl = 'http://youtube.com/.....'
}







	If a property needs to be modified just slightly, a processor can be used for declarative
modification of this property in Fusion; not even touching the Fluid template. This is helpful
for smaller adjustments to foreign packages.







Creating Editable Content Elements

The simple content element created in Creating a Simple Content Element exposes the video URL
only through the property inspector in the editing interface. Since the URL is not directly visible
this is the only viable way.

In case of content that is directly visible in the output, inline editing can be enabled by slight
adjustments to the process already explained.

The node type definition must define which properties are inline editable through setting the
inlineEditable property:

'Acme.Demo:Quote':
  superTypes:
    'Neos.Neos:Content': TRUE
  ui:
    group: 'general'
    label: 'Quote'
  properties:
    quote:
      type: string
      defaultValue: 'Use the force, Luke!'
      ui:
        label: 'Quote'
        inlineEditable: TRUE





The Fusion for the content element is the same as for a non-inline-editable content
element:

prototype(Acme.Demo:Quote) < prototype(Neos.Neos:Content) {
        templatePath = 'resource://Acme.Demo/Private/Templates/FusionObjects/Quote.html'
        quote = ${q(node).property('quote')}
}





The Fluid template again needs some small adjustment in form of the contentElement.editable
ViewHelper to declare the property that is editable. This may seem like duplication, since the
node type already declares the editable properties. But since in a template multiple editable
properties might be used, this still is needed.

{namespace neos=Neos\Neos\ViewHelpers}
<blockquote>
        {neos:contentElement.editable(property: 'quote')}
</blockquote>





The blockquote is wrapped around the contentElement.editable and not the other way because that would
mean the blockquote becomes a part of the editable content, which is not desired in this case.

Using the tag attribute to make the ViewHelper use the blockquote tag needed for the element
avoids the nesting in an additional container div and thus cleans up the generated markup:

{namespace neos=Neos\Neos\ViewHelpers}
{neos:contentElement.editable(property: 'quote', tag: 'blockquote')}





A property can be inline editable and appear in the property inspector if configured accordingly. In
such a case reloadIfChanged should be enabled to make changes in the property editor visible in the
content area.



Creating Nested Content Elements

In case content elements do not only contain simple properties, but arbitrary sub-elements, the process
again is roughly the same. To demonstrate this, a Video Grid content element will be created, which
can contain two texts and two videos.


	A Neos ContentRepository Node Type definition is created. It makes use of the childNodes property to define
(and automatically create) sub-nodes when a node of this type is created. In the example the two
video and text elements will be created directly upon element creation:

'Acme.Demo:VideoGrid':
  superTypes:
    'Neos.Neos:Content': TRUE
  ui:
    group: 'structure'
    label: 'Video Grid'
  childNodes:
    video0:
      type: 'Acme.Demo:YouTube'
    video1:
      type: 'Acme.Demo:YouTube'
    text0:
      type: 'Neos.NodeTypes:Text'
    text1:
      type: 'Neos.NodeTypes:Text'







	The needed Fusion is created:

prototype(Acme.Demo:VideoGrid) {
        videoRenderer = Acme.Demo:YouTube
        textRenderer = Neos.NodeTypes:Text

        video0 = ${q(node).children('video0').get(0)}
        video1 = ${q(node).children('video1').get(0)}

        text0 = ${q(node).children('text0').get(0)}
        text1 = ${q(node).children('text1').get(0)}
}





Instead of assigning variables to the Fluid template, additional Fusion objects responsible
for the video and the text rendering are instantiated. Furthermore, the video and text nodes
are fetched using Eel and then passed to the Fluid template.



	The Fluid template is created. Instead of outputting the content directly using object access
on the passed nodes, the <ts:render> ViewHelper is used to defer rendering to
Fusion again. The needed Neos ContentRepository Node is passed as context to Fusion:

{namespace fusion=Neos\Fusion\ViewHelpers}
<fusion:render path="videoRenderer" context="{node: video0}" />
<fusion:render path="textRenderer" context="{node: text0}" />
<br />
<fusion:render path="videoRenderer" context="{node: video1}" />
<fusion:render path="textRenderer" context="{node: text1}" />









Instead of referencing specific content types directly the use of the generic ContentCollection content
element allows to insert arbitrary content inside other elements. An example can be found in the
Neos.NodeTypes:MultiColumn and Neos.NodeTypes:MultiColumnItem content elements.

As explained earlier (in What are the benefits of indirection through Fusion?) the major benefit
if using Fusion to decouple the rendering of items this way is flexibility. In the video grid
it shows how this enables composability, other Fusion objects can be re-used for rendering
smaller parts of the element.



Content Element Group

In Neos content elements are grouped by type. By default the following groups are available:


	general
	Basic content elements, like text and image.



	structure
	Elements defining a structure. This group contains for example the 2 column element.



	plugins
	Available plugins in the site installation.





It is possible to create new groups by using the Neos.Neos.nodeTypes.groups settings.
Registering 2 new groups could look like:

Neos:
  Neos:
    nodeTypes:
      groups:
        form:
          label: 'Form elements'
        special:
          position: 50
          label: 'Special elements'
          collapsed: true
          icon: 'icon-fort-awesome'





The groups are ordered by the position argument.



Extending The Inspector


Warning

Adding editors and validators is no fixed API yet, keep an eye on the changelogs if you use this.



It is possible to extend the inspector for adding new editors and validators to edit the properties
of your nodetypes.


Editors

By default the following list of editors is available in Neos:


	Neos.Neos/Inspector/Editors/BooleanEditor

A checkbox, by default configured for properties of type boolean.



	Neos.Neos/Inspector/Editors/DateTimeEditor

A datepicker with support for time selection too. By default configured for properties
of type date.



	Neos.Neos/Inspector/Editors/CodeEditor

An code editor with syntax highlighting. You can use this editor for editing
other types of textual content, by configuring a different highlightingMode and
buttonLabel to change usage for this editor:

style:
  type: string
  ui:
    label: 'CSS'
    reloadIfChanged: TRUE
    inspector:
      group: 'code'
      editor: 'Neos.Neos/Inspector/Editors/CodeEditor'
      editorOptions:
        buttonLabel: 'Edit CSS source'
        highlightingMode: 'text/css'







	Neos.Neos/Inspector/Editors/ImageEditor

An image editor with cropping and size support. By default configured for properties
of type NeosMediaDomainModelImageInterface.



	Neos.Neos/Inspector/Editors/ReferenceEditor

A selector with autocomplete to reference to another node. By default configured for
properties of type reference.



	Neos.Neos/Inspector/Editors/ReferencesEditor

A selector with autocomplete to reference to multiple nodes. By default configured for
properties of type references.



	Neos.Neos/Inspector/Editors/SelectBoxEditor

A selectbox.



	Neos.Neos/Inspector/Editors/TextFieldEditor

A simple textfield. By default configured for properties of type string and integer





The following editors are also available, but will most likely only be used internally in Neos:


	Neos.Neos/Inspector/Editors/MasterPluginEditor


	Neos.Neos/Inspector/Editors/PluginViewEditor


	Neos.Neos/Inspector/Editors/PluginViewsEditor





Register Custom Editors

There are 2 ways to register custom editors. Either by registering a namespace for a group
of editors, or by selecting the direct path to an editor specifically.

Registering a namespace pointing to a folder containing editors works as follows:


	Create a folder containing the JavaScript sources for the editors


	Name your files PropertyTypeEditor


	Configure the path as a requirejs path mapping using the following Settings.yaml

Neos:
  Neos:
    userInterface:
      requireJsPathMapping:
        'My.Package/Inspector/Editors': 'resource://My.Package/Public/Scripts/Path/To/Folder'







	Now configure the editor for your property in the NodeTypes.yaml:

'My.Package:NodeType':
  properties:
    myProperty:
      type: 'string'
      ui:
        inspector:
          editor: 'My.Package/Inspector/Editors/PropertyTypeEditor'
          editorOptions:
            optionName: 'optionValue'









To set global options for your editor you can set a set of defaults in Settings.yaml:

Neos:
  Neos:
    userInterface:
      inspector:
        editors:
          'My.Package/Inspector/Editors/PropertyTypeEditor':
            editorOptions:
              optionName: 'optionValue'





The editor options set on a property level will override the global editor options.

To register just one specific path as an editor use the following code:

Neos:
  Neos:
    userInterface:
      inspector:
        editors:
          'My.Package/Inspector/Editors/CustomEditor':
            path: 'resource://My.Package/Public/Scripts/Path/To/File/Without/Js/Extension'








Validators

By default the following validators are available in Neos:


	Neos.Neos/Validation/AbstractValidator

This abstract validator should be used to base custom validators on.



	Neos.Neos/Validation/AlphanumericValidator

Supported options:


	regularExpression






	Neos.Neos/Validation/CountValidator

Supported options:


	minimum


	maximum






	Neos.Neos/Validation/DateTimeRangeValidator

Supported options:


	latestDate


	earliestDate






	Neos.Neos/Validation/DateTimeValidator


	Neos.Neos/Validation/EmailAddressValidator

Supported options:


	regularExpression






	Neos.Neos/Validation/FloatValidator


	Neos.Neos/Validation/IntegerValidator


	Neos.Neos/Validation/LabelValidator

Supported options:


	regularExpression






	Neos.Neos/Validation/NumberRangeValidator

Supported options:


	minimum


	maximum






	Neos.Neos/Validation/RegularExpressionValidator

Supported options:


	regularExpression






	Neos.Neos/Validation/StringLengthValidator

Supported options:


	minimum


	maximum






	Neos.Neos/Validation/StringValidator


	Neos.Neos/Validation/TextValidator


	Neos.Neos/Validation/UuidValidator

Supported options:


	regularExpression









Register Custom Validators

There are 2 ways to register custom validators. Either by registering a namespace for a group
of validators, or by selecting the direct path to an validator specifically.

Registering a namespace pointing to a folder containing validators works as follows:


	Create a folder containing the JavaScript sources for the validators


	Name your files DataTypeValidator


	Configure the path as a requirejs path mapping using the following Settings.yaml

Neos:
  Neos:
    userInterface:
      requireJsPathMapping:
        'My.Package/Validation': 'resource://My.Package/Public/Scripts/Path/To/Folder'







	Now configure the validator for your property in the NodeTypes.yaml:

'My.Package:NodeType':
  properties:
    myProperty:
      type: 'string'
      validation:
        'My.Package/Validation/DataTypeValidator': []









To register just one specific path as a validator use the following code:

Neos:
  Neos:
    userInterface:
      validators:
        'My.Package/Validation/CustomValidator':
          path: 'resource://My.Package/Public/Scripts/Path/To/File/Without/Js/Extension'











            

          

      

      

    

  

    
      
          
            
  
Adjusting Neos Output


Page Template

The page template defines the overall structure of the generated markup: what is
rendered in the body and head of the resulting document.


The Body

As briefly explained in Rendering A Page the path to your own template for the
body of a generated page can be set using Fusion:

page = Page
page.body.templatePath = 'resource://My.Package/Private/Templates/PageTemplate.html'





The file will the be used to render the body content and any Fluid placeholders will be
substituted, ViewHelpers will be executed. Since no further information is given
to the rendering process, the full content of the template will be used for the body.

If the template contains a full HTML page, this will lead to invalid markup. But in
most cases having the template as a full HTML document is desired, as it allows easy
handling by the developer and can be previewed as is in a browser.

To use just a part of the document for the body, that part can simply be enclosed in
a Fluid section:

<!DOCTYPE html>
<html>
<head>
        …
</head>
<body>
<f:section name="body">
        <h1>{title}</h1>
</f:section>
</body>
</html>





The Fusion is then amended with the declaration of the section to use:

page = Page
page.body {
        templatePath = 'resource://My.Package/Private/Templates/PageTemplate.html'
        sectionName = 'body'
}





This results in only the part inside the template’s “body” section to be used for
rendering the body of the generated page.

To add actual content from Neos to the desired places in the markup, a special
ViewHelper to turn control back to Fusion is used. This has been mentioned
in Rendering A Page already.

This template uses the render ViewHelper twice, once to render the
path parts/menu and once to render the path content.main:

<f:section name="body">
        <ts:render path="parts.menu" />
        <h1>{title}</h1>
        <ts:render path="content.main" />
</f:section>





Those paths are relative to the current path. Since that part of the template is
rendered by the Fusion object at page.body, this is the starting point
for the relative paths. This means the Menu and the ContentCollection in this
Fusion are used for rendering the output:

page = Page
page.body {
        templatePath = 'resource://My.Package/Private/Templates/PageTemplate.html'
        sectionName = 'body'
        parts.menu = Menu
        content.main = ContentCollection
        content.main.nodePath = 'main'
}







The Head

The head of a page generated by Neos contains only minimal content by default.
Apart from the meta tag declaring the character set it is empty:

<head>
        <meta charset="UTF-8" />
</head>





To fill this with life, it is recommended to add sections to the head of your HTML template that
group the needed parts. Additional Fusion Template objects are then used to include them
into the generated page. Here is an example:

Page/Default.html

<head>
        <f:section name="meta">
                <title>{title}</title>
        </f:section>

        <f:section name="stylesheets">
                <!-- put your stylesheet inclusions here, they will be included in your website by Fusion -->
        </f:section>

        <f:section name="scripts">
                <!-- put your javascript inclusions here, they will be included in your website by Fusion -->
        </f:section>
</head>





Library/Root.fusion

page.head {
        meta = Neos.Fusion:Template {
                templatePath = 'resource://Acme.DemoCom/Private/Templates/Page/Default.html'
                sectionName = 'meta'

                title = ${q(node).property('title')}
        }
        stylesheets.site = Neos.Fusion:Template {
                templatePath = 'resource://Acme.DemoCom/Private/Templates/Page/Default.html'
                sectionName = 'stylesheets'
        }
        javascripts.site = Neos.Fusion:Template {
                templatePath = 'resource://Acme.DemoCom/Private/Templates/Page/Default.html'
                sectionName = 'scripts'
        }
}





The Fusion fills the page.head instance of Neos.Fusion:Array with content. The predefined paths for
page.head.stylesheets, page.head.javascripts or page.body.javascripts should be used to add custom includes. They
are implemented by a Fusion Array and allow arbitrary items to specify JavaScript or CSS includes without any
restriction on the content.

This will render some more head content:

        <head>
        …
        <title>Home</title>
        <!-- put your stylesheet inclusions here, they will be included in your website by Fusion -->
        <!-- put your javascript inclusions here, they will be included in your website by Fusion -->
        …
</head>





This provides for flexibility and allows to control precisely what ends up in the generated
markup. Anything that is needed can be added freely, it just has to be in a section that is
included.




Menu Rendering

Out of the box the Menu is rendered using a simple unsorted list:

<ul class="nav">
        <li class="current">
                <a href="home.html">Home</a>
        </li>

        <li class="normal">
                <a href="blog.html">Blog</a>
        </li>
</ul>





Wrapping this into some container (if needed) in a lot of cases provides for enough possibilities
to style the menu using CSS. In case it still is needed, it is possible to change the rendered markup
of Menu using Fusion. Menu is defined inside the core of Neos together with Neos.NodeTypes:

Neos.Neos/Resources/Private/Fusion/Root.fusion

prototype(Neos.Neos:Menu).@class = 'Neos\\Neos\\Fusion\\MenuImplementation'





Neos.NodeTypes/Resources/Private/Fusion/Root.fusion

prototype(Neos.NodeTypes:Menu) < prototype(Neos.Neos:Menu)
prototype(Neos.NodeTypes:Menu) {
        templatePath = 'resource://Neos.NodeTypes/Private/Templates/FusionObjects/Menu.html'
        entryLevel = ${String.toInteger(q(node).property('startLevel'))}
        maximumLevels = ${String.toInteger(q(node).property('maximumLevels'))}
        node = ${node}
}





The above code defines the prototype of Menu with the prototype(Menu) syntax.
This prototype is the “blueprint” of all Menu objects which are instantiated.
All properties which are defined on the prototype (such as @class or templatePath)
are automatically active on all Menu instances, if they are not explicitly overridden.

One way to adjust the menu rendering is to override the templatePath property, which
points to a Fluid template. To achieve that, we have two possibilities.

First, the templatePath for the menu at page.body.parts.menu can be set:

page.body.parts.menu.templatePath = 'resource://My.Package/Private/Templates/MyMenuTemplate.html'





This overrides the templatePath which was defined in prototype(Menu) for
this single menu.

Second, the templatePath inside the Menu prototype itself can be changed:

prototype(Menu).templatePath = 'resource://My.Package/Private/Templates/MyMenuTemplate.html'





In this case, the changed template path is used for all menus which do not override
the templatePath explicitly. Every time prototype(…) is used, this can be
understood as: “For all objects of type …, define something”

After setting the path, changing the menu is simply a job of copying the default
Menu template into MyMenuTemplate.html and adjusting the markup as needed.


Menu states

The default Menu implementation assigns CSS classes to the li tags depending on
their state:


	current

	A menu item pointing to the page that is currently shown



	active

	Any menu item that is on the path to the current page



	normal

	Any menu item that is neither current nor active








Content Element Rendering

The rendering of content elements follows the same principle as shown for the Menu.
The default Fusion is defined in the Neos.NodeTypes package and the content elements
all have default Fluid templates.

Combined with the possibility to define custom templates per instance or on the prototype
level, this already provides a lot of flexibility. Another possibility is to inherit from
the existing Fusion and adjust as needed using Fusion.

The available properties and settings that the Fusion objects in Neos provide are
described in Fusion Reference.



Including CSS and JavaScript in a Neos Site

Including CSS and JavaScript should happen through one of the predefined places of the Page object. Depending on
the desired position one of the page.head.javascripts, page.head.stylesheets or page.body.javascripts Arrays
should be extended with an item that renders script or stylesheet includes:

page.head {

        stylesheets {
                bootstrap = '<link href="//netdna.bootstrapcdn.com/bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">'
        }

        javascripts {
                jquery = '<script src="//code.jquery.com/jquery-1.10.1.min.js"></script>'
        }

}

page.body {

        javascripts {
                bootstrap = '<script src="//netdna.bootstrapcdn.com/bootstrap/3.0.3/js/bootstrap.min.js"></script>'
        }

}





The page.body.javascripts content will be appended to the rendered page template so the included scripts should be
placed before the closing body tag. As always in Fusion the elements can be a simple string value, a Fusion
object like Template or an expression:

page.head {
        # Add a simple value as an item to the javascripts Array
        javascripts.jquery = '<script src="//code.jquery.com/jquery-1.10.1.min.js"></script>'

        # Use an expression to render a CSS include (this is just an example, bootstrapVersion is not defined by Neos)
        stylesheets.bootstrap = ${'<link href="//netdna.bootstrapcdn.com/bootstrap/' + bootstrapVersion + '/css/bootstrap.min.css" rel="stylesheet">'}
}

page.body {
        # Use a Template object to access a special section of the site template
        javascripts.site = Neos.Fusion:Template {
                templatePath = 'resource://Acme.DemoCom/Private/Templates/Page/Default.html'
                sectionName = 'bodyScripts'
        }
}





The order of the includes can be specified with the @position property inside the Array object. This is especially
handy for including JavaScript libraries and plugins in the correct order:

page.head {
        jquery = '<script src="//code.jquery.com/jquery-1.10.1.min.js"></script>'

        javascripts.jquery-ui = '<script src="path-to-jquery-ui"></script>'
        javascripts.jquery-ui.@position = 'after jquery'
}







CSS and JavaScript restrictions in a Neos Site

Very little constraints are imposed through Neos for including JavaScripts or stylesheets.
But since the Neos user interface itself is built with HTML, CSS and JavaScript itself, some caveats exist.

Since the generated markup contains no stylesheets by default and the generated JS is minimal,
those restrictions affect only the display of the page to the editor when logged in to the Neos
editing interface.

In this case, the Neos styles are included and a number of JavaScript libraries are loaded,
among them jQuery, Ember JS and VIE. The styles are all confined to a single root selector and
for JavaScript the impact is kept as low as possible through careful scoping.


CSS Requirements


	the <body> tag is not allowed to have a CSS style with position:relative,
as this breaks the positions of modal dialogs we show at various places.
Zurb Foundation is one well-known framework which sets this as default, so
if you use it, then fix the error with body { position: static }.




TODO check if this is still true



JavaScript Requirements

TODO “what about the UI below a single DOM element idea”




Adjusting the HTTP response

It is possible to set HTTP headers and the status code of the response from Fusion. See Neos.Fusion:Http.Message
for an example.





            

          

      

      

    

  

    
      
          
            
  
Content Dimensions


Introduction

Content dimensions are a generic concept to have multiple variants of a node. A dimension can be anything like
“language”, “country” or “customer segment”. The content repository supports any number of dimensions.
Node variants can have multiple values for each dimension and are connected by the same identifier. This enables a
single-tree approach for localization, personalization or other variations of the content in a site.

If content is rendered and thus fetched from the content repository, it will always happen in a context. This context
contains a list of values for each dimension that specifies which dimension values are visible and in which fallback
order these should apply. So the same node variants can yield different results depending on the context that is used
to fetch the nodes.

Dimension presets assign a name to the list of dimension values and are used to display dimensions in the
user interface or in the routing. They represent the allowed combinations of dimension values.


Tip

See the Translating content cookbook for a step-by-step guide to create a multi-lingual
website with Neos.





Dimension Configuration

The available dimensions and presets can be configured via settings:

Neos:
  ContentRepository:
    contentDimensions:

      # Content dimension "language" serves for translation of content into different languages. Its value specifies
      # the language or language variant by means of a locale.
      'language':
        # The default dimension that is applied when creating nodes without specifying a dimension
        default: 'mul_ZZ'
        # The default preset to use if no URI segment was given when resolving languages in the router
        defaultPreset: 'all'
        label: 'Language'
        icon: 'icon-language'
        presets:
          'all':
            label: 'All languages'
            values: ['mul_ZZ']
            uriSegment: 'all'
          # Example for additional languages:

          'en_GB':
            label: 'English (Great Britain)'
            values: ['en_GB', 'en_ZZ', 'mul_ZZ']
            uriSegment: 'gb'
          'de':
            label: 'German (Germany)'
            values: ['de_DE', 'de_ZZ', 'mul_ZZ']
            uriSegment: 'de'





The Neos ContentRepository and Neos packages don’t provide any dimension configuration per default.



Preset Constraints

Neos can be configured to work with more than one content dimension. A typical use case is to define separate dimensions
for language and country: pages with product descriptions may be available in English and German, but the English
content needs to be different for the markets target to the UK or Germany respectively. However, not all possible
combinations of language and country make sense and thus should not be accessible. The allowed combinations
of content dimension presets can be controlled via the preset constraints feature.

Consider a website which has dedicated content for the US, Germany and France. The content for each country is available
in English and their respective local language. The following configuration would make sure that the combinations
“German – US”, “German - France”, “French - US” and “French - Germany” are not allowed:

Neos:
  ContentRepository:
    contentDimensions:
      'language':
        default: 'en'
        defaultPreset: 'en'
        label: 'Language'
        icon: 'icon-language'
        presets:
          'en':
            label: 'English'
            values: ['en']
            uriSegment: 'en'
          'de':
            label: 'German'
            values: ['de']
            uriSegment: 'de'
            constraints:
              country:
                'us': false
                'fr': false
          'fr':
            label: 'French'
            values: ['fr']
            uriSegment: 'fr'
            constraints:
              country:
                'us': false
                'de': false
      'country':
        default: 'us'
        defaultPreset: 'us'
        label: 'Country'
        icon: 'icon-globe'
        presets:
          'us':
            label: 'United States'
            values: ['us']
            uriSegment: 'us'
          'de':
            label: 'Germany'
            values: ['de']
            uriSegment: 'de'
          'fr':
            label: 'France'
            values: ['fr']
            uriSegment: 'fr'





Instead of configuring every constraint preset explicitly, it is also possible to allow or disallow all presets of a
given dimension by using the wildcard identifier. The following configuration has the same effect like in the previous
example:

Neos:
  ContentRepository:
    contentDimensions:
      'language':
        default: 'en'
        defaultPreset: 'en'
        label: 'Language'
        icon: 'icon-language'
        presets:
          'en':
            label: 'English'
            values: ['en']
            uriSegment: 'en'
          'de':
            label: 'German'
            values: ['de']
            uriSegment: 'de'
            constraints:
              country:
                'de': true
                '*': false
          'fr':
            label: 'French'
            values: ['fr']
            uriSegment: 'fr'
            constraints:
              country:
                'fr': true
                '*': false
      'country':
        default: 'us'
        defaultPreset: 'us'
        label: 'Country'
        icon: 'icon-globe'
        presets:
          'us':
            label: 'United States'
            values: ['us']
            uriSegment: 'us'
          'de':
            label: 'Germany'
            values: ['de']
            uriSegment: 'de'
          'fr':
            label: 'France'
            values: ['fr']
            uriSegment: 'fr'





While the examples only defined constraints in the language dimension configuration, it is perfectly possible to
additionally or exclusively define constraints in country or other dimensions.



Migration of existing content

Adjusting content dimensions configuration can lead to issues for existing content. When a new content dimension is added,
a corresponding value needs to be added to existing content, otherwise no nodes would be found.

This can be done with a node migration which is included in the Neos.ContentRepository package:

./flow node:migrate 20150716212459





This migration adds missing content dimensions by setting the default value on all existing nodes, if not already set.

Alternatively a custom node migration can be created allowing flexibility and constraints. See Node Migration Reference.



Routing

Neos provides a route-part handler that will include a prefix with the value of the uriSegment setting of a
dimension preset for all configured dimensions. This means URIs will not contain any prefix by default as long as
no content dimension is configured. Multiple dimensions are joined with a _ character, so the uriSegment value
must not include an underscore.

The default preset can have an empty uriSegment value. The following example will lead to URLs that do not contain
en if the en_US preset is active, but will show the uriSegment for other languages that are defined as well:

Neos:
  ContentRepository:
    contentDimensions:

      'language':
        default: 'en'
        defaultPreset: 'en_US'
        label: 'Language'
        icon: 'icon-language'
        presets:
          'en':
            label: 'English (US)'
            values: ['en_US']
            uriSegment: ''





The only limitation is that all segments must be unique across all dimensions. If you need non-unique segments, you can
switch support for non-empty dimensions off:

Neos:
  Neos:
    routing:
      supportEmptySegmentForDimensions: FALSE







Limitations

In Neos 1.2 node variants can only be created by having a common fallback value in the presets. This means a node
can only be translated to some other dimension value if it “shined” through from a fallback value.

In Neos 2.0, it is possible to create node variants across dimension borders, i.e. to translate an English version
of a Document to German, without having fall-backs from German to English or vice versa.





            

          

      

      

    

  

    
      
          
            
  
Note

This is a documentation stub.




Multi Site Support


Separating Assets Between Sites

In multi-site setups it can become a use case to having to separate assets to a between sites. For this Neos supports
creating asset collections. An asset collection can contain multiple assets, and an asset can belong to multiple
collections. Additionally tags can belong to one or multiple collections.

Every site can (in the site management module) be configured to have a default asset collection. This means that when
assets are uploaded in the inspector they will automatically be added to the sites collection if one is configured.
When the editor opens the media browser/module it will automatically select the current sites collection.

The media browser/module allows administrators to create/edit/delete collections and also select which tags are
included in a collection.





            

          

      

      

    

  

    
      
          
            
  
Content Cache


Introduction

The frontend rendering of a document node in Neos can involve many queries and operations. Doing this for every request
would be too slow to achieve a feasible response time. The content cache is a feature of Fusion and supports a
configurable and nested cache that can answer many requests directly from the cache without expensive operations. It is
based on the Flow caching framework that supports many different cache backends, expiration and tagging.

Each Fusion path (of type object) can have its own cache configuration. These cache configurations can be nested to
re-use parts of the content and have multiple cache entries with different properties on the same page. This could be a
menu or section that is the same for many pages. The nesting support is also allows to have uncached content like
plugins inside cached content.

The content cache is active even when you are in editing mode. Cache entries will be flushed automatically whenever
data has changed through a tag based strategy or when relevant files changed during development (code, templates or
configuration).


Note

In Neos, you don’t a have a button to clear the cache. Cache invalidation is handled by the core and can be
configured to be application specific. It’s really important to configure the cache correctly to avoid problems
with cache invalidation.




[image: An example cache hierarchy]

An example cache hierarchy with different modes



Let’s see how the content cache can help you to deliver a faster user experience.



The basics

The main Fusion path is root, you can find it in the file Fusion/DefaultFusion.fusion in the
Neos.Neos package. Here is a small part of this file that shows the outermost cache configuration of the root
path:

root = Neos.Fusion:Case {
        default {
                @position = 'end 9999'
                condition = TRUE
                renderPath = '/page'
        }

        @cache {
                mode = 'cached'

                maximumLifetime = '86400'

                entryIdentifier {
                        node = ${node}
                        editPreviewMode = ${node.context.currentRenderingMode.name}
                }

                entryTags {
                        # Whenever the node changes the matched condition could change
                        1 = ${Neos.Caching.nodeTag(documentNode)}
                        # Whenever one of the parent nodes changes the layout could change
                        2 = ${Neos.Caching.descendantOfTag(documentNode)}
                }
        }
}





The given configuration will cache the entire page content with a unique identifier defined by the current node
(the document node), the preview mode and globally configured entry identifiers.


Note

All entryIdentifier values will be evaluated and combined to a single string value (the keys will be part of the
identifier and sorted alphabetically).



In the @cache meta property the following subproperties are allowed:


	mode
	Sets the caching mode of the current path. Possible values are 'embed' (default), 'cached',
'dynamic' or 'uncached'.
Only simple string values are supported for this property.

It defaults to mode embed which will not create a new cache entry but store the content into the next outer cached
entry. With mode cached a separate cache entry will be created for the path. Mode uncached can be used to
always evaluate a path even if is contained inside a cached path. The dynamic mode evalutes a so called
“discriminator” on every request and caches results differently depending on it’s value. Dynamic cache mode is therefore
much faster than uncached but slightly slower compared to cached mode. It is useful in situations where
arguments (eg. from the request) lead to different rendering results. The context property should be set to configure
the Fusion context variables that will be available when evaluating the uncached path.



	maximumLifetime
	Set the maximum lifetime for the nearest cached path. Possible values are null (default), 0 (unlimited lifetime)
or the amount of seconds as an integer.

If this property is declared on a path with caching mode cached or dynamic it will set the lifetime of the
cache entry to the minimum of all nested maximumLifetime configurations (in paths with mode embed) and
the maximumLifetime of the current configuration.



	entryIdentifier
	Configure the cache entry identifier for mode cached or dynamic based on an array of values.

The prototype Neos.Fusion:GlobalCacheIdentifiers will be used as the base object, so global values that
influence all cache entries can be added to that prototype, see Global cache entry identifiers for more
details.

If this property is not set, the identifier is built from all Fusion context values that are simple values or
implement CacheAwareInterface.

The identifier string value will be a hash built over all array values including and sorted by their key.






Note

It is very important to add all values that influence the output of the current path to the entryIdentifier array
since cache entries will be re-used across rendered documents if the same identifier is requested. In the cache
hierarchy the outermost cache entry determines all the nested entries, so it’s important to add values that
influence the rendering for every cached path along the hierarchy.




	entryTags
	Configure a set of tags that will be assigned to the cache entry for mode cached or dynamic as an array.

The correct entry tags are important to achieve an automatic flushing of affected cache entries if a node or other
data in Neos was changed during editing, publishing or other actions. A number of tags with a specific pattern
are flushed by default in Neos whenever a node is changed, published or discarded. See Cache Entry Tags for a full
list.



	context
	Configure a list of variable names that will be stored from the Fusion context for later rendering of a path with
mode uncached or dynamic. Only values that are configured here will be available in Fusion when the path is evaluated
in subsequent request.

Example from Plugin.fusion:

prototype(Neos.Neos:Plugin) {
        @cache {
                mode = 'uncached'
                context {
                        1 = 'node'
                        2 = 'documentNode'
                }
        }
}







	entryDiscriminator
	Configure an expression that uniquely discriminates different entries of a dynamic cached area. The expression or Fusion
object must evaluate to a string to be used as discriminator and should be different for every cache entry you want to create for
this dynamic cached area.

Example for a dynamic configuration with entryDiscriminator:

prototype(Neos.Neos:Plugin) {
        @cache {
                mode = 'dynamic'
                entryIdentifier {
                  node = ${node}
                }
                entryDiscriminator = ${request.arguments.pagination}
                context {
                        1 = 'node'
                        2 = 'documentNode'
                }
                entryTags {
                        1 = ${Neos.Caching.nodeTag(node)}
                }
        }
}









When using dynamic as the cache mode, the cache can be disabled by setting the entryDiscriminator to false.
This can be used to make the cache behavior dependable on some context, i.e. the current request method:

prototype(Neos.NodeTypes:Form) {
        @cache {
                mode = 'dynamic'
                entryIdentifier {
                  node = ${node}
                }
                entryDiscriminator = ${request.httpRequest.methodSafe ? 'static' : false}
                context {
                        1 = 'node'
                        2 = 'documentNode'
                }
        }
}





In this example the Form will be cached unless the request method is unsafe (for example POST) in which case it is
switched to uncached.


Cache Entry Tags

Neos will automatically flush a set of tags whenever nodes are created, changed, published or discarded.
The exact set of tags depends on the node hierarchy and node type of the changed node. You should assign tags that
matches one of these patterns in your configuration. You can use an Eel expression to build the pattern depending on
any context variable including the node identifier or type.

To create the correct tags for your node it is important to make use if our CachingHelper.
The following methods are provided by default to create all kind of patterns of tags wich will be flushed by Neos:


	Everything
	Flushes cache entries for every changed node.



	${Neos.Caching.nodeTypeTag('[My.Package:NodeTypeName]', node)}
	Flushes cache entries if any node with the given node type changes. [My.Package:NodeTypeName] needs to be
replaced by any node type name. Inheritance will be taken into account, so for a changed node of type
Neos.NodeTypes:Page the tags NodeType_Neos.NodeTypes:Page and NodeType_Neos.Neos:Document
(and some more) will be flushed. The second property node is needed to calculate the correct context to create tags for.
Notice: In earlier versions of Neos we just used a plain String NodeType_[My.Package:NodeTypeName] which could lead into
unwanted cache flush behaviours



	${Neos.Caching.nodeTag(node)}
	Flushes cache entries if the node changes.
Notice: In earlier versions of Neos we just used a plain String Node_[Identifier] which could lead into
unwanted cache flush behaviours. Identifier had to be replaced by a valid node identifier. You might want to use
${Neos.Caching.nodeTagForIdentifier("identifier")} if you don’t have a node instance but only a node identifier as string.



	${Neos.Caching.descendantOfTag(node)}
	Flushes cache entries if a child node of the node changes.
Notice: In earlier versions of Neos we just used a plain String DescendantOf_[Identifier] which could lead into
unwanted cache flush behaviours. Identifier had to be replaced by a valid node identifier.





Example:

prototype(Neos.Neos:ContentCollection) {
        #...

        @cache {
                #...

                entryTags {
                        1 = ${Neos.Caching.nodeTag(node)}
                        2 = ${Neos.Caching.descendantOfTag(contentCollectionNode)}
                }
        }
}





The ContentCollection cache configuration declares tags that will flush the cache entry for the collection if
any of it’s descendants (direct or indirect child) changes. So editing a node inside the collection will flush the
whole collection cache entry and cause it to re-render.


Note

When using cached as the cache mode, your entryTags should always contain the node identifier. Otherwise, the
cache will not be flushed when you make changes to the node itself, which will lead to unexpected behavior in the Neos
backend:

@cache {
        mode = 'cached'
        entryTags {
                1 = ${Neos.Caching.nodeTag(node)}
                2 = ... additional entry tags ...
        }
}


Notice: In earlier versions of Neos there might be some problems with unwanted cache flush behaviours. To make sure
to avoid this always use the CachingEelHelper. See https://github.com/neos/neos-development-collection/issues/2096
for more informations










Default cache configuration

The following list of Fusion prototypes is cached by default:


	Neos.Neos:Breadcrumb


	Neos.Neos:Menu


	Neos.Neos:Page


	Neos.Neos:ContentCollection (see note)




The following list of Fusion prototypes is uncached by default:


	Neos.NodeTypes:Form


	Neos.Neos:Plugin





Note

The Neos.Neos:ContentCollection prototype is cached by default and has a cache configuration with proper
identifier, tags and maximumLifetime defined. For all ContentCollection objects inside a Content object the
mode is set to embed. This means that node types that have a ContentCollection do not generate a separate
cache entry but are embedded in the outer static ContentCollection.




Overriding default cache configuration

You can override default cache configuration in your Fusion:

prototype(Neos.Neos:PrimaryContent).@cache.mode = 'uncached'





You can also override cache configuration for a specific Fusion Path:

page.body.content.main {
    prototype(Neos.Neos:Plugin).@cache.mode = 'cached'
}








Global cache entry identifiers

Information like the request format or base URI that was used to render a site might have impact on all generated URIs.
Depending on the site or application other data might influence the uniqueness of cache entries. If an entryIdentifier
for a cached path is declared without an object type, it will default to Neos.Fusion:GlobalCacheIdentifiers:

prototype(My.Package:ExampleNode) {
        @cache {
                mode = 'cached'

                # This is the default if no object type is specified
                # entryIdentifier = Neos.Fusion:GlobalCacheIdentifiers
                entryIdentifier {
                        someValue = ${q(node).property('someValue')}
                }
        }
}





This prototype can be extended to add or remove custom global values that influence all cache entries without a specific
object type:

prototype(Neos.Fusion:GlobalCacheIdentifiers) {
        myRequestArgument = ${request.arguments.myArgument}
}





You can use a Neos.Fusion:RawArray to explicitly specify the values that are used for the entry identifier:

prototype(My.Package:ExampleNode) {
        @cache {
                mode = 'cached'

                entryIdentifier = Neos.Fusion:RawArray {
                        someValue = ${q(node).property('someValue')}
                }
        }
}






Security Context

In addition to entry identifiers configured in Fusion, the Security Context Hash
is added to the identifier of all cached segments. This hash is build from the roles of
all authenticated accounts and cache identifiers from custom global objects (exposed through Neos.Flow.aop.globalObjects)
implementing CacheAwareInterface. 1




Tuning your cache


Change the cache backend

By default, all cache entries are stored on the local filesystem. You can change this in Caches.yaml,
the example below will use the Redis backend for the content cache:

Neos_Fusion_Content:
  backend: Neos\Cache\Backend\RedisBackend






Note

The best practice is to change the cache configuration in your distribution.






	1

	Custom Global Objects are explained in detail in the Flow documentation: http://flowframework.readthedocs.io/en/stable/TheDefinitiveGuide/PartIII/Security.html#content-security-entityprivilege.










            

          

      

      

    

  

    
      
          
            
  
Permissions & Access Management


Introduction

A common requirement, especially for larger websites with many editors, is the possibility to selectively control
access to certain backend tools and parts of the content. For example so that editors can only edit certain pages
or content types or that they are limited to specific workspaces. These access restrictions are used to enforce
certain workflows and to reduce complexity for editors.

Neos provides a way to define Access Control Lists (ACL) in a very fine-grained manner, enabling the following
use cases:


	hide parts of the node tree completely (useful for multi-site websites and frontend-login)


	show only specific Backend Modules


	allow to create/edit only specific Node Types


	allow to only edit parts of the Node Tree


	allow to only edit a specific dimension




The underlying security features of Flow provide the following generic possibilities in addition:


	protect arbitrary method calls


	define the visibility of arbitrary elements depending on the authenticated user




Privilege targets define what is restricted, they are defined by combining privileges with matchers, to address
specific parts of the node tree. A user is assigned to one or more specific roles, defining who the user is. For
each role, a list of privileges is specified, defining the exact permissions of users assigned to each role.

In the Neos user interface, it is possible to assign a list of multiple roles to a user. This allows to define the
permissions a user actually has on a fine-grained level. Additionally, the user management module has basic support
for multiple accounts per user: a user may, for example, have one account for backend access and another one for
access to a member-only area on the website.

As a quick example, a privilege target giving access to a specific part of the node tree looks as follows:

'Neos\ContentRepository\Security\Authorization\Privilege\NodeTreePrivilege':
  'YourSite:EditWebsitePart':
    matcher: 'isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")'







Adjusting and defining roles

Neos comes with a number of predefined roles that can be assigned to users:








	Role

	Parent role(s)

	Description





	Neos.ContentRepository:Administrator

	
	A no-op role for future use



	Neos.Neos:AbstractEditor

	Neos.ContentRepository:Administrator

	Grants the very basic things needed to use Neos at all



	Neos.Neos:LivePublisher

	
	A “helper role” to allow publishing to the live
workspace



	Neos.Neos:RestrictedEditor

	Neos.Neos:AbstractEditor

	Allows to edit content but not publish to the live
workspace



	Neos.Neos:Editor

	Neos.Neos:AbstractEditor

Neos.Neos:LivePublisher


	Allows to edit and publish content



	Neos.Neos:Administrator

	Neos.Neos:Editor

	Everything the Editor can do, plus admin things






To adjust permissions for your editors, you can of course just adjust the existing roles (Neos.Neos:RestrictedEditor
and Neos.Neos:Editor in most cases). If you need different sets of permissions, you will need to define your own
custom roles, though.

Those custom roles should inherit from RestrictedEditor or Editor and then grant access to the additional privilege
targets you define (see below).

Here is an example for a role (limiting editing to a specific language) that shows this:

privilegeTargets:
  'Neos\ContentRepository\Security\Authorization\Privilege\Node\EditNodePrivilege':
    # this privilegeTarget is defined to switch to an "allowlist" approach
    'Acme.Com:EditAllNodes':
      matcher: 'TRUE'

    'Acme.Com:EditFinnish':
      matcher: 'isInDimensionPreset("language", "fi")'

roles:
  'Neos.Neos:Editor':
    privileges:
      -
        privilegeTarget: 'Acme.Com:EditAllNodes'
        permission: GRANT

  'Acme.Com:FinnishEditor':
    parentRoles: ['Neos.Neos:RestrictedEditor']
    privileges:
      -
        privilegeTarget: 'Acme.Com:EditFinnish'
        permission: GRANT







Node Privileges

Node privileges define what can be restricted in relation to accessing and editing nodes. In combination with matchers
(see the next section) they allow to define privilege targets that can be granted or denied for specific roles.


Note

This is an excludelist by default, so the privilege won’t match if one of the conditions don’t match. So the example:

privilegeTargets:
  'Neos\ContentRepository\Security\Authorization\Privilege\Node\CreateNodePrivilege':
    'Some.Package:SomeIdentifier':
      matcher: >-
        isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")
        && createdNodeIsOfType("Neos.NodeTypes:Text")





will actually only affect nodes of that type (and subtypes). All users will still be able to create other node types,
unless you also add a more generic privilege target:

privilegeTargets:
  'Neos\ContentRepository\Security\Authorization\Privilege\Node\CreateNodePrivilege':
    'Some.Package:SomeIdentifier':
      matcher: isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")





That will be abstained by default. It’s the same with MethodPrivileges, but with those we abstain all actions by
default (in Neos that is).




NodeTreePrivilege

A privilege that prevents matching document nodes to appear in the Navigate Component. It also prevents editing of
those nodes in case the editor navigates to a node without using the Navigate Component (e.g. by entering the URL
directly).

Usage example:

privilegeTargets:
  'Neos\Neos\Security\Authorization\Privilege\NodeTreePrivilege':
    'Some.Package:SomeIdentifier':
      matcher: 'isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")'





This defines a privilege that intercepts access to the specified node (and all of its child nodes) in the node tree.



EditNodePropertyPrivilege

A privilege that targets editing of node properties.

Usage example:

privilegeTargets:
  'Neos\ContentRepository\Security\Authorization\Privilege\Node\EditNodePropertyPrivilege':
    'Some.Package:SomeIdentifier':
      matcher: >-
        isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")
        && nodePropertyIsIn(["hidden", "name"])





This defines a privilege target that intercepts editing the “hidden” and “name” properties of the specified node
(and all of its child nodes).



ReadNodePropertyPrivilege

A privilege that targets reading of node properties.

Usage example:

'Neos\ContentRepository\Security\Authorization\Privilege\Node\ReadNodePropertyPrivilege':
  'Some.Package:SomeIdentifier':
    matcher: 'isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")'





This defines a privilege target that intercepts reading any property of the specified node (and all of its child-nodes).



RemoveNodePrivilege

A privilege that targets deletion of nodes.

Usage example:

privilegeTargets:
 'Neos\ContentRepository\Security\Authorization\Privilege\Node\RemoveNodePrivilege':
   'Some.Package:SomeIdentifier':
     matcher: 'isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")'





This defines a privilege target that intercepts deletion of the specified node (and all of its child-nodes).



CreateNodePrivilege

A privilege that targets creation of nodes.

Usage example:

privilegeTargets:
  'Neos\ContentRepository\Security\Authorization\Privilege\Node\CreateNodePrivilege':
    'Some.Package:SomeIdentifier':
      matcher: >-
        isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")
        && createdNodeIsOfType("Neos.NodeTypes:Text")





This defines a privilege target that intercepts creation of Text nodes in the specified node (and all of its child
nodes).



EditNodePrivilege

A privilege that targets editing of nodes.

Usage example:

privilegeTargets:
 'Neos\ContentRepository\Security\Authorization\Privilege\Node\EditNodePrivilege':
    'Some.Package:SomeIdentifier':
      matcher: >-
        isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")
        && nodeIsOfType("Neos.NodeTypes:Text")





This defines a privilege target that intercepts editing of Text nodes on the specified node (and all of its child
nodes).



ReadNodePrivilege

The ReadNodePrivilege is used to limit access to certain parts of the node tree:

With this configuration, the node with the identifier c1e528e2-b495-0622-e71c-f826614ef287 and all its child nodes will
be hidden from the system unless explicitly granted to the current user (by assigning SomeRole):

privilegeTargets:
  'Neos\ContentRepository\Security\Authorization\Privilege\Node\ReadNodePrivilege':
    'Some.Package:MembersArea':
      matcher: 'isDescendantNodeOf("c1e528e2-b495-0622-e71c-f826614ef287")'

roles:
  'Some.Package:SomeRole':
    privileges:
      -
        privilegeTarget: 'Some.Package:MembersArea'
        permission: GRANT








Privilege Matchers

The privileges need to be applied to certain nodes to be useful. For this, matchers are used in the policy, written
using Eel. Depending on the privilege, various methods to address nodes are available.


Note

Global objects in matcher expressions

Since the matchers are written using Eel, anything in the Eel context during evaluation is usable for matching.
This is done by using the context keyword, followed by dotted path to the value needed. E.g. to access the
personal workspace name of the currently logged in user, this can be used:

privilegeTargets:
  'Neos\ContentRepository\Security\Authorization\Privilege\Node\ReadNodePrivilege':
    'Neos.ContentRepository:Workspace':
      matcher: 'isInWorkspace("context.userInformation.personalWorkspaceName“))’





These global objects available under context (by default the current SsecurityContext imported as
securityContext and the UserService imported as userInformation) are registered in the Settings.yaml
file in section aop.globalObjects. That way you can add your own as well.




Position in the Node Tree

This allows to match on the position in the node tree. A node matches if it is below the given node or the node itself.


	Signature:
	isDescendantNodeOf(node-path-or-identifier)



	Parameters:
	
	node-path-or-identifier (string) The nodes’ path or identifier






	Applicable to:
	matchers of all node privileges





This allows to match on the position in the node tree. A node matches if it is above the given node.


	Signature:
	isAncestorNodeOf(node-path-or-identifier)



	Parameters:
	
	node-path-or-identifier (string) The nodes’ path or identifier






	Applicable to:
	matchers of all node privileges





This allows to match on the position in the node tree. A node matches if it is above the given node or anywhere below
the node itself.


	Signature:
	isAncestorOrDescendantNodeOf(node-path-or-identifier)



	Parameters:
	
	node-path-or-identifier (string) The nodes’ path or identifier






	Applicable to:
	matchers of all node privileges






Note

The node path is not reliable because it changes if a node is moved. And the path is not “human-readable” in Neos
because new nodes get a unique random name. Therefore it is best practice not to rely on the path but on the identifier
of a node.





NodeType

Matching against the type of a node comes in two flavors. Combining both allows to limit node creation in a
sophisticated way.

The first one allows to match on the type a node has:


	Signature:
	nodeIsOfType(nodetype-name)



	Parameters:
	
	node-path-or-identifier (string|array) an array of supported node type identifiers or a single node type identifier






	Applicable to:
	matchers of all node privileges





Inheritance is taken into account, so that specific types also match if a supertype is given to this matcher.

The second one allows to match on the type of a node that is being created:


	Signature:
	createdNodeIsOfType(nodetype-identifier)



	Parameters:
	
	nodetype-identifier (string|array) an array of supported node type identifiers or a single node type identifier






	Applicable to:
	matchers of the CreateNodePrivilege





This acts on the type of the node that is about to be created.



Workspace Name

This allows to match against the name of a workspace a node is in.


	Signature:
	isInWorkspace(workspace-names)



	Parameters:
	
	workspace-names (string|array) an array of workspace names or a single workspace name






	Applicable to:
	matchers of all node privileges







Property Name

This allows to match against the name of a property that is going to be affected.


	Signature:
	nodePropertyIsIn(property-names)



	Parameters:
	
	property-names (string|array) an array of property names or a single property name






	Applicable to:
	matchers of he ReadNodePropertyPrivilege and the EditNodePropertyPrivilege







Content Dimension

This allows to restrict editing based on the content dimension a node is in. Matches if the currently-selected preset
in the passed  dimension name is one of presets.


	Signature:
	isInDimensionPreset(name, value)



	Parameters:
	
	name (string) The content dimension name


	presets (string|array) The preset of the content dimension






	Applicable to:
	matchers of all node privileges





The following example first blocks editing of nodes completely (by defining a privilege target that always matches) and
then defines a privilege target matching all nodes having a value of “de” for the “language” content dimension. That
target is then granted for the “Editor” role.

privilegeTargets:
  'Neos\ContentRepository\Security\Authorization\Privilege\Node\EditNodePrivilege':
    # This privilegeTarget must be defined, so that we switch to an "allowlist" approach
    'Neos.Demo:EditAllNodes':
      matcher: 'TRUE'

    'Neos.Demo:EditGerman':
      matcher: 'isInDimensionPreset("language", "de")'

roles:
  'Neos.Neos:Editor':
    privileges:
      -
        privilegeTarget: 'Neos.Demo:EditGerman'
        permission: GRANT








Asset Privileges

Asset privileges define what can be restricted in relation to accessing Assets (images, documents, videos, …),
AssetCollections and Tags.


Note

Like Node Privileges this is an excludelist by default, so the privilege won’t match if one of the conditions don’t match.




ReadAssetPrivilege

A privilege that prevents reading assets depending on the following Privilege Matchers:


Asset Title

This allows to match on the title of the asset.


	Signature:
	titleStartsWith(title-prefix)



	Parameters:
	
	title-prefix (string) Beginning of or complete title of the asset to match






	Signature:
	titleEndWith(title-suffix)



	Parameters:
	
	title-suffix (string) End of title of the asset to match






	Signature:
	titleContains(title-prefix)



	Parameters:
	
	title-prefix (string) Part of title of the asset to match










Asset Media Type

This allows to match on the media type of the asset.


	Signature:
	hasMediaType(media-type)



	Parameters:
	
	media-type (string) Media Type of the asset to match (for example “application/json”)










Tag

This allows to match on a label the asset is tagged with.


	Signature:
	isTagged(tag-label-or-id)



	Parameters:
	
	tag-label-or-id (string) Label of the Tag to match (for example “confidential”) or its technical identifier (UUID)










Asset Collection

This allows to match on an Asset Collection the asset belongs to.


	Signature:
	isInCollection(collection-title-or-id)



	Parameters:
	
	collection-title-or-id (string) Title of the Asset Collection to match (for example “confidential-documents”) or its technical identifier (UUID)








Alternatively, the isWithoutCollection filter to match on assets that don’t belong to any Asset Collection.


	Signature:
	isWithoutCollection()





Usage example:

privilegeTargets:
  'Neos\Media\Security\Authorization\Privilege\ReadAssetPrivilege':
    'Some.Package:ReadAllPDFs':
      matcher: 'hasMediaType("application/pdf")'

    'Some.Package:ReadConfidentialPdfs':
      matcher: 'hasMediaType("application/pdf") && isTagged("confidential")'








ReadAssetCollectionPrivilege

A privilege that prevents reading Asset Collections depending on the following Privilege Matchers:


Collection Title

This allows to match on the title of the Asset Collection.


	Signature:
	isTitled(collection-title)



	Parameters:
	
	collection-title (string) Complete title of the Asset Collection to match








Usage example:

privilegeTargets:
  'Neos\Media\Security\Authorization\Privilege\ReadAssetCollectionPrivilege':
    'Some.Package:ReadSpecialAssetCollection':
      matcher: 'isTitled("some-asset-collection")'







Collection Identifier

This allows to match on the technical identifier (UUID) of the Asset Collection.


	Signature:
	hasId(collection-id)



	Parameters:
	
	collection-id (string) Technical identifier (UUID) of the Asset Collection to match








Usage example:

privilegeTargets:
  'Neos\Media\Security\Authorization\Privilege\ReadAssetCollectionPrivilege':
    'Some.Package:ReadSpecialAssetCollection':
      matcher: 'hasId("9b13346d-960a-45e6-8e93-c2929373bc90")'








ReadTagPrivilege

A privilege that prevents reading tags depending on the following Privilege Matchers:


Tag Label

This allows to match on the label of the tag.


	Signature:
	isLabeled(tag-label)



	Parameters:
	
	tag-label (string) Complete label of the tag to match








Usage example:

privilegeTargets:
  'Neos\Media\Security\Authorization\Privilege\ReadTagPrivilege':
    'Some.Package:ReadConfidentialTags':
      matcher: 'isLabeled("confidential")'







Tag Identifier

This allows to match on the technical identifier (UUID) of the Tag.


	Signature:
	hasId(tag-id)



	Parameters:
	
	tag-id (string) Technical identifier (UUID) of the Tag to match








Usage example:

privilegeTargets:
  'Neos\Media\Security\Authorization\Privilege\ReadTagPrivilege':
    'Some.Package:ReadConfidentialTags':
      matcher: 'hasId("961c3c03-da50-4a77-a5b4-11d2bbab7197")'






Note

You can find out more about the Asset Privileges in the
Neos Media documentation [http://neos-media.readthedocs.io/en/stable/]







Restricting Access to Backend Modules


Restrict Module Access

The available modules are defined in the settings of Neos. Here is a shortened example containing only the relevant
parts:


Neos:
 Neos:
   modules:
    'management':
      controller: 'Some\Management\Controller'
      submodules:
        'workspaces':
          controller: 'Some\Workspaces\Controller'








Along with those settings privilege targets should be defined. Those are used to hide the module links from the UI and
to protect access to the modules if no access is granted.

The targets are defined as usual in the security policy, using ModulePrivilege. Here is a shortened example:

privilegeTargets:

  'Neos\Neos\Security\Authorization\Privilege\ModulePrivilege':

    'Neos.Neos:Backend.Module.Management':
      matcher: 'management'

    'Neos.Neos:Backend.Module.Management.Workspaces':
      matcher: 'management/workspaces'





Now those privilege targets can be used to grant/deny access for specific roles.
Internally those module privileges create a MethodPrivilege covering all public actions of the configured module
controller. Additionally more fine-grained permissions can be configured on top.

Note: If the path of a module changes the corresponding privilege target needs to be adjusted accordingly.

See chapter Custom Backend Modules for more examples.



Disable Modules

To completely disable modules available in the Neos UI a setting can be used:

Neos:
  Neos:
    modules:
      'management':
        submodules:
          'history':
            enabled: FALSE








Limitations

Except for the assignment of roles to users there is no UI for editing security related configuration. Any needed
changes have to be made to the policies in Policy.yaml.



Further Reading

The privileges specific to Neos are built based on top of the Flow security features. Read the corresponding
documentation.





            

          

      

      

    

  

    
      
          
            
  
Extending Neos



	Creating a plugin
	Creating a Flow package

	Converting a Flow Package Into a Neos Plugin

	Linking to a Plugin

	Configuring a plugin to show specific actions on different pages





	Custom Backend Modules
	Controller Class

	Fluid Template

	Configuration

	Access Rights





	Custom Edit/Preview-Modes
	Add a custom Preview Mode

	Add a custom Editing Mode





	Custom Editors

	Custom Eel Helper

	Custom FlowQuery Operations
	Create FlowQuery Operation

	Create Final FlowQuery Operations

	Further Reading





	Custom Fusion Objects
	Create a Fusion Object Class





	Custom Validators

	Custom ViewHelpers
	Create A ViewHelper Class

	Declare View Helper Arguments

	Context and Children

	Further reading





	Customizing the Inspector
	Add a simple checkbox element

	Add a simple selectbox element

	Select multiple options in a selectbox element

	Use custom DataSources for a selectbox element

	Remove fields from an existing Node Type

	Remove a selectbox option from an existing Node Type





	Data sources

	Interaction with the Neos backend
	JavaScript events





	Rendering special formats (CSV, JSON, XML, …)
	Routing

	Fusion





	Neos User Interface Extensibility API
	Inspector-specific Registries

	Validators

	Frontend Configuration

	Inline Editors

	CKEditor5-specific registries

	CKEditor4-specific registries

	Data Loaders

	Containers

	Server Feedback Handlers

	Reducers

	Sagas





	Writing Tests For Neos
	Behat tests for Neos












            

          

      

      

    

  

    
      
          
            
  
Creating a plugin

Any Flow package can be used as a plugin with a little effort. This section
will guide you through a simple example. First, we will create a really basic
Flow package. Second, we’ll expose this Flow package as a Neos plugin.


Creating a Flow package

First we will create a very simple Flow package to use for integrating it as a plugin.


Note

When developing sites the need for simple plugins will often arise. And those small
plugins will be very site-specific most of the time. In these cases it makes sense
to create the needed code inside the site package, instead of in a separate package.

For the sake of simplicity we will create a separate package now.



If you do not have the Kickstart package installed, you must do this now:

cd /your/htdocs/Neos
php /path/to/composer.phar require neos/kickstarter \*





Now create a package with a model, so we have something to show in the plugin:

./flow kickstart:package Sarkosh.CdCollection
./flow kickstart:model Sarkosh.CdCollection Album title:string year:integer description:string rating:integer
./flow kickstart:repository Sarkosh.CdCollection Album





Then generate a migration to create the needed DB schema:

./flow doctrine:migrationgenerate





The command will ask in which directory the migration should be stored. Select the package Sarkosh.CdCollection.
Afterwards the migration can be applied:

./flow doctrine:migrate





You should now have a package with a default controller and templates created.


Configure Access Rights

To be able to call the actions of the controller you have to configure a matching set of rights.
Create a Policy.yaml file in Packages/Application/Sarkosh.CdCollection/Configuration/Policy.yaml containing:

privilegeTargets:
  Neos\Flow\Security\Authorization\Privilege\Method\MethodPrivilege:
    'Sarkosh.CdCollection:StandardControllerActions':
      matcher: 'method(Sarkosh\CdCollection\Controller\StandardController->(index)Action())'

roles:
  'Neos.Flow:Everybody':
    privileges:
      -
        privilegeTarget: 'Sarkosh.CdCollection:StandardControllerActions'
        permission: GRANT






Note

If you add new actions later on you will have to extend the matcher rule to look like (index|other|third).





Configure Routes

To actually call the plugin via HTTP request you have to include the Flow default-routes
into the Configuration/Routes.yaml of your whole setup (before the Neos routes):

##
# Flow subroutes
-
  name: 'Flow'
  uriPattern: 'flow/<FlowSubroutes>'
  defaults:
    '@format': 'html'
  subRoutes:
    FlowSubroutes:
      package: Neos.Flow





The frontend of your plugin can now be called via http://neos.demo/flow/sarkosh.cdcollection.
We specifically use the flow prefix here to ensure that the routes of Flow do not interfere with Neos.


Note

The routing configuration will become obsolete as soon as you use the package as as Neos-Plugin as described in the following steps.





Add data

Now you can add some entries for your CD collection in the database:

INSERT INTO sarkosh_cdcollection_domain_model_album (
  persistence_object_identifier, title, year, description, rating
) VALUES (
  uuid(), 'Jesus Christ Superstar', '1970',
  'Jesus Christ Superstar is a rock opera by Andrew Lloyd Webber, with lyrics by Tim Rice.',
  '5'
);





(or using your database tool of choice) and adjust the templates so a list of
CDs is shown. When you are done with that, you can make a plugin out of that.

As an optional step you can move the generated package from its default location
Packages/Application/ to Packages/Plugins. This is purely a convention and at
times it might be hard to tell an “application package” from a “plugin”, but it helps
to keep things organized. Technically it has no relevance.

mkdir Packages/Plugins
mv Packages/Application/Sarkosh.CdCollection Packages/Plugins/Sarkosh.CdCollection





If you do this, it is important to rescan the available packages:

./flow flow:package:rescan





After this, you can use the Plugin with the same url http://neos.demo/flow/sarkosh.cdcollection




Converting a Flow Package Into a Neos Plugin

To activate a Flow package as a Neos plugin, you only need to provide two
configuration blocks.


Add a NodeType

First, you need to add a new node type for the plugin,
such that the user can choose the plugin from the list of content elements:

Add the following to Configuration/NodeTypes.yaml of your package:

'Sarkosh.CdCollection:Plugin':
  superTypes:
    'Neos.Neos:Plugin': TRUE
  ui:
    label: 'CD Collection'
    group: 'plugins'





This will add a new entry labeled “CD Collection” to the “Plugins” group in the content
element selector (existing groups are General, Structure and Plugins).



Configure Fusion

Second, the rendering of the plugin needs to be specified using Fusion, so the following
Fusion needs to be added to your package.

Resources/Private/Fusion/Plugin.fusion:

prototype(Sarkosh.CdCollection:Plugin) < prototype(Neos.Neos:Plugin)
prototype(Sarkosh.CdCollection:Plugin) {
      package = 'Sarkosh.CdCollection'
      controller = 'Standard'
      action = 'index'
}





Finally tweak your site package’s Root.fusion and include the newly created Fusion file:

include: Plugin.fusion





Now log in to your Neos backend (you must remove the Flow routes again), and you
will be able to add your plugin just like any other content element.

To automatically include the Root.fusion in Neos you have to add the following lines to the Configuration/Settings.yaml of your Package:

Neos:
  Neos:
    fusion:
      autoInclude:
        'Sarkosh.CdCollection': TRUE







Use Fusion to configure the Plugin

To hand over configuration to your plugin you can add arbitrary Fusion values to Resources/Private/Fusion/Plugin.fusion:

prototype(Sarkosh.CdCollection:Plugin) {
      ...
      myNodeName = ${q(node).property('name')}
}





In the controller of your plugin you can access the value from Fusion like this.

$myNodeName = $this->request->getInternalArgument('__myNodeName');








Linking to a Plugin

Inside of your Plugin you can use the usual f:link.action and f:uri.action ViewHelpers from fluid to link to other ControllerActions:

<f:link.action package="sarkosh.cdcollection" controller="standard" action="show" arguments="{collection: collection}" />





If you want to create links to your plugin from outside the plugin context you have to use one of the following methods.

To create a link to a ControllerAction of your Plugin in Fusion you can use the following code:

link = Neos.Neos:NodeUri {
      # you have to identify the document that contains your plugin somehow
      node = ${q(site).find('[instanceof Sarkosh.CdCollection:Plugin]').first().closest('[instanceof Neos.Neos:Document]').get(0)}
      absolute = true
      additionalParams = ${{'--sarkosh_cdcollection-plugin': {'@package': 'sarkosh.cdcollection', '@controller':'standard', '@action': 'show', 'collection': collection}}}
}





The same code in a fluid template looks like this:

{namespace neos=Neos\Neos\ViewHelpers}
<neos:uri.node node="{targetNode}" arguments="{'--sarkosh_cdcollection-plugin': {'@package': 'sarkosh.cdcollection', '@controller':'standard', '@action': 'show', 'collection': collection}}" />







Configuring a plugin to show specific actions on different pages

With the simple plugin you created above, all of the actions of that plugin are
executed on one specific page node. But sometimes you might want to break that
up onto different pages. For this use case there is a node type called
Plugin View. A plugin view is basically a view of a specific set of actions
configured in your NodeTypes.yaml.

The steps to have one plugin which is rendered at multiple pages of your website
is as follows:


	Create your plugin as usual; e.g. like in the above example.


	Insert your plugin at a specific page, just as you would do normally.
This is later called the Master View of your plugin.


	You need to define the parts of your plugin you lateron want to have separated in a
different page. This is done in the options.pluginViews setting inside
NodeTypes.yaml (see below).


	Then, in Neos, insert a Plugin View instance on the other page where you want
a part of the plugin to be rendered. In the inspector, you can then select
the Plugin instance inside the Master View option, and afterwards choose
the specific Plugin View you want to use.




You can update your Configuration/NodeTypes.yaml like this to configure which actions
will be available for the Plugin View:

'Sarkosh.CdCollection:Plugin':
  superTypes:
    'Neos.Neos:Plugin': TRUE
  ui:
    label: 'CD Collection'
    group: 'plugins'
  options:
    pluginViews:
      'CollectionShow':
        label: 'Show Collection'
        controllerActions:
          'Sarkosh\CdCollection\Controller\CollectionController': ['show']
      'CollectionOverview':
        label: 'Collection Overview'
        controllerActions:
          'Sarkosh\CdCollection\Controller\CollectionController': ['overview']





When you insert a plugin view for a node the links in both of the nodes get rewritten
automatically to link to the view or plugin, depending on the action the link points
to. Insert a “Plugin View” node in your page, and then, in the inspector, configure
the “Master View” (the master plugin instance) and the “Plugin View”.


Fixing Plugin Output

If you reuse an existing flow-package a plugin in Neos and check the HTML of a page that includes your plugin,
you will clearly see that things are not as they should be. The plugin is included using its complete HTML,
including head and body tags. This of course results in an invalid document.

To improve that you can add a Configration/Views.yaml file to your Package that can be used to alter the used
template and views based on certain conditions. The documentation for that can be found in the Flow Framework Documentation.



Optimizing the URLs

By default Neos will create pretty verbose urls for your plugin. To avoid that you have to configure a proper routing for your Package.



Plugin Request and Response

The plugin controller action is called as a child request within the parent request. Alike that, the response is also a
child response of the parent and will be handed up to the parent.


Warning

The documentation is not covering all aspects yet. Please have a Look at the How To’s Section as well.








            

          

      

      

    

  

    
      
          
            
  
Custom Backend Modules

If you want to integrate custom backend functionality you can do so by adding a submodule to the
administration or management section of the main menu. Alternatively a new top level section can
be created either by adding a overview module like the the existing ones or a normal module.

Some possible use cases would be the integrating of external web services, triggering of import or export
actions or creating of editing interfaces for domain models from other packages.


Warning

This is not public API yet due to it’s unpolished state and is subject to change in the future.




Controller Class

Implementing a Backend Module starts by creating an action controller class derived from
\Neos\Flow\Mvc\Controller\ActionController

Classes/Vendor/Site/Domain/Controller/BackendController:

namespace Vendor\Site\Controller;

use Neos\Flow\Annotations as Flow;

class BackendController extends \Neos\Flow\Mvc\Controller\ActionController {
        public function indexAction() {
                $this->view->assign('exampleValue', 'Hello World');
        }
}







Fluid Template

The user interface of the module is defined in a fluid template in the same way the frontend of a website is defined.

Resources/Private/Templates/Backend/Index.html:

{namespace neos=Neos\Neos\ViewHelpers}
<div class="neos-content neos-container-fluid">
        <h1></h1>
        <p>{exampleValue}</p>
</div>






Note

Neos comes with some ViewHelpers for easing backend tasks. Have a look at the neos:backend ViewHelpers
from the Neos ViewHelper Reference





Configuration

To show up in the management or the administration section the module is defined in the package settings.

Configuration/Settings.yaml:

Neos:
  Neos:
    modules:
      'management':
        submodules:
          'exampleModule':
            label: 'Example Module'
            controller: 'Vendor\Site\Controller\BackendController'
            description: 'An Example for implementing Backend Modules'
            icon: 'icon-star'







Access Rights

To use the module the editors have to be granted access to the controller actions of the module.

Configuration/Policy.yaml:

privilegeTargets:

  'Neos\Neos\Security\Authorization\Privilege\ModulePrivilege':

    'Vendor.Site:BackendModule':
      matcher: 'management/exampleModule'

roles:

  'Neos.Neos:Editor':
    privileges:
      -
        privilegeTarget: 'Vendor.Site:BackendModule'
        permission: GRANT






Tip

Neos contains several backend modules built with the same API which can be used for inspiration.







            

          

      

      

    

  

    
      
          
            
  
Custom Edit/Preview-Modes

From the beginning the Neos backend was designed to be extensible with different rendering modes users can switch
depending on their use-case. In-place editing and the raw-content-editing-mode are only a small glimpse of what is possible.

It is encouraged to add custom edit- or preview modes. Use-cases could be the preview of the content in search engines or
on mobile devices.


Add a custom Preview Mode

Edit/preview modes are added to the Neos-Backend via Settings.yaml.

Neos:
  Neos:
    userInterface:
      editPreviewModes:
        print:
          title: 'Print'
          # show as edit mode
          isEditingMode: FALSE
          # show as preview mode
          isPreviewMode: TRUE
          # render path
          fusionRenderingPath: 'print'
          # show after the existing modes
          position: 200
          # sets the width of the iframe (React UI only)
          width: 800
          # sets the height of the iframe (React UI only)
          height: 600
          # custom background color for content canvas
          backgroundColor: '#ffffff'





The settings isEditingMode and isPreviewMode are controlling whether the mode will show up in the section “Edit”
or “Preview” of the Neos-Backend. The major difference between both sections is that inside “Preview” section the inline
editing options are not activated.

The actual rendering of the edit/preview mode is configured in Fusion:

print < page
print {
        head {
                stylesheets.printCss = Neos.Fusion:Tag {
                        @position = 'end 10'
                        tagName = 'link'
                        attributes {
                                media = 'all'
                                rel = 'stylesheet'
                                href = Neos.Fusion:ResourceUri {
                                        path = 'resource://Neos.Demo/Public/Styles/Print.css'
                                }
                        }
                }
        }
}





In this example the default rendering as defined in the path page is used and altered to include the Print.css for
all media.



Add a custom Editing Mode

To add an editing mode instead of a preview mode the configuration in Settings.yaml has to be changed.


Neos:
  Neos:
    userInterface:
      editPreviewModes:
        print:
          isEditingMode: TRUE
          isPreviewMode: FALSE









Warning

It is currently possible to configure an edit/preview-mode for editing and preview at the same time. We are
still unsure whether this is a bug or a feature – so this behavior may change in future releases.







            

          

      

      

    

  

    
      
          
            
  
Custom Editors


Note

For documentation on how to create inspector editors for the legacy Ember version of
the user interface, refer to the older versions of the documentation.



Every dataType has its default editor set, which can have options applied like:

Neos:
  Neos:
    userInterface:
      inspector:
        dataTypes:
          'string':
            editor: 'Neos.Neos/Inspector/Editors/TextFieldEditor'
            editorOptions:
              placeholder: 'This is a placeholder'





On a property level this can be overridden like:

Neos:
  Neos:
    userInterface:
      inspector:
        properties:
          'string':
            editor: 'My.Package/Inspector/Editors/TextFieldEditor'
            editorOptions:
              placeholder: 'This is my custom placeholder'





In order to implement a custom inspector editor one has to use the UI
extensibility layer exposed through the @neos-project/neos-ui-extensibility package.
See Neos User Interface Extensibility API for the detailed information on the topic.

Let’s create a simple colour picker editor. For this, create a folder structure
in your package to lok like this:

AcmeCom.Neos.Colorpicker
├── Configuration
│   └── Settings.yaml
├── Resources
│   ├── Private
│   │   └── Scripts
│   │       └── ColorPickerEditor
│   │           ├── package.json
│   │           ├── src
│   │           │   ├── ColorPickerEditor.js
│   │           │   ├── index.js
│   │           │   └── manifest.js
│   └── Public
└── composer.json





You need to have a Composer manifest (composer.json) in place, otherwise the
package will not be picked up by Flow and loading the editor will fail:

{
  "name": "acmecom/neos-colorpicker",
  "type": "neos-package",
  "require": {
      "neos/neos-ui": "^1.3"
  },
  "extra": {
      "neos": {
          "package-key": "AcmeCom.Neos.Colorpicker"
      }
  }
}





Use the following package.json file:

{
  "scripts": {
    "build": "neos-react-scripts build",
    "watch": "neos-react-scripts watch"
  },
  "neos": {
    "buildTargetDirectory": "../../../Public/ColorPickerEditor"
  },
  "devDependencies": {
    "@neos-project/neos-ui-extensibility": "^1.3"
  },
  "dependencies": {
    "react-color": "^2.11.1"
  }
}





This will put the compiled Plugin.js asset into the Public/ColorPickerEditor
folder. This file has to be loaded into the host UI to be useable.
Put the following configuration into Settings.yaml to do it:

Neos:
  Neos:
    Ui:
      resources:
        javascript:
          'AcmeCom.Neos.ColorPicker:ColorPickerEditor':
            resource: resource://AcmeCom.Neos.ColorPicker/Public/ColorPickerEditor/Plugin.js





The key below javascript has no significance, but it is best practice to
use the full package key and editor name, to avoid name clashes.

Now it is time to write the actual source code of the editor. From index.js we just
require the manifest.js file:

require('./manifest');





In manifest.js we use the manifest API to get access to the globalRegistry,
then we get the editors registry out of it and register our custom editor
into it:

import manifest from '@neos-project/neos-ui-extensibility';
import ColorPickerEditor from './ColorPickerEditor';

manifest('AcmeCom.Neos.ColorPicker:ColorPickerEditor', {}, globalRegistry => {
  const editorsRegistry = globalRegistry.get('inspector').get('editors');
  editorsRegistry.set('AcmeCom.Neos.ColorPicker/ColorPickerEditor', {
    component: ColorPickerEditor
  });
});





And finally the editor component itself in ColorPickerEditor.js:

import React, {PureComponent} from 'react';
import PropTypes from 'prop-types';
import {SketchPicker} from 'react-color';

export default class ColorPickerEditor extends PureComponent {
  static propTypes = {
    value: PropTypes.string,
    commit: PropTypes.func.isRequired,
  };
  handleChangeColor = newColor => {
    this.props.commit(newColor.hex);
  };
  render() {
    return <SketchPicker color={this.props.value} onChange={this.handleChangeColor}/>;
  }
}





Each editor component gets a few API props passed, including the current value
of the editor and the commit callback which the editor should use to commit
the new value.

That is it! Now it is time to build and use our brand new editor!
To build the editor you need to run the following commands:

cd Resources/Private/Scripts/ColorPickerEditor
yarn
yarn build # or yarn watch





The first call to yarn will install the needed dependencies, the second call
to yarn build actually builds the editor. During development you can use
yarn watch to run the build process whenever the code changes.

Then include the editor for some property in a node type:

'Neos.NodeTypes:TextMixin':
  properties:
    color:
      ui:
        label: 'Color picker'
        inspector:
          editor: 'AcmeCom.Neos.ColorPicker/ColorPickerEditor'






Note

You should exclude Resources/Private/Scripts/YamlEditor/node_modules
from version control…






            

          

      

      

    

  

    
      
          
            
  
Custom Eel Helper

Eel Helpers provide methods that can be used inside of Eel expressions. That is mostly used to extend the capabilities
for data-aquisition and processing of Fusion.

The first step is to create the EelHelper class. Every Helper has to implement the interface
Neos\Eel\ProtectedContextAwareInterface.

namespace Vendor\Site\Eel\Helper;

use Neos\Flow\Annotations as Flow;
use Neos\Eel\ProtectedContextAwareInterface;

class ExampleHelper implements ProtectedContextAwareInterface {

        /**
         * Wrap the incoming string in curly brackets
         *
         * @param $text string
         * @return string
         */
        public function wrapInCurlyBrackets($text) {
                return '{' . $text . '}';
        }

        /**
         * All methods are considered safe, i.e. can be executed from within Eel
         *
         * @param string $methodName
         * @return boolean
         */
        public function allowsCallOfMethod($methodName) {
                return TRUE;
        }

}





Afterwards the namespace of the Helper has to be registered for usage in Fusion in the Settings.yaml of the package:

Neos:
  Fusion:
    defaultContext:
      'Vendor.Example': 'Vendor\Site\Eel\Helper\ExampleHelper'





In Fusion you can call the methods of the helper inside of EelExpressions:

exampleEelValue = ${Vendor.Example.wrapInCurlyBrackets('Hello World')}








            

          

      

      

    

  

    
      
          
            
  
Custom FlowQuery Operations

The FlowQuery EelHelper provides you with methods to traverse the ContentRepository. Implementing custom operations
allows the creation of filters, sorting algorithms and much more.


Warning

This has not been declared a public api yet and still might change a bit in future release. Nevertheless it
is an important functionality and this or a similar mechanism will still be available in the future.




Create FlowQuery Operation

Implementing a custom operation is done by extending the Neos\Eel\FlowQuery\Operations\AbstractOperation class.
The Operation is implemented in the evaluate method of that class.

To identify the operation lateron in Fusion the static class variable $shortName has to be set.

If you pass arguments to the FlowQuery Operation they end up in the numerical array $arguments that is handed over
to the evaluate method.

namespace Vendor\Site\FlowQuery\Operation;

use Neos\Eel\FlowQuery\FlowQuery;
use Neos\Eel\FlowQuery\Operations\AbstractOperation;

class RandomElementOperation extends AbstractOperation {

        /**
         * {@inheritdoc}
         *
         * @var string
         */
        static protected $shortName = 'randomElement';

        /**
         * {@inheritdoc}
         *
         * @param FlowQuery $flowQuery the FlowQuery object
         * @param array $arguments the arguments for this operation
         * @return void
         */
        public function evaluate(FlowQuery $flowQuery, array $arguments) {
                $context = $flowQuery->getContext();
                $randomKey = array_rand($context);
                $result = array($context[$randomKey]);
                $flowQuery->setContext($result);
        }
}





In Fusion you can use this operation to find a random element of the main ContentCollection of the Site-Node:

randomStartpageContent = ${q(site).children('main').children().randomElement()}






Note

For overriding existing operations another operation with the same shortName but a higher priority
can be implemented.





Create Final FlowQuery Operations

If a FlowQuery operation does return a value instead of modifying the FlowQuery Context it has to be declared $final.

namespace Vendor\Site\FlowQuery\Operation;

use Neos\Eel\FlowQuery\FlowQuery;
use Neos\Eel\FlowQuery\Operations\AbstractOperation;

class DebugOperation extends AbstractOperation {

        /**
         * If TRUE, the operation is final, i.e. directly executed.
         *
         * @var boolean
         * @api
         */
        static protected $final = TRUE;

        /**
         * {@inheritdoc}
         *
         * @param FlowQuery $flowQuery the FlowQuery object
         * @param array $arguments the arguments for this operation
         * @return void
         */
        public function evaluate(FlowQuery $flowQuery, array $arguments) {
                return \Neos\Flow\var_dump($flowQuery->getContext(), NULL, TRUE);
        }
}







Further Reading


	For checking that the operation can actually work on the current context a canEvaluate method can be implemented.


	
	You sometimes might want to use the Fizzle Filter Engine to use jQuery like selectors in the arguments of your
	operation. Therefore you can apply a filter operation that is applied to the context as follows:
$flowQuery->pushOperation('filter', $arguments);.













            

          

      

      

    

  

    
      
          
            
  
Custom Fusion Objects

By adding custom Fusion Objects it is possible to extend the capabilities of Fusion in a powerful and configurable
way. If you need to write a way to execute PHP code during rendering, for simple methods, Eel helpers should be used.
For more complex functionality where custom classes with more configuration options are needed, Fusion objects should
rather be created.

As an example, you might want to create your own Fusion objects if you are enriching the data that gets passed to the
template with external information from an API or if you have to convert some entities from identifier to domain objects.

In the example below, a Gravatar image tag is generated.


Create a Fusion Object Class

To create a custom Fusion object the Neos\Fusion\FusionObjects\AbstractFusionObject class is
extended. The only method that needs to be implemented is evaluate(). To access values from Fusion the method
$this->fusionValue('__fusion_value_key__'); is used:

namespace Vendor\Site\Fusion;

use Neos\Flow\Annotations as Flow;
use Neos\Fusion\FusionObjects\AbstractFusionObject;

class GravatarImplementation extends AbstractFusionObject {

        /**
         * @return string
         */
        public function evaluate() {
                $emailAddress = $this->fusionValue('emailAddress');
                $size = $this->fusionValue('size') ?: 80;
                $gravatarImageSource = 'http://www.gravatar.com/avatar/' . md5(strtolower(trim($emailAddress))) . '?s=' . $size . '&d=mm&r=g';
                return '<img src="' . $gravatarImageSource . '" alt="" />';
        }

}





To use this implementation in Fusion, you have to define a Fusion-prototype first:

prototype(Vendor.Site:Gravatar) {
        @class = 'Vendor\\Site\\Fusion\\GravatarImplementation'
        emailAddress = ''
        size = 80
}





Afterwards the prototype can be used in Fusion:

garavatarImage = Vendor.Site:Gravatar
garavatarImage {
        emailAddress = 'hello@neos.io'
        size = 120
}









            

          

      

      

    

  

    
      
          
            
  
Custom Validators


Note

For documentation on how to create validators for the legacy Ember version of the user interface, refer to the older versions of the documentation.



The custom validators are created similarly to custom Custom Editors.

Refer to Neos User Interface Extensibility API for detailed information on the topic.




            

          

      

      

    

  

    
      
          
            
  
Custom ViewHelpers

Custom ViewHelpers are the way to extend the Fluid templating engine to the needs of your project.


Note

The full documentation for writing ViewHelpers is included in the Flow documentation [http://flowframework.readthedocs.org/en/stable/] This documentation is a short introduction
of the basic principles.




Create A ViewHelper Class

If you want to create a ViewHelper that you can call from your template (as a
tag), you write a php class which has to inherit from
\Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper (or its subclasses). You need to implement
only one method to write a view helper:

namespace Vendor\Site\ViewHelpers;
class TitleViewHelper extends \Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper {
        public function render() {
                return 'Hello World';
        }
}





Afterwards you have to register the namespace of your ViewHelper in the template before actually using it:

{namespace site=Vendor\Site\ViewHelpers}
<!-- tag syntax -->
<site:title />

<!-- inline syntax -->
{site:title()}






Note

Please look at the Templating documentation for an in-depth explanation of Fluid templating.





Declare View Helper Arguments

There exist two ways to pass arguments to a ViewHelper that can be combined:


	Add arguments to the render-method of the ViewHelper Class:


namespace Vendor\Site\ViewHelpers;

class TitleViewHelper extends \Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper {
        /**
         * Render the title and apply some magic
         *
         * @param string $title the title
         * @param string $value If $key is not specified or could not be resolved, this value is used. If this argument is not set, child nodes will be used to render the default
         * @return string Translated label or source label / ID key
         * @throws \Neos\FluidAdaptor\Core\ViewHelper\Exception
         */
        public function render($title, $flag = FALSE) {

                # apply magic here ...

                return '<h1>' . $title . '</h1>';
        }
}










	Use the registerArgument method of the AbstractViewHelper Class:


This is especially useful if you have to define lots of arguments or create base classes for derived ViewHelpers.

namespace Vendor\Site\ViewHelpers;

class TitleViewHelper extends \Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper {

        /**
         * Initialize arguments
         *
         * @return void
         */
        public function initializeArguments() {
                $this->registerArgument('title', 'string', 'The Title to render');
                $this->registerArgument('flag', 'boolean', 'A ');
        }

        public function render() {
                $title = $this->arguments['title'];
                $flag = $this->arguments['flag'];

                # apply magic here ...

                return '<h1>' . $title . '</h1>';
        }
}














Context and Children

If your ViewHelper contains HTML code and possibly other ViewHelpers as well, the content of the ViewHelper can be rendered and
used for further processing:

public function render($title = NULL) {
        if ($title === NULL) {
                $title = $this->renderChildren();
        }
        return '<h1>' . $title . '</h1>';
}






Note

It is a good practice to support passing of the main context as argument or children for flexibility an ease of use.



Sometimes your ViewHelper has to interact with other ViewHelpers insider that are rendered via $this->renderChildren().
To do that you can modify the context for the fluid rendering of the children. That allows keeping the scope of every
ViewHelper clean and the implementation simple.

public function render() {
        # get the template variable container
        $templateVariableContainer = $renderingContext->getTemplateVariableContainer();
        # add a variable to the context
        $templateVariableContainer->add('salutation', 'Hello World');
        # render the children, the variable salutation is available for the child view helpers
        $result = $this->renderChildren();
        # remove the added variable again from the context
        $templateVariableContainer->remove('salutation');
        return $result;
}






Note

It is a considered a good practice to create a bunch of simple ViewHelpers that interact via Fluid context
instead of creating complex logic inside a single ViewHelper.





Further reading


	TagBased ViewHelpers - For the common case that a ViewHelper renders a single HTML-Tag as a result there
is a special base class. The TagBased ViewHelper contains automatic security measures, so if you use this,
the likelyhood of cross-site-scripting vulnerabilities is greatly reduced.

To find out more about that please lookup AbstractTagBasedViewHelper in the Flow documentation [http://flowframework.readthedocs.org/en/stable/]



	Condition ViewHelpers - To provide ViewHelpers that are doing either this or that there is a base class AbstractConditionViewHelper.
This can be used in cases where you cannot express your condition via <f:if condition="..." >.
To find out more about that please lookup AbstractTagBasedViewHelper in the Flow-Documentation.


	Widget ViewHelpers - If a view helper needs complex controller logic, has to interact with repositories to fetch data,
needs some ajax-interaction or needs a Fluid-Template for rendering, you can create a Fluid Widget.
It is possible to override the Fluid Template of a Widget in another package so this also provides a way to create
extensible ViewHelpers.








            

          

      

      

    

  

    
      
          
            
  
Customizing the Inspector

When you add a new node type, you can customize the rendering of the inspector.
Based on the first node that we created in the “CreatingContentElement” cookbook,
we can add some properties in the inspector.


Add a simple checkbox element

This first example adds a checkbox, in a dedicated inspector section, to define if we need to hide
the Subheadline property.

You can just add the following configuration to your NodesType.yaml, based on the previous cookbook example:

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml)

'Vendor.Site:YourContentElementName':
  ui:
    inspector:
      groups:
        advanced:
          label: 'Advanced'
          icon: 'icon-fort-awesome'
          position: 2
  properties:
    hideSubheadline:
      type: boolean
      defaultValue: TRUE
      ui:
        label: 'Hide Subheadline ?'
        reloadIfChanged: TRUE
        inspector:
          group: 'advanced'





You can add this property to your Fusion:

Fusion (Sites/Vendor.Site/Resources/Private/Fusion/Root.fusion)

prototype(Vendor.Site:YourContentElementName) < prototype(Neos.Neos:Content) {
  templatePath = 'resource://Vendor.Site/Private/Templates/FusionObjects/YourContentElementName.html'
  headline = ${q(node).property('headline')}
  subheadline = ${q(node).property('subheadline')}
  hideSubheadline = ${q(node).property('hideSubheadline')}
  text = ${q(node).property('text')}
  image = ${q(node).property('image')}
}





And you can use it in your Fluid template:

HTML (Vendor.Site/Private/Templates/FusionObjects/YourContentElementName.html)

{namespace neos=Neos\Neos\ViewHelpers}
<neos:contentElement node="{node}">
  <article>
    <header>
      <h2><neos:contentElement.editable property="headline">{headline -> f:format.raw()}</neos:contentElement></h2>
      <f:if condition="{hideSubheadline}">
        <f:else>
          <h3><neos:contentElement.editable property="subheadline">{subheadline -> f:format.raw()}</neos:contentElement></h3>
        </f:else>
      </f:if>
    </header>
    ...
  </article>
</neos:contentElement>







Add a simple selectbox element

The second example is about adding a selector to change the class of the article element:

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml)

'Vendor.Site:YourContentElementName':
  ui:
    inspector:
      groups:
        advanced:
          label: 'Advanced'
          position: 2
          icon: 'icon-fort-awesome'
  properties:
    articleType:
      type: string
      defaultValue: ''
      ui:
        label: 'Article Type'
        reloadIfChanged: TRUE
        inspector:
          group: 'advanced'
          editor: Content/Inspector/Editors/SelectBoxEditor
          editorOptions:
            placeholder: 'What kind of article ...'
            values:
              '':
                label: ''
              announcement:
                label: 'Announcement'
              casestudy:
                label: 'Case Study'
              event:
                label: 'Event'





Fusion (Sites/Vendor.Site/Resources/Private/Fusion/Root.fusion)

prototype(Vendor.Site:YourContentElementName) < prototype(Neos.Fusion:Template) {
  templatePath = 'resource://Vendor.Site/Private/Templates/FusionObjects/YourContentElementName.html'
  headline = ${q(node).property('headline')}
  subheadline = ${q(node).property('subheadline')}
  articleType = ${q(node).property('articleType')}
  text = ${q(node).property('text')}
  image = ${q(node).property('image')}
}





HTML (Vendor.Site/Private/Templates/FusionObjects/YourContentElementName.html)

{namespace neos=Neos\Neos\ViewHelpers}
<neos:contentElement node="{node}">
  <article{f:if(condition:articleType,then:' class="{articleType}"')}>
    ...
  </article>
</neos:contentElement>







Select multiple options in a selectbox element

For selecting more than one item with a slect box the type of the property has to be set to array.

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml):

'Vendor.Site:YourContentElementName':
  properties:
    tags:
      type: array
      ...
      ui:
        inspector:
          ...
          editor: Content/Inspector/Editors/SelectBoxEditor
          editorOptions:
            multiple: TRUE
            allowEmpty: FALSE
            values:
              ...







Use custom DataSources for a selectbox element

To add custom selectbox-options, Neos uses data sources for the inspector that can be implemented in PHP.
See Data sources for more details.

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml):

'Vendor.Site:YourContentElementName':
  properties:
    articleType:
      ui:
        inspector:
          editor: Content/Inspector/Editors/SelectBoxEditor
          editorOptions:
            dataSourceIdentifier: 'acme-yourpackage-test'







Remove fields from an existing Node Type

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml):

'Neos.Neos:Plugin':
  properties:
    package:    [ ]
    subpackage: [ ]
    controller: [ ]
    action:     [ ]







Remove a selectbox option from an existing Node Type

Removing a selectbox option, can be done by simply edition your NodeTypes.yaml.

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml):

'Neos.Neos:Shortcut':
  properties:
    targetMode:
      ui:
        inspector:
          editorOptions:
            values:
              parentNode: ~





It is also possible to add Custom Editors and use Custom Validators.





            

          

      

      

    

  

    
      
          
            
  
Data sources

Data sources allow easy integration of data source end points, to provide data to the editing interface without having
to define routes, policies, controller.

Data sources can be used for various purposes, however the return format is restricted to JSON. An example of their
usage is as a data provider for the inspector SelectBoxEditor (see Property Type: string / array<string> SelectBoxEditor – Dropdown Select Editor
for details).

A data source is defined by an identifier and this identifier has to be unique.

To implement a data source, create a class that implements Neos\Neos\Service\DataSource\DataSourceInterface,
preferably by extending Neos\Neos\Service\DataSource\AbstractDataSource. Then set the static protected
property identifier to a string. Make sure you use a unique identifier, e.g. acme-demo-available-dates.

Then implement the getData method, with the following signature:

/**
 * Get data
 *
 * The return value must be JSON serializable data structure.
 *
 * @param NodeInterface $node The node that is currently edited (optional)
 * @param array $arguments Additional arguments (key / value)
 * @return mixed JSON serializable data
 * @api
 */
public function getData(NodeInterface $node = null, array $arguments);





The return value of the method will be JSON encoded.

Data sources are available with the following URI pattern /neos/service/data-source/<identifier>, which can be linked to
using the follow parameters:


	@package:    ‘Neos.Neos’


	@subpackage: ‘Service’


	@controller: ‘DataSource’


	@action:     ‘index


	@format:     ‘json’


	dataSourceIdentifier: ‘<identifier>’




Arbitrary additional arguments are allowed. Additionally the routing only accepts GET requests.

If additional arguments are provided then they will automatically be available in the $arguments parameter of the
getData method. Additional arguments will not be property mapped, meaning they will contain their plain value.
However if an argument with the key node is provided, it will automatically be converted into a node. Provide a
valid node path to use this, and keep in mind that the node argument is restricted to this use-case. This is done
to make working with nodes easy.

The dataSourceIdentifier will automatically be removed from the arguments parameter.


Note

Data sources are restricted to only be accessible for users with the Neos.Neos:Backend.DataSource privilege,
which is included in the Neos.Neos:Editor role. This means that a user has to have access to the backend to
be able to access a data point.



Example TestDataSource.php:

<?php
namespace Acme\YourPackage\DataSource;

use Neos\Neos\Service\DataSource\AbstractDataSource;
use Neos\ContentRepository\Domain\Model\NodeInterface;

class TestDataSource extends AbstractDataSource {

    /**
     * @var string
     */
    static protected $identifier = 'acme-yourpackage-test';

    /**
     * Get data
     *
     * @param NodeInterface $node The node that is currently edited (optional)
     * @param array $arguments Additional arguments (key / value)
     * @return array JSON serializable data
     */
    public function getData(NodeInterface $node = NULL, array $arguments)
    {
        return isset($arguments['integers']) ? array(1, 2, 3) : array('a', 'b', 'c');
    }
}








            

          

      

      

    

  

    
      
          
            
  
Interaction with the Neos backend


Note

For the list of events of the legacy Ember version of the user interface, refer to the older versions of the documentation. The events documented here exist mostly for backwards-compatibility reasons, as the current React UI provides a much more powerful extensibility layer. See Neos User Interface Extensibility API for the detailed information on the topic.




JavaScript events

Some sites will rely on JavaScript initialization when the page is rendered,
typically on DocumentReady.
The Neos backend will however often reload the page via Ajax whenever a node
property is changed, and this might break functionality on sites relying on
custom JavaScript being executed on DocumentReady.

To fix this, the Neos backend will dispatch an event when the node is added or removed from the page
via ajax, and site specific JavaScript can listen on this event to trigger
whatever code is needed to render the content correctly.

document.addEventListener('Neos.NodeCreated', function(event) {
      // Do stuff
}, false);





The event object given, will always have the message and time set on
event.detail. Some events might have more attributes set.

The Neos backend will dispatch events that can be listened on when the following
events occur:


	Neos.NodeCreated When a new node was added to the document. The event has a reference to the DOM element in event.detail.element. Additional information can be fetched through the element’s attributes.


	Neos.NodeRemoved When a new node was removed from the document. The event has a reference to the DOM element in event.detail.element. Additional information can be fetched through the element’s attributes.


	Neos.NodeSelected When a node existing on the page is selected. The event has a reference to the DOM element in event.detail.element and the node model object in event.detail.node. Additional information can be fetched through the node model.




Example of interacting with the selected node element using the NodeSelected event.

document.addEventListener('Neos.NodeSelected', function (event) {
  const node = event.detail.node;
  if (node.get('nodeType') === 'Acme:Demo') {
      console.log(node.get('properties.title'));
  }
}, false);





Example of listening for the LayoutChanged event.





            

          

      

      

    

  

    
      
          
            
  
Rendering special formats (CSV, JSON, XML, …)

Rendering an RSS feed as XML or a document in a different format than HTML is possible by configuring a new route
and adding a Fusion path that renders the format.

Let’s have a look at an example that introduce a vcard format to render an imaginary Person document node type.


Routing

Configuration/Routes.yaml in your site package:

-
        name: 'Neos :: Frontend :: Document node with vCard format'
        uriPattern: '{node}.vcf'
        defaults:
                '@package': Neos.Neos
                '@controller': Frontend\Node
                '@action': show
                '@format': vcard
        routeParts:
                node:
                        handler: Neos\Neos\Routing\FrontendNodeRoutePartHandlerInterface
        appendExceedingArguments: true





This will register a new route to nodes with the vcard format. URIs with that format will get an .vcf extension.

Global Configuration/Routes.yaml (before the Neos subroutes):

##
# Site package subroutes

-
  name: 'MyPackage'
  uriPattern: '<MyPackageSubroutes>'
  subRoutes:
        'MyPackageSubroutes':
          package: 'My.Package'

##
# Neos subroutes
# ...





This will add the new route from the site package before the Neos subroutes.



Fusion

The root case in the default Fusion will render every format that is different from html by rendering a path
with the format value.

Root.fusion:

# Define a path for rendering the vcard format
vcard = Neos.Fusion:Case {
        person {
                condition = ${q(node).is('[instanceof My.Package:Person]')}
                type = 'My.Package:Person.Vcard'
        }
}

# Define a prototype to render a Person document as a vcard
prototype(My.Package:Person.Vcard) < prototype(Neos.Fusion:Http.Message) {
        # Set the Content-Type header
        httpResponseHead {
                headers.Content-Type = 'text/x-vcard;charset=utf-8'
        }
        content = My.Package:Person {
                templatePath = 'resource://My.Package/Private/Templates/NodeTypes/Person.Vcard.html'
                # Set additional variables for the template
        }
}









            

          

      

      

    

  

    
      
          
            
  
Neos User Interface Extensibility API

At the heart of the Neos UI lies the system of registries – key-value stores that contain system components. The registries are populated through the manifest API command that is exposed through the neos-ui-extensibility package.


Inspector-specific Registries


Editors

Way to retrieve:

globalRegistry.get('inspector').get('editors')





Contains all inspector editors. The key is an editor name (such as
Neos.Neos/Inspector/Editors/SelectBoxEditor), and the values
are objects of the following form:

{
  component: TextInput // the React editor component to use. Required
  hasOwnLabel: true|false // whether the component renders the label internally or not
}






Component Wiring

Every component gets the following properties (see EditorEnvelope/index.js)


	identifier: an identifier which can be used for HTML ID generation


	label: the label


	value: the value to display


	propertyName: name of the node property to edit


	options: additional editor options


	commit: a callback function when the content changes.


	1st argument: the new value


	2nd argument (optional): an object whose keys are saveHooks to be triggered, the
values are hook-specific options. Example:
{'Neos.UI:Hook.BeforeSave.CreateImageVariant': nextImage}






	renderSecondaryInspector:


	1st argument: a string identifier of the second inspector; used to implement toggling
of the inspector when calling this method twice.


	2nd argument: a callback function which can be used to render the secondary inspector.
The callback function should return the secondary inspector content itself; or “undefined/null”
to close the secondary inspector.
Example usage: props.renderSecondaryInspector('IMAGE_CROPPING', () => <MySecondaryInspectorContent />)











Secondary Editors

Way to retrieve:

globalRegistry.get('inspector').get('editors')





Contains all secondary inspector editors, which can be used to provide additional, more complex
functionality that needs more space of the UI than the inspector panel can provide itself.

Use it like the registry for editors.



Views

Way to retrieve:

globalRegistry.get('inspector').get('views')





Contains all inspector views.

Use it like the registry for editors.



Save Hooks

Way to retrieve:

globalRegistry.get('inspector').get('saveHooks')





Sometimes, it is needed to run code when the user presses “Apply” inside the Inspector.

Example: When the user cropped a new image, on “Apply”, a new imageVariant must be created on
the server, and then the identity of the new imageVariant must be stored inside the value of
the image.

The process is as follows:


	When an editor wants its value to be post-processed, it calls props.commit(newValue, {hookName: hookOptions})


	Then, when pressing “Apply” in the UI, the hookNames are resolved inside this saveHooks registry.





Hook Definitions

Every entry inside this registry is a function of the following signature:

(valueSoFar, hookOptions) => {
  return new value; // can also return a new Promise.
}









Validators

Way to retrieve:

globalRegistry.get('validators')





Contains all server feedback handlers.

The key is the server-feedback-handler-type, and the value is a function with the following signature:

(feedback, store) => {
  // do whatever you like here
}







Frontend Configuration

Any settings under Neos.Neos.Ui.frontendConfiguration would be available here.

Might be used also for third-party packages to deliver own settings to the UI, but this is still experimental.

Settings from each package should be prefixed to avoid collisions (unprefixed settings are reserved for the core UI itself), e.g.:

Neos:
  Neos:
    Ui:
      frontendConfiguration:
        'Your.Own:Package':
          someKey: someValue





Then it may be accessed as:

globalRegistry.get('frontendConfiguration').get('Your.Own:Package').someKey







Inline Editors

Way to retrieve:

globalRegistry.get('inlineEditors')





Each key in this registry should be a unique identifier for an inline editor, that can be referenced in a node type configuration.

Each entry in this registry is supposed to consist of an object with the following structure:

{
  bootstrap: myBootstrapFunction,
  createInlineEditor: myInlineEditorFactoryFunction
}





bootstrap is called only once during the global initialization of the guest frame. It is not required
to do anything in this function, but it is possible to prepare the guest frame environment, if any
global variables must be defined or other initialization routines must be run in order for the inline
editor to work.

bootstrap will receive an API Object as its first parameter, with the following methods:


	setFormattingUnderCursor: Will dispatch the respective action from the @neos-project/neos-ui-redux-store
package (actions.UI.ContentCanvas.setFormattingUnderCursor)


	setCurrentlyEditedPropertyName: Will dispatch the respective action from the @neos-project/neos-ui-redux-store
package (actions.UI.ContentCanvas.setCurrentlyEditedPropertyName)




createInlineEditor is called on every DOM node in the guest frame that represents an editable property.
It is supposed to handle the initialization and display of an inline editor.

createInlineEditor will receive an object as its first parameter, with the following properties:


	propertyDomNode: The DOM node associated with the editable property


	propertyName: The name of the editable property


	contextPath: The contextPath of the associated node


	nodeType: The nodeType of the associated node


	editorOptions: The configuration for this inline editor


	globalRegistry: The global registry


	persistChange: Will dispatch the respective action from @neos-project/neos-ui-redux-store package
(actions.Changes.persistChanges)






CKEditor5-specific registries

The integration of CKeditor5 is dead simple and tries to introduce a minimal amount of abstractions
on top of CKeditor5. There are only two registries involved in configuring it: config and
richtextToolbar


Configuration of CKeditor5

Way to retrieve:

globalRegistry.get('ckEditor5').get('config')





In CKE all things are configured via a single configuration object: plugins, custom configs, etc (@see https://docs.ckeditor.com/ckeditor5/latest/builds/guides/integration/configuration.html)

This registry allows to register a custom configuration processor that takes a configuration object, modifies it and returns a new one. Example:

config.set('doSomethingWithConfig' (ckeConfig, editorOptions) => {
  ckeConfig.mySetting = true;
  return ckeConfig;
})





That is all you need to know about configuring CKE in Neos,
Refer to CKeditor5 documentation for more details on what you can do with it: https://docs.ckeditor.com/ckeditor5/latest/index.html


Richtext Toolbar

Way to retrieve:

globalRegistry.get('ckEditor5').get('richtextToolbar')





Contains the Rich Text Editing Toolbar components.

Buttons in the Rich Text Editing Toolbar are just plain React components.

The only way for these components to communicate with CKE is via its commands mechanism
(@see https://docs.ckeditor.com/ckeditor5/latest/framework/guides/architecture/core-editor-architecture.html#commands)

Some commands may take arguments. Commands also contain state that is serialized into
formattingUnderCursor redux state. Commands are provided and handled by CKE plugins, which may be
registered via the configuration registry explained above.

The values are objects of the following form:

{
    commandName: 'bold' // A CKE command that gets dispatched
    commandArgs: [arg1, arg2] // Additional arguments passed together with a command
    component: Button // the React component being used for rendering
    isVisible: (editorOptions, formattingUnderCursor) => true // A function that decides is the button should be visible or not
    isActive: (formattingUnderCursor, editorOptions) => true // A function that decides is the button should be active or not
    callbackPropName: 'onClick' // Name of the callback prop of the Component which is
                                fired when the component's value changes.

    // all other properties are directly passed on to the component.
}









CKEditor4-specific registries


Formatting rules

Way to retrieve:

globalRegistry.get('ckEditor').get('formattingRules')





Contains the possible styles for CKEditor.


Enabled Styles

The actual enabled styles are determined by the NodeTypes configuration of the property. This means,
that if the node is configured in NodeTypes.yaml using:

properties:
  [propertyName]:
    ui:
      inline:
        editorOptions:
          formatting:
            strong: true





then the “strong” key inside this registry is actually enabled for the editor.

For backwards compatibility reasons, the formatting-and-styling-registry KEYS must match the “pre-React”
UI, if they existed beforehand.



Configuration of CKEditor

With this config, CKEditor itself is controlled:


	the Advanced Content Filter (ACF) is configured, thus determining which markup is allowed in the editors


	which effect a button action actually has.




Currently, there exist three possible effects:


	triggering a command


	setting a style


	executing arbitrary code






Configuration Format

NOTE: one of “command” or “style” must be specified in all cases.


	command (string, optional). If specified, this CKEditor command is triggered; so the command string
is known by CKEditor in the “commands” section: http://docs.ckeditor.com/#!/api/CKEDITOR.editor-method-getCommand


	style (object, optional). If specified, this CKEditor style is applied. Expects a style description
adhering to CKEDITOR.style(…), so for example: { style: {element: ‘h1’}


	config (function, optional): This function needs to adjust the CKEditor config to e.g. configure ACF
correctly. The function gets passed in the config so-far, AND the configuration from the node type
underneath ui.inline.editorOptions.formatting.[formatingRuleName] and needs to return the modified
config. See “CKEditor Configuration Helpers” below for helper functions.


	extractCurrentFormatFn (function, optional): If specified, this function will extract the current
format. The function gets passed the currend “editor” and “CKEDITOR”.


	applyStyleFn (function, optional): This function applies a style to CKEditor.
Arguments: formattingOptions, editor, CKEDITOR.






CKEditor Configuration Helpers


	config: registry.ckEditor.formattingRules.config.addToFormatTags(‘h1’): adds the passed-in tag to the
format_tags configuration option of CKEditor.


	registry.ckEditor.formattingRules.config.add(‘Strong’): adds the passed-in Button Definition Name
to the ACF configuration (automatic mode). This means the button names are standard CKEditor config
buttons, like “Cut,Copy,Paste,Undo,Redo,Anchor”.







Richtext Toolbar

Contains the Rich Text Editing Toolbar components.

The values are objects of the following form:

{
  formattingRule: 'h1' // References a key inside "formattingRules"
  component: Button // the React component being used for rendering
  callbackPropName: 'onClick' // Name of the callback prop of the Component which is fired when the component's value changes.

  // all other properties are directly passed on to the component.
}






Component wiring


	Each toolbar component receives all properties except “formattingRule” and “component” directly as props.


	Furthermore, the “isActive” property is bound, which is a boolean flag defining whether the text style
referenced by “formatting” is currently active or not.


	Furthermore, the callback specified in “callbackPropName” is wired, which toggles the value.




For advanced use-cases; also the “formattingRule” is bound to the component; containing a formatting-rule identifier (string).
If you need this, you’ll most likely need to listen to selectors.UI.ContentCanvas.formattingUnderCursor and extract your relevant information manually.




Plugins

Way to retrieve:

globalRegistry.get('ckEditor').get('plugins')





Contains custom plugins for CkEditor.

plugins.set('plugin_key', {
    initFn: pluginInitFunction
});





pluginInitFunction is passed from CKEDITOR as the first argument.
In that function you may register your plugin with CKEditor via its API (CKEDITOR.plugins.add).
Take custom plugins as examples.




Data Loaders

Way to retrieve:

globalRegistry.get('dataLoaders')





A “Data Loader” controls asynchronous loading of secondary data, which is used in all kinds of Select / List boxes in the backend.

Example of data which is loaded through a data loader:


	Link Labels (in the inline link editor)


	Reference / References editor


	Data Sources in the Select Editor




Each Data Loader can have a slightly different API, so check the “description” field of each data loader when using it. It is up to the data loaders to implement caching internally.

Normally, each data loader exposes the following methods:

resolveValue(options, identifier) {
  // "options" is a DataLoader-specific object.
  // returns Promise with [{identifier, label}, ...] list; where "identifier" was resolved to the actual object represented by "identifier".
}

search(options, searchTerm) {
  // "options" is a DataLoader-specific object.
  // returns Promise with [{identifier, label}, ...] list; these are the objects displayed in the selection dropdown.
}







Containers

Way to retrieve:

globalRegistry.get('containers')





The whole user interface is built around container components. They are registered through the containers registry. Below you will find an example on how to replace the PageTree container with your custom container:

manifest('Example', {}, globalRegistry => {
  const containerRegistry = globalRegistry.get('containers');
  containerRegistry.set('LeftSideBar/Top/PageTreeToolbar', () => null);
  containerRegistry.set('LeftSideBar/Top/PageTreeSearchbar', () => null);
  containerRegistry.set('LeftSideBar/Top/PageTree', FlatNavContainer);
});







Server Feedback Handlers

Way to retrieve:

globalRegistry.get('serverFeedbackHandlers')





Contains all server feedback handlers.

The key is the server-feedback-handler-type, and the value is a function with the following signature:

(feedback, store) => {
  // do whatever you like here :-)
}







Reducers

Way to retrieve:

globalRegistry.get('reducers')





Allows to register custom reducers for your plugin.
It is probably a bad idea to override any of the existing reducers.



Sagas

Way to retrieve:

globalRegistry.get('sagas')





Allows to register custom sagas for your plugin.
It is probably a bad idea to override any of the existing reducers.

Example:

function* watchNodeFocus() {
  yield takeLatest(actionTypes.CR.Nodes.FOCUS, function* (action) {
    yield put(actions.UI.FlashMessages.add(
      'testMessage',
      'Focused: ' + action.payload.contextPath,
      'success'
    ));
  });
}
manifest('The.Demo:Focus', {}, globalRegistry => {
  const sagasRegistry = globalRegistry.get('sagas');
  sagasRegistry.set('The.Demo/watchNodeFocus', {saga: watchNodeFocus});
});









            

          

      

      

    

  

    
      
          
            
  
Writing Tests For Neos

Testing and quality assurance documentation for Neos.



	Behat tests for Neos
	Setting up Neos for running Behat tests

	Run Behat tests on several browsers using Saucelabs












            

          

      

      

    

  

    
      
          
            
  
Behat tests for Neos


Setting up Neos for running Behat tests

The Neos package contains a growing suite of Behat tests which you should take into account while fixing bugs or
adding new features. Please note that running these tests require that the Neos demo site package (Neos.Demo)
is installed and activated.


Install Behat for the base distribution

Behat is installed in a separate folder and has a custom composer root file. To install Behat run the following composer
command in FLOW_ROOT/Build/Behat:

cd Build/Behat
composer install





A special package Neos.Behat is used to integrate Flow with Behat and is installed if the base distribution was
installed with composer install –dev.



Create configuration for subcontexts

Behat needs two special Flow contexts, Development/Behat and Testing/Behat.


	The context Development/Behat should be mounted as a separate virtual host and is used by Behat to do the actual
HTTP requests.


	The context Testing/Behat is used inside the Behat feature context to set up test data and reset the database after
each scenario.




These contexts should share the same database to work properly. Make sure to create a new database for the Behat tests
since all the data will be removed after each scenario.

FLOW_ROOT/Configuration/Development/Behat/Settings.yaml:

Neos:
  Flow:
    persistence:
      backendOptions:
        dbname: 'neos_testing_behat'





FLOW_ROOT/Configuration/Testing/Behat/Settings.yaml:

Neos:
  Flow:
    persistence:
      backendOptions:
        dbname: 'neos_testing_behat'
        driver: pdo_mysql
        user: ''
        password: ''





Example virtual host configuration for Apache:

<VirtualHost *:80>
        DocumentRoot "FLOW_ROOT/Web"
        ServerName neos.behat.test
        SetEnv FLOW_CONTEXT Development/Behat
</VirtualHost>







Configure Behat

The Behat tests for Neos are shipped inside the Neos.Neos package in the folder Tests/Behavior. Behat uses a
configuration file distributed with Neos, behat.yml.dist, or a local version, behat.yml. To run the tests, Behat
needs a base URI pointing to the special virtual host running with the Development/Behat context. To set a custom
base URI the default file should be copied and customized:

cd Packages/Application/Neos.Neos/Tests/Behavior
cp behat.yml.dist behat.yml
# Edit file behat.yml





Customized behat.yml:

default:
  paths:
    features: Features
    bootstrap: %behat.paths.features%/Bootstrap
  extensions:
    Behat\MinkExtension\Extension:
      files_path: features/Resources
      show_cmd: 'open %s'
      goutte: ~
      selenium2: ~

      base_url: http://neos.behat.test/







Selenium

Some tests require a running Selenium server for testing browser advanced interaction and JavaScript.
Selenium Server can be downloaded at http://docs.seleniumhq.org/download/ and started with:

java -jar selenium-server-standalone-2.x.0.jar





If using Saucelabs, you do not need your own Selenium setup.



Running Behat tests

Behat tests can be run from the Flow root folder with the bin/behat command by specifying the Behat configuration
file:

bin/behat -c Packages/Application/Neos.Neos/Tests/Behavior/behat.yml





In case the executable file bin/behat is missing, create a symlink by running the following command in FLOW_ROOT/bin:

ln -s ../Build/Behat/vendor/behat/behat/bin/behat






Tip

You might want to warmup the cache before you start the test. Otherwise the tests might fail due to a timeout.
You can do that with FLOW_CONTEXT=Development/Behat ./flow flow:cache:warmup.





Debugging


	Make sure to use a new database and configure the same databse for Development/Behat and Testing/Behat


	Run Behat with the -v option to get more information about errors and failed tests


	A failed step can be inspected by inserting “Then show last response” in the .feature definition







Run Behat tests on several browsers using Saucelabs


Note

Make sure that your Behat version is uptodate. Otherwise the saucelabs connection won’t work. The
behat/mink-extension need to be at least version 1.3.



Saucelabs (http://saucelabs.com) provides a VM infrastructure you can use to run your selenium tests on.

Using this infrastructure you can run the @javascript tagged tests on several Browsers and OSs autmatically without
setting up your own selenium infrastructure.

To run Neos Behat tests with saucelabs you need to do the following steps.


Configure Behat

To talk to saucelabs you need to uncomment the following lines in the behat.yml and add your saucelabs username
and access_key:

javascript_session: saucelabs
  saucelabs:
    username: <username>
    access_key: <access_key>






Tip

Saucelabs provides unlimited video time for Neos core development. If you want to contribute to Neos by writing
tests ask Christian Müller.



To make tests with more browsers than the default browser you need to tell saucelabs which browser, version and OS you
want to test on. You can add several browsers, each in its own profile. There are a lot of browsers configured already
in the saucelabsBrowsers.yml file. You can include that into your behat configuration:

imports:
  - saucelabsBrowsers.yml







Open a tunnel to saucelabs

If you want to run the tests on your local machine you need to open a tunnel to saucelabs. This can be easily done by
downloading Sauce Connect at https://docs.saucelabs.com/reference/sauce-connect/ and follow the instructions to setup
and start it.



Run Behat tests

A test with Internet Explorer 10 on Windows8 would look like this then:

bin/behat -c Packages/Application/Neos.Neos/Tests/Behavior/behat.yml --profile windows8-ie-10





You might just want to run the tests that need javascript on different browsers (all other tests won’t use a browser
anyways). Limit the tests to the @javascript tagged to do so:

bin/behat -c Packages/Application/Neos.Neos/Tests/Behavior/behat.yml --tags javascript --profile windows8-ie-10






Note

The possible configuration settings for browsers can be found at https://saucelabs.com/docs/platforms. Choose
“WebDriver” and “php” and click on the platform/browser combination you are interested in.








            

          

      

      

    

  

    
      
          
            
  
Inside of Neos



	User Interface Development
	General User Interface Principles

	Content Module Principles

	Backend Module Principles

	JavaScript Style Guide

	Ember.JS Tips & Tricks

	Translating the user interface












            

          

      

      

    

  

    
      
          
            
  
User Interface Development

These are the user interface development guidelines of Neos.



	General User Interface Principles
	Overall User Interface Goals

	Technical guidelines / Goals

	CSS Guidelines





	Content Module Principles
	Naming of main UI parts

	Content Module Architecture

	Node Property Naming Conventions

	Saving content

	Displaying Modal Dialogs





	Backend Module Principles
	Progressive Enhancement





	JavaScript Style Guide
	Code Conventions





	Ember.JS Tips & Tricks
	Dealing with classes and objects

	Data Binding tips and tricks





	Translating the user interface
	Default Language

	Label Scrambling












            

          

      

      

    

  

    
      
          
            
  
General User Interface Principles

The following principles serve as general guiding concepts throughout the whole Neos product.


Overall User Interface Goals

We have set up the following goals to strive for UI-wise:


	Reliable editing


	Predictable UI Behavior


	Immediate feedback for the user


	Built with the web - for the web




UI concepts should be evaluated against the above goals.



Technical guidelines / Goals

When implementing the user interface, we should follow these guidelines on a technical side:


	Take the pragmatic approach


	Augment the frontend website


	No iFrame in the content module, generally no iFrames except for bigger modal dialogs


	Browser support >= IE9; in the prototyping phase focus on Chrome / Firefox


	No polling of data from the server!


	A reload should always take you back to a safe state






CSS Guidelines

Overall Goal:


	Be pragmatic! We strive for solutions which work out-of-the-box in 95% of the cases; and tell the integrator
how to solve the other 5%. Thus, the integrator has to care to make his CSS work with Neos; we do not use a sandbox.




Implementation notes:


	All CSS selectors should be fully lowercase, with - as separator. Example: neos-menu, neos-inspector


	We use the neos- prefix


	The integrator is never allowed to override neos-, typo3- and aloha-


	The main UI elements have an ID, and a partial reset is used to give us predictable behavior inside them.


	We use sass. To install, use +gem install sass compass+. Then, before modifying CSS, go to css/ and run
+sass –compass –watch style.scss:style.css+. This will update style.css at every modification of style.scss.


	We use r.js for generating the Includes-built.css file. The command used by the built server is
r.js -o cssIn=Includes.css out=Includes-built.css





Z-Indexes

The Neos UI uses Z-Indexes starting at 10000.


Warning

TODO: Formulate some more about the usage of z-indexes.








            

          

      

      

    

  

    
      
          
            
  
Content Module Principles

In the Content Module, we directly render the frontend of the website, and then
augment it with the Neos Content Editing User Interface.

Because of this, we do not control all CSS or javaScript which is included on
the page; so we need some special guidelines to deal with that. These are listed
on this page.


Naming of main UI parts

The following image shows the main UI parts of the content module and the names we use for them.


[image: UI parts of the content module]

UI parts of the content module





Content Module Architecture

The whole Content Module is built around the Aloha Blocks. Blocks are un-editable
elements of a website, which are managed by Aloha. They can appear inside or outside
editables, can be nested, and can appear either as inline element (<span>) or
as block-level element(<div>).

Only one block is active at any given time. When a block is active, then all its
parent blocks are selected. The block selection contains the active block as
first element and all other selected blocks from innermost to outermost.

Most of the UI changes depending on the current block selection.


User Interface Updates on Selection Change

The following diagram shows how the UI is changing when the block selection changes:


[image: UI Updates on selection change]

UI Updates on selection change




	The neosintegration Aloha Plugin (located in alohaplugins/neosintegration/lib/neosintegration-plugin.js) hooks
into the Aloha event which is triggered whenever the block selection changes. Whenever this event is triggered,
it calls T3.Content.Model.BlockSelection.updateSelection().


	We need to wrap each Aloha Block with a Ember.js Block (later only called Block),
so we can attach event listeners to it. This wrapping is done by the BlockManager


	The BlockManager either returns existing Ember.js Blocks (if the given Aloha Block has already been wrapped),
or creates a new one.


	Then, the BlockSelection sets its content property, which the UI is bound to. Thus,
all UI elements which depend on the current block selection are refreshed.






User Interface Updates updates on property change

When an attribute is modified through the property panel, the following happens:


[image: How attributes are modified]

How attributes are modified



WARNING: TODO: Document what happens when an editable is modified




Node Property Naming Conventions

TODO write some intro text


	Normal properties

Those properties contain normal values like a title, date or other value.
Serverside setting of the property is done using Neos ContentRepository Node::setProperty()



	Visibility / lifecycle properties

These properties are prefixed using an underscore, like ‘_hidden’.
Serverside setting of the property is done using Neos ContentRepository Node::set<UpperCamelCasePropertyname>()



	Neos internal properties

These properties are prefixed with a double underscore, like __workspacename
TODO: internal







Saving content

Saving is triggered using T3.Content.Model.Changes.save() and is very straight-forward. For now,
we use ExtDirect to send things back to the server.



Displaying Modal Dialogs

WARNING: TODO - write this


	REST architectural style


	HTML snippets loaded via fixed URLs from server side


	Return Commands (<a rel="typo3-...." />)





REST Server Side API

Most backend services which are currently used in the user interface are not RESTful. The goal is to migrate them,
step by step, to a clean REST architecture.

Two services have been – partially – migrated: Nodes and ContentDimensions. We provide an HTML and a JSON based interface,
roughly following HATEOAS concepts. Both formats a not yet part of the public API and we expect them to change as we
gain more experience with the pros and cons of their structure.

URL /neos/service/nodes
URL /neos/service/contentdimensions

Inspect the HTML output and the controller / template code for more information about the currently supported operations
and arguments.






            

          

      

      

    

  

    
      
          
            
  
Backend Module Principles

For backend modules (that is, every module except the content area), we use
the following guiding principles in addition to the already-existing principles:


	It should be possible to write backend modules only with PHP, without JavaScript involved


	Some features might be only available to the user if he has JavaScript enabled


	In order to introduce rich behavior, use the technique of progressive enhancement





Progressive Enhancement

As we want to use progressive enhancement heavily, we need to define some rules
as a basis for that.

First, you should always think about the non-javascript functionality, and develop
the feature without JavaScript enabled. This helps to get the client-server communication
function correctly.

For most parts, you should not rely at all on any server state, but instead use
URI parameters to encode required state. This makes the server-side code a lot easier
and progressive enhancement more predictable.

Furthermore, if you reload certain parts of the user interface using AJAX, make
sure to always update the browser’s URI using History Management: In case there
is an error, the user can just re-load the page and will get pretty much the
same User Interface state. This fulfills our UI goal of “predictable UI behavior”.


Connecting JavaScript code to the HTML content

In order to connect JavaScript code to HTML content, we (of course) rely on CSS
selectors for finding the correct DOM nodes. However, we do not want to use
CSS class attributes, as they change more frequently. Instead, we’d like to use
special data-attributes to connect the JavaScript code to the user interface.


Note

In a nutshell:


	CSS classes are used for the visible styling only


	HTML5 Data Attributes are used for connecting the JavaScript code to HTML






We use the following data attributes for that:


	data-area is used to search for DOM nodes, for later usage in JavaScript.

As an example, use <div class="foo" data-area="actionBar"></div> in the HTML
and match it using $('[data-area=actionBar]') in JavaScript.



	data-json is used for transferring server-side state to the JavaScript as JSON.

Example: We need the full URI parameters which have been used for the current rendering
as array/object on the client side. Thus, the server side stores them inside
<div style="display:none" data-json="uriParameters">{foo: 'bar'}</div>.

The JavaScript code then accesses them at a central place using JSON.parse($('[data-json=uriParameters]').text())
and makes them available using some public API.



	data-type is used to mark that certain parts of the website contain a client-side template
language like handlebars.

As an example for the action bar, we use the following code here:

  <button>
     Edit
     <span class="js" data-type="handlebars">
        {{#if multipleSelectionActive}} {{numberOfSelectedElements}} elements{{/if}}
     </span>
  </button>

Then, on the client side in JavaScript, we use the handlebars template accordingly.











Adjusting the UI if JavaScript is (in-)active

Often, you want to hide or show some controls depending on whether JavaScript
is enabled or disabled. By default, every DOM element is visible no matter whether
JavaScript is enabled or not.

If you want to show a DOM element only if JavaScript is enabled, use the CSS
class js.

If you want to show a DOM element only if JavaScript is disabled, use the CSS
class nojs.






            

          

      

      

    

  

    
      
          
            
  
JavaScript Style Guide


Code Conventions


	We use only the TAB character for indentation.


	We use UpperCamelCase for class names, and lowerCamelCase for method and property names.


	Methods and properties that begin with an underscore (_) are private.


	Variables which contain jQuery elements should be named like $element, starting with a $.
If it is a private jQuery element, prefix it with _$


	We use that as a name for a closure reference to this, but try to avoid it if there’s the possibility of scope binding.
Unfortunately jQuery’s event handlers do not allow easy scope binding.





Code Documentation

TODO: still determine this.



RequireJS module skeleton

All JavaScript files are RequireJS modules. They should follow this structure:

WARNING: still has to be done and discussed

<javascript>
TODO
</javascript>



Public API, Private methods and attributes

All methods and properties which are public API are marked with @api. The public API is supported
for a longer period, and when a public API changes, this is clearly communicated in the
Release Notes of a version.

On the contrary, we prefix private methods and attributes with an underscore. The user of an API should never
override or call methods private methods as they are not meant for him to be overridden.

There’s also a type in between: methods which are not private but do not have a @api annotation. They
can be safely overridden by the user, and he should not experience any unwanted behavior. Still, the names or
functionality of these methods can change without notice between releases.
In the long run, all of these methods should become part of the public API, as soon as they are proven in real
life.

To sum it up, we have three types of methods/properties:


	@api methods: Public API, the user of the object can rely on the functionality to be stable, changes in @api are clearly communicated


	non-@api but also not private: The user can use it, but needs to be aware the method might still change.


	private (prefixed with _): The user should never ever call or access this. Very strange things might happen.





Note

It is allowed to observe or bind to private properties within the Neos javascript code. This is because the property
is not just meant as private object property, but as a non-api property.





When to use a new file

JavaScript files can become pretty large, so there should be a point to create a new file. Having just one class per file
would be too much though, as this would end up in possibly hundreds of files, from which a lot will just have 20 lines
of code.

As we use requirejs for loading dependencies we came up with the following guidelines for creating a new file:


	Classes using a template include using the !text plugin should be in a separate file


	If a class is extended by another class, then it should be in a separate file so it can be easily loaded as dependency


	If a class is huge, and affecting readability of the definition file, then it should be moved to a single file


	It has preference to keep classes grouped together, so classes with just a few lines stay grouped together, so if none
of the above is true the classes stays in the main file.









            

          

      

      

    

  

    
      
          
            
  
Ember.JS Tips & Tricks


Dealing with classes and objects


	Always extend from Ember.Object (or a subclass)


	Extension is done using Ember.Object.extend({...})


	Never use new to instantiate new objects. Instead, use TheObject.create(...)


	All objects have generic set(key, value) and get(key) methods, which should be used
under all circumstances!




The following example shows this:

var Foo = Ember.Object.extend({
        someValue: 'hello',
        myMethod: function() {
                alert(this.get('someValue'));
        }
});

var fooInstance = Foo.create({
        someValue: 'world'
});
fooInstance.myMethod(); // outputs "world"





Inheritance can be used just as in PHP, since Emberjs binds a special ._super() function for every
method call (in fact the function is wrapped to create this special _super method). So calling the current method
of the superclass can be done without specifying the superclass and method name.

var Foo = Ember.Object.extend({
        greet: function(name) {
                return 'Hello, ' + name;
        }
});
var Bar = Foo.extend({
        greet: function(name) {
                return 'Aloha and ' + this._super(name);
        }
});

Bar.create().greet('Neos'); // outputs "Aloha and Hello, Neos"







Data Binding tips and tricks

To create a computed property, implement it as function and append +.property()+:

var Foo = Ember.Object.extend({
        someComputedValue: function() {
                return "myMethod";
        }.property()
});





If your computed property reads other values, specify the dependent values as
parameters to property(). If the computed property is deterministic and depends only on the
dependant values, it should be marked further with .cacheable().

var Foo = Ember.Object.extend({
        name: 'world',
        greeting: function() {
                return "Hello " + this.attr('name');
        }.property('name').cacheable()

});





Now, every time name changes, the system re-evaluates greeting.


Note

Forgetting .cacheable() can have severe performance penalties and result
in circular loops, in worst case freezing the browser completely.



You can also use a getter / setter on a property, if you do this it’s extremely important to return
the value of the property in the setter method.

var Foo = Ember.Object.extend({
        firstName: null,
        lastName: null,

        fullName: function(key, value) {
                if (arguments.length === 1) {
                        return this.get('firstName') + ' ' + this.get('lastName');
                } else {
                        var parts = value.split(' ');
                        this.set('firstName', parts[0]);
                        this.set('lastName', parts[1]);

                        return value;
                }
        }.property('firstName', 'lastName').cacheable()
});






Observe changes

To react on changes of properties in models or views (or any other class extending Ember.Observable), a method marked as an observer can be used. Call
.observes('propertyName') on a private method to be notified whenever a property changes.

var Foo = Ember.Object.extend({
        name: 'world',
        _nameDidChange: function() {
                console.log('name changed to', this.get('name'));
        }.observes('name')
});










            

          

      

      

    

  

    
      
          
            
  
Translating the user interface


Default Language

The availableLanguages are defined in Packages/Application/Neos.Neos/Configuration/Settings.yaml.

You may override the default language of your installation in Configuration/Settings.yaml:

Neos:
  Neos:
    userInterface:
      defaultLanguage: 'en'







Label Scrambling

To help you find labels in the Neos editor interface that you still need to translate, you can use the
language label scrambling setting in your yaml file. This will replace all translations
by a string consisting of only # characters with the same length as the actual
translated label. With this setting enabled every still readable string in the backend
is either content or non-translated.

Neos:
  Neos:
    userInterface:
      scrambleTranslatedLabels: TRUE






Note

The translation labels used in the javascript ui are parsed to a big json file.
While changing xliff files this cached should be flushed, but still it can turn
out useful to disable this cache. You can do so by using the following snippet
in your Caches.yaml



Neos_Neos_XliffToJsonTranslations:
  backend: Neos\Flow\Cache\Backend\NullBackend









            

          

      

      

    

  

    
      
          
            
  
References

Mostly autogenerated documentation for ViewHelpers, EelHelpers, Fusion etc. from
all Packages that are in a default (Demo Package) setup.



	Property Editor Reference
	Property Type: boolean BooleanEditor – Checkbox editor

	Property Type: string TextFieldEditor – Single-line Text Editor (default)

	Property Type: string TextAreaEditor – Multi-line Text Editor

	Property Type: string CodeEditor – Full-Screen Code Editor

	Property Type: string / array<string> SelectBoxEditor – Dropdown Select Editor

	Property Type: string LinkEditor – Link Editor for internal, external and asset links

	Property Type: integer TextFieldEditor

	Property Type: reference / references ReferenceEditor / ReferencesEditor – Reference Selection Editors

	Property Type: DateTime DateTimeEditor – Date & Time Selection Editor

	Property Type: image (Neos\Media\Domain\Model\ImageInterface) ImageEditor – Image Selection/Upload Editor

	Property Type: asset (Neos\Media\Domain\Model\Asset / array<Neos\Media\Domain\Model\Asset>) AssetEditor – File Selection Editor





	View Helper Reference
	Content Repository ViewHelper Reference

	FluidAdaptor ViewHelper Reference

	Form ViewHelper Reference

	Fusion ViewHelper Reference

	Media ViewHelper Reference

	Neos ViewHelper Reference

	TYPO3 Fluid ViewHelper Reference





	Fusion Reference
	Neos.Fusion

	Neos.Neos Fusion Objects





	Eel Helpers Reference
	Array

	Configuration

	ContentDimensions

	Date

	File

	Json

	Math

	Neos.Array

	Neos.Caching

	Neos.Link

	Neos.Node

	Neos.Rendering

	Neos.Ui.Modules

	Neos.Ui.PositionalArraySorter

	Neos.Ui.Sites

	Neos.Ui.StaticResources

	Neos.Ui.Workspace

	NodeInfo

	Security

	String

	Translation

	Type





	FlowQuery Operation Reference
	add

	cacheLifetime

	children

	children

	closest

	context

	count

	filter

	filter

	find

	first

	get

	has

	is

	last

	neosUiDefaultNodes

	neosUiFilteredChildren

	next

	nextAll

	nextUntil

	parent

	parents

	parents

	parentsUntil

	parentsUntil

	prev

	prevAll

	prevUntil

	property

	property

	remove

	search

	siblings

	slice

	sort





	Neos Command Reference
	Package NEOS.CONTENTREPOSITORY

	Package NEOS.FLOW

	Package NEOS.FLUIDADAPTOR

	Package NEOS.KICKSTARTER

	Package NEOS.MEDIA

	Package NEOS.NEOS

	Package NEOS.SITEKICKSTARTER





	Validator Reference
	Flow Validator Reference

	Media Validator Reference

	Party Validator Reference





	Signal Reference
	Content Repository Signals Reference

	Flow Signals Reference

	Media Signals Reference

	Neos Signals Reference





	Coding Guideline Reference
	PHP Coding Guidelines & Best Practices

	JavaScript Coding Guidelines





	Configuration Reference
	Navigation tree loadingDepth

	Node tree presets





	Node Migration Reference
	Migration files

	Transformations Reference

	Filters Reference












            

          

      

      

    

  

    
      
          
            
  
Property Editor Reference

For each property which is defined in NodeTypes.yaml, the editor inside the Neos inspector can be customized
using various options. Here follows the reference for each property type.


Note

All NodeType inspector configuration values are dynamically evaluated on the client-side, see
Dynamic Client-side Configuration Processing for more details.




Property Type: boolean BooleanEditor – Checkbox editor

A boolean value is rendered using a checkbox in the inspector:

'isActive'
  type: boolean
  ui:
    label: 'is active'
    inspector:
      group: 'document'





Options Reference:


	disabled (boolean)
	HTML disabled property. If true, disable this checkbox.







Property Type: string TextFieldEditor – Single-line Text Editor (default)

Example:

subtitle:
  type: string
  ui:
    label: 'Subtitle'
    help:
      message: 'Enter some help text for the editors here. The text will be shown via click.'
    inspector:
      group: 'document'
      editorOptions:
        placeholder: 'Enter subtitle here'
        maxlength: 20





Options Reference:


	placeholder (string)
	HTML5 placeholder property, which is shown if the text field is empty.



	disabled (boolean)
	HTML disabled property. If true, disable this textfield.



	maxlength (integer)
	HTML maxlength property. Maximum number of characters allowed to be entered.



	readonly (boolean)
	HTML readonly property. If true, this field is cannot be written to.



	form (optional)
	HTML5 form property.



	selectionDirection (optional)
	HTML5 selectionDirection property.



	spellcheck (optional)
	HTML5 spellcheck property.



	required (boolean)
	HTML5 required property. If true, input is required.



	title (boolean)
	HTML title property.



	autocapitalize (boolean)
	Custom HTML autocapitalize property.



	autocorrect (boolean)
	Custom HTML autocorrect property.







Property Type: string TextAreaEditor – Multi-line Text Editor

In case the text input should span multiple lines, a TextAreaEditor should be used as follows:

'description':
    type: 'string'
    ui:
      label: 'Description'
      inspector:
        group: 'document'
        editor: 'Neos.Neos/Inspector/Editors/TextAreaEditor'
        editorOptions:
          rows: 7





Options Reference:


	rows (integer)
	Number of lines this textarea should have; Default 5.





** and all options from Text Field Editor – see above**



Property Type: string CodeEditor – Full-Screen Code Editor

In case a lot of space is needed for the text (f.e. for HTML source code), a CodeEditor can be used:

'source':
    type: 'string'
    ui:
      label: 'Source'
      inspector:
        group: 'document'
        editor: 'Neos.Neos/Inspector/Editors/CodeEditor'





Furthermore, the button label can be adjusted by specifying buttonLabel. Furthermore, the highlighting mode
can be customized, which is helpful for editing markdown and similar contents:

'markdown':
    type: 'string'
    ui:
      label: 'Markdown'
      inspector:
        group: 'document'
        editor: 'Neos.Neos/Inspector/Editors/CodeEditor'
        editorOptions:
          buttonLabel: 'Edit Markdown'
          highlightingMode: 'text/plain'





Options Reference:


	buttonLabel (string)
	label of the button which is used to open the full-screen editor. Default Edit code.



	highlightingMode (string)
	CodeMirror highlighting mode to use. These formats are support by default:
text/plain, text/xml, text/html, text/css, text/javascript. If other highlighting modes shall be
used, they must be loaded beforehand using custom JS code. Default text/html.



	disabled (boolean)
	If true, disables the CodeEditor.







Property Type: string / array<string> SelectBoxEditor – Dropdown Select Editor

In case only fixed entries are allowed to be chosen a select box can be used - multiple selection is supported as well.
The data for populating the select box can be fetched from a fixed set of entries defined in YAML or a datasource.
The most important option is called values, containing the choices which can be made. If wanted, an icon can be displayed for each choice by setting the icon class appropriately.

Basic Example – simple select box:

targetMode:
  type: string
  defaultValue: 'firstChildNode'
  ui:
    label: 'Target mode'
    inspector:
      group: 'document'
      editor: 'Neos.Neos/Inspector/Editors/SelectBoxEditor'
      editorOptions:
        values:
          firstChildNode:
            label: 'First child node'
            icon: 'icon-legal'
          parentNode:
            label: 'Parent node'
            icon: 'icon-fire'
          selectedTarget:
            label: 'Selected target'





If the selection list should be grouped, this can be done by setting the group key of each individual value:

country:
  type: string
  ui:
    label: 'Country'
    inspector:
      group: 'document'
      editor: 'Neos.Neos/Inspector/Editors/SelectBoxEditor'
      editorOptions:
        values:
          italy:
            label: 'Italy'
            group: 'Southern Europe'
          austria:
            label: 'Austria'
            group: 'Central Europe'
          germany:
            label: 'Germany'
            group: 'Central Europe'





Furthermore, multiple selection is also possible, by setting multiple to true, which is automatically set
for properties of type array. If an empty value is allowed as well, allowEmpty should be set to true and
placeholder should be set to a helpful text:

styleOptions:
  type: array
  ui:
    label: 'Styling Options'
    inspector:
      group: 'document'
      editor: 'Neos.Neos/Inspector/Editors/SelectBoxEditor'
      editorOptions:

        # The next line is set automatically for type array
        # multiple: true

        allowEmpty: true
        placeholder: 'Select Styling Options'

        values:
          leftColumn:
            label: 'Show Left Column'
          rightColumn:
            label: 'Show Right Column'





Because selection options shall be fetched from server-side code frequently, the Select Box Editor contains
support for so-called data sources, by setting a dataSourceIdentifier, or optionally a dataSourceUri.
This helps to provide data to the editing interface without having to define routes, policies or a controller.
You can provide an array of dataSourceAdditionalData that will be sent to the data source with each request,
the key/value pairs can be accessed in the $arguments array passed to getData().

questions:
  ui:
    inspector:
      editor: 'Content/Inspector/Editors/SelectBoxEditor'
      editorOptions:
        dataSourceIdentifier: 'questions'
        # alternatively using a custom uri:
        # dataSourceUri: 'custom-route/end-point'
        dataSourceAdditionalData:
          apiKey: 'foo-bar-baz'





See Data sources for more details on implementing a data source based on Neos conventions. If you are using a
data source to populate SelectBoxEditor instances it has to be matching the values option. Make sure you sort by
group first, if using the grouping option.

Example for returning compatible data:

return array(
    array('value' => 'key', 'label' => 'Foo', 'group' => 'A', 'icon' => 'icon-key'),
    array('value' => 'fire', 'label' => 'Fire', 'group' => 'A', 'icon' => 'icon-fire'),
    array('value' => 'legal', 'label' => 'Legal', 'group' => 'B', 'icon' => 'icon-legal')
);





If you use the dataSourceUri option to connect to an arbitrary service, make sure the output of the data source
is a JSON formatted array matching the following structure. Make sure you sort by group first, if using the grouping
option.

Example for compatible data:

[{
  "value": "key",
  "label": "Key",
  "group": "A",
  "icon": "icon-key"
},
{
  "value": "fire",
  "label": "Fire",
  "group": "A",
  "icon": "icon-fire"
},
{
  "value": "legal",
  "label": "Legal",
  "group": "B",
  "icon": "icon-legal"
}]





Options Reference:


	values (required array)
	the list of values which can be chosen from

[valueKey]



	label (required string)
	label of this value.



	group (string)
	group of this value.



	icon (string)
	CSS icon class for this value.










	allowEmpty (boolean)
	if true, it is allowed to choose an empty value.



	placeholder (string)
	placeholder text which is shown if nothing is selected. Only works if
allowEmpty is true. Default Choose.



	multiple (boolean)
	If true, multi-selection is allowed. Default FALSE.



	minimumResultsForSearch (integer)
	The minimum amount of items in the select before showing a search box,
if set to -1 the search box will never be shown.



	dataSourceUri (string)
	If set, this URI will be called for loading the options of the select field.



	dataSourceIdentifier (string)
	If set, a server-side data source will be called for loading the
possible options of the select field.



	dataSourceAdditionalData (array)
	Key/value pairs that will be sent to the server-side data source with every request.



	disabled (boolean)
	If true, disables the SelectBoxEditor.







Property Type: string LinkEditor – Link Editor for internal, external and asset links

If internal links to other nodes, external links or asset links shall be editable at some point, the
LinkEditor can be used to edit a link:

myLink:
  type: string
  ui:
    inspector:
      editor: 'Neos.Neos/Inspector/Editors/LinkEditor'





The searchbox will accept:


	node document titles


	asset titles and tags


	valid URLs


	valid email addresses




By default, links to generic Neos.Neos:Document nodes are allowed; but by setting the nodeTypes option,
this can be further restricted (like with the reference editor). Additionally, links to assets can be disabled
by setting assets to FALSE. Links to external URLs are always possible. If you need a reference towards
only an asset, use the asset property type; for a reference to another node, use the reference node type.
Furthermore, the placeholder text can be customized by setting the placeholder option:

myExternalLink:
  type: string
  ui:
    inspector:
      group: 'document'
      editor: 'Neos.Neos/Inspector/Editors/LinkEditor'
      editorOptions:
        assets: FALSE
        nodeTypes: ['Neos.Neos:Shortcut']
        placeholder: 'Paste a link, or type to search for nodes'





Options Reference:


	disabled (boolean)
	If true, disables the LinkEditor.







Property Type: integer TextFieldEditor

Example:

cropAfterCharacters:
  type: integer
  ui:
    label: 'Crop after characters'
    inspector:
      group: 'document'





Options Reference:

all TextFieldEditor options apply



Property Type: reference / references ReferenceEditor / ReferencesEditor – Reference Selection Editors

The most important option for the property type reference and references is nodeTypes, which allows to
restrict the type of the target nodes which can be selected in the editor.

Example:

authors:
  type: references
  ui:
    label: 'Article Authors'
    inspector:
      group: 'document'
      editorOptions:
        nodeTypes: ['My.Website:Author']





Options Reference:


	nodeTypes (array of strings)
	List of node types which are allowed to be selected. By default, is set
to Neos.Neos:Document, allowing only to choose other document nodes.



	placeholder (string)
	Placeholder text to be shown if nothing is selected



	startingPoint (string)
	The starting point (node path) for finding possible nodes to create a reference.
This allows to search for nodes outside the current site. If not given, nodes
will be searched for in the current site. For all nodes outside the current site
the node path is shown instead of the url path.



	threshold (number)
	Minimum amount of characters which trigger a search. Default is set to 2.



	createNew (array)
	It is also possible to create new selectable nodes directly from the reference editor.
This can come in handy for example if you reference tag nodes and want to add new tags on the fly.

The given string is passed to the title property of the new node.


	path (string)
	The path to the node in which the new nodes should be created.



	type (string)
	The type of the nodes to be created.





tags:
  type: references
  ui:
    label: 'Tags'
    inspector:
      group: document
      editorOptions:
        nodeTypes: ['My.Website:Tag']
        createNew:
          path: /sites/yoursite/tags
          type: 'My.Website:Tag'







	disabled (boolean)
	If true, disables the Reference(s)Editor.







Property Type: DateTime DateTimeEditor – Date & Time Selection Editor

The most important option for DateTime properties is the format, which is configured like in PHP, as the following
examples show:


	d-m-Y: 05-12-2014 – allows to set only the date


	d-m-Y H:i: 05-12-2014 17:07 – allows to set date and time


	H:i: 17:07 – allows to set only the time




Example:

publishingDate:
  type: DateTime
  defaultValue: 'today midnight'
  ui:
    label: 'Publishing Date'
    inspector:
      group: 'document'
      position: 10
      editorOptions:
        format: 'd.m.Y'





Options Reference:


	format (required string)
	The date format, a combination of y, Y, F, m, M, n, t, d, D, j, l, N,
S, w, a, A, g, G, h, H, i, s. Default d-m-Y.



	defaultValue (string)
	Sets property value, when the node is created. Accepted values are whatever
strtotime() can parse, but it works best with relative formats like
tomorrow 09:00 etc. Use now to set current date and time.



	placeholder (string)
	The placeholder shown when no date is selected



	minuteStep (integer)
	The granularity on which a time can be selected. Example: If set to 30, only half-hour
increments of time can be chosen. Default 5 minutes.





For the date format, these are the available placeholders:


	
	year
	
	y: A two digit representation of a year - Examples: 99 or 03


	Y: A full numeric representation of a year, 4 digits - Examples: 1999 or 2003










	
	month
	
	F: A full textual representation of a month, such as January or March - January through December


	m: Numeric representation of a month, with leading zeros - 01 through 12


	M: A short textual representation of a month, three letters - Jan through Dec


	n: Numeric representation of a month, without leading zeros - 1 through 12


	t: Number of days in the given month - 28 through 31










	
	day
	
	d: Day of the month, 2 digits with leading zeros - 01 to 31


	D: A textual representation of a day, three letters - Mon through Sun


	j: Day of the month without leading zeros - 1 to 31


	l: A full textual representation of the day of the week - Sunday through Saturday


	N: ISO-8601 numeric representation of the day of the week - 1 (for Monday) through 7 (for Sunday)


	S: English ordinal suffix for the day of the month, 2 characters - st, nd, rd or th.


	w: Numeric representation of the day of the week - 0 (for Sunday) through 6 (for Saturday)










	
	hour
	
	a: Lowercase Ante meridiem and Post meridiem - am or pm


	A: Uppercase Ante meridiem and Post meridiem - AM or PM


	g: hour without leading zeros - 12-hour format - 1 through 12


	G: hour without leading zeros - 24-hour format - 0 through 23


	h: 12-hour format of an hour with leading zeros - 01 through 12


	H: 24-hour format of an hour with leading zeros - 00 through 23










	
	minute
	
	i: minutes, 2 digits with leading zeros - 00 to 59










	
	second
	
	s: seconds, 2 digits with leading zeros - 00 through 59













	disabled (boolean)
	If true, disables the DateTimeEditor.







Property Type: image (Neos\Media\Domain\Model\ImageInterface) ImageEditor – Image Selection/Upload Editor

For properties of type Neos\Media\Domain\Model\ImageInterface, an image editor is rendered. If you want cropping
and resizing functionality, you need to set features.crop and features.resize to true, as in the following
example:

'teaserImage'
  type: 'Neos\Media\Domain\Model\ImageInterface'
  ui:
    label: 'Teaser Image'
    inspector:
      group: 'document'
      editorOptions:
        features:
          crop: true
          resize: true





If cropping is enabled, you might want to enforce a certain aspect ratio, which can be done by setting
crop.aspectRatio.locked.width and crop.aspectRatio.locked.height. To show the crop dialog automatically on image upload, configure the crop.aspectRatio.forceCrop option. In the following example, the
image format must be 16:9:

'teaserImage'
  type: 'Neos\Media\Domain\Model\ImageInterface'
  ui:
    label: 'Teaser Image'
    inspector:
      group: 'document'
      editorOptions:
        accept: 'image/png'
        features:
          crop: true
        crop:
          aspectRatio:
            forceCrop: true
            locked:
              width: 16
              height: 9





If not locking the cropping to a specific ratio, a set of predefined ratios can be chosen by the user. Elements can be
added or removed from this list underneath crop.aspectRatio.options. If the aspect ratio of the original image
shall be added to the list, crop.aspectRatio.enableOriginal must be set to true. If the user should be allowed
to choose a custom aspect ratio, set crop.aspectRatio.allowCustom to true:

'teaserImage'
  type: 'Neos\Media\Domain\Model\ImageInterface'
  ui:
    label: 'Teaser Image'
    inspector:
      group: 'document'
      editorOptions:
        accept: 'image/png'
        features:
          crop: true
        crop:
          aspectRatio:
            options:
              square:
                width: 1
                height: 1
                label: 'Square'
              fourFive:
                width: 4
                height: 5
              # disable this ratio (if it was defined in a supertype)
              fiveSeven: ~
            enableOriginal: true
            allowCustom: true





Options Reference:


	maximumFileSize (string)
	Set the maximum allowed file size to be uploaded.
Accepts numeric or formatted string values, e.g. “204800” or “204800b” or “2kb”.
Defaults to the maximum allowed upload size configured in php.ini



	accept (string)
	Set the accepted mime type for this editor. If non is given it falls back to image/*.





features



	crop (boolean)
	If true, enable image cropping. Default true.



	upload (boolean)
	If true, enable Upload button, allowing new files to be uploaded directly in the editor. Default true.



	mediaBrowser (boolean)
	If true, enable Media Browser button. Default true.



	resize (boolean)
	If true, enable image resizing. Default FALSE.









	crop
	
crop-related options. Only relevant if features.crop is enabled.


aspectRatio








	forceCrop
	Show the crop dialog on image upload



	locked
	Locks the aspect ratio to a specific width/height ratio


	width (integer)
	width of the aspect ratio which shall be enforced



	height (integer)
	height of the aspect ratio which shall be enforced







	options
	aspect-ratio presets. Only effective if locked is not set.

[presetIdentifier]



	width (required integer)
	the width of the aspect ratio preset



	height (required integer)
	the height of the aspect ratio preset



	label (string)
	a human-readable name of the aspect ratio preset










	enableOriginal (boolean)
	If true, the image ratio of the original image can be chosen in the selector.
Only effective if locked is not set. Default true.



	allowCustom (boolean)
	If true, a completely custom image ratio can be chosen. Only effective if locked
is not set. Default true.



	defaultOption (string)
	default aspect ratio option to be chosen if no cropping has been applied already.














	disabled (boolean)
	If true, disables the ImageEditor.







Property Type: asset (Neos\Media\Domain\Model\Asset / array<Neos\Media\Domain\Model\Asset>) AssetEditor – File Selection Editor

If an asset, i.e. Neos\Media\Domain\Model\Asset, shall be uploaded or selected, the following configuration
is an example:

'caseStudyPdf'
  type: 'Neos\Media\Domain\Model\Asset'
  ui:
    label: 'Case Study PDF'
    inspector:
      group: 'document'





Conversely, if multiple assets shall be uploaded, use array<Neos\Media\Domain\Model\Asset> as type:

'caseStudies'
  type: 'array<Neos\Media\Domain\Model\Asset>'
  ui:
    label: 'Case Study PDF'
    inspector:
      group: 'document'





Options Reference:


	accept
	Set the accepted mime type for this editor. If non is given all files are allowed.





features



	upload (boolean)
	If true, enable Upload button, allowing new files to be uploaded directly in the editor. Default true.



	mediaBrowser (boolean)
	If true, enable Media Browser button. Default true.









	disabled (boolean)
	If true, disables the AssetEditor.






Property Validation

The validators that can be assigned to properties in the node type configuration are used on properties
that are edited via the inspector and are applied on the client-side only. The available validators can
be found in the Neos package in Resources/Public/JavaScript/Shared/Validation:


	AlphanumericValidator


	CountValidator


	DateTimeRangeValidator


	DateTimeValidator


	EmailAddressValidator


	FloatValidator


	IntegerValidator


	LabelValidator


	NotEmptyValidator


	NumberRangeValidator


	RegularExpressionValidator


	StringLengthValidator


	StringValidator


	TextValidator


	UuidValidator




The options are in sync with the Flow validators, so feel free to check the Flow documentation for details.

To apply options, just specify them like this:

someProperty:
  validation:
    'Neos.Neos/Validation/StringLengthValidator':
      minimum: 1
      maximum: 255







Extensibility

It is also possible to add Custom Editors and use Custom Validators.






            

          

      

      

    

  

    
      
          
            
  
View Helper Reference



	Content Repository ViewHelper Reference
	PaginateViewHelper





	FluidAdaptor ViewHelper Reference
	f:debug

	f:flashMessages

	f:form

	f:form.button

	f:form.checkbox

	f:form.hidden

	f:form.password

	f:form.radio

	f:form.select

	f:form.submit

	f:form.textarea

	f:form.textfield

	f:form.upload

	f:format.base64Decode

	f:format.bytes

	f:format.case

	f:format.crop

	f:format.currency

	f:format.date

	f:format.htmlentities

	f:format.htmlentitiesDecode

	f:format.identifier

	f:format.json

	f:format.nl2br

	f:format.number

	f:format.padding

	f:format.stripTags

	f:format.urlencode

	f:link.action

	f:link.email

	f:link.external

	f:renderChildren

	f:security.csrfToken

	f:security.ifAccess

	f:security.ifAuthenticated

	f:security.ifHasRole

	f:translate

	f:uri.action

	f:uri.email

	f:uri.external

	f:uri.resource

	f:validation.ifHasErrors

	f:validation.results

	f:widget.autocomplete

	f:widget.link

	f:widget.paginate

	f:widget.uri





	Form ViewHelper Reference
	neos.form:form

	neos.form:form.datePicker

	neos.form:form.formElementRootlinePath

	neos.form:form.timePicker

	neos.form:form.uploadedImage

	neos.form:form.uploadedResource

	neos.form:render

	neos.form:renderHead

	neos.form:renderRenderable

	neos.form:renderValues

	neos.form:translateElementProperty





	Fusion ViewHelper Reference
	fusion:render





	Media ViewHelper Reference
	neos.media:fileTypeIcon

	neos.media:form.checkbox

	neos.media:format.relativeDate

	neos.media:image

	neos.media:thumbnail

	neos.media:uri.image

	neos.media:uri.thumbnail





	Neos ViewHelper Reference
	neos:backend.authenticationProviderLabel

	neos:backend.changeStats

	neos:backend.colorOfString

	neos:backend.configurationCacheVersion

	neos:backend.configurationTree

	neos:backend.container

	neos:backend.cssBuiltVersion

	neos:backend.documentBreadcrumbPath

	neos:backend.interfaceLanguage

	neos:backend.javascriptBuiltVersion

	neos:backend.javascriptConfiguration

	neos:backend.shouldLoadMinifiedJavascript

	neos:backend.translate

	neos:backend.userInitials

	neos:backend.xliffCacheVersion

	neos:contentElement.editable

	neos:contentElement.wrap

	neos:getType

	neos:link.module

	neos:link.node

	neos:node.closestDocument

	neos:rendering.inBackend

	neos:rendering.inEditMode

	neos:rendering.inPreviewMode

	neos:rendering.live

	neos:standaloneView

	neos:uri.module

	neos:uri.node





	TYPO3 Fluid ViewHelper Reference








            

          

      

      

    

  

    
      
          
            
  
Content Repository ViewHelper Reference

This reference was automatically generated from code on 2019-03-05


PaginateViewHelper

This ViewHelper renders a Pagination of nodes.


	Implementation

	Neos\ContentRepository\ViewHelpers\Widget\PaginateViewHelper






Arguments


	as (string): Variable name for the result set


	parentNode (NeosContentRepositoryDomainModelNodeInterface, optional): The parent node of the child nodes to show (instead of specifying the specific node set)


	nodes (array, optional): The specific collection of nodes to use for this paginator (instead of specifying the parentNode)


	nodeTypeFilter (string, optional): A node type (or more complex filter) to filter for in the results


	configuration (array, optional): Additional configuration


	widgetId (string, optional): Unique identifier of the widget instance









            

          

      

      

    

  

    
      
          
            
  
FluidAdaptor ViewHelper Reference

This reference was automatically generated from code on 2019-03-05


f:debug

View helper that outputs its child nodes with NeosFlowvar_dump()


	Implementation

	Neos\FluidAdaptor\ViewHelpers\DebugViewHelper






Arguments


	title (string, optional): The title


	typeOnly (boolean, optional): Whether only the type should be returned instead of the whole chain.






Examples

inline notation and custom title:

{object -> f:debug(title: 'Custom title')}





Expected result:

all properties of {object} nicely highlighted (with custom title)





only output the type:

{object -> f:debug(typeOnly: true)}





Expected result:

the type or class name of {object}








f:flashMessages

View helper which renders the flash messages (if there are any) as an unsorted list.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\FlashMessagesViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event


	as (string, optional): The name of the current flashMessage variable for rendering inside


	severity (string, optional): severity of the messages (One of the NeosErrorMessagesMessage::SEVERITY_* constants)






Examples

Simple:

<f:flashMessages />





Expected result:

<ul>
  <li class="flashmessages-ok">Some Default Message</li>
  <li class="flashmessages-warning">Some Warning Message</li>
</ul>





Output with css class:

<f:flashMessages class="specialClass" />





Expected result:

<ul class="specialClass">
  <li class="specialClass-ok">Default Message</li>
  <li class="specialClass-notice"><h3>Some notice message</h3>With message title</li>
</ul>





Output flash messages as a list, with arguments and filtered by a severity:

<f:flashMessages severity="Warning" as="flashMessages">
        <dl class="messages">
        <f:for each="{flashMessages}" as="flashMessage">
                <dt>{flashMessage.code}</dt>
                <dd>{flashMessage}</dd>
        </f:for>
        </dl>
</f:flashMessages>





Expected result:

<dl class="messages">
        <dt>1013</dt>
        <dd>Some Warning Message.</dd>
</dl>








f:form

Used to output an HTML <form> tag which is targeted at the specified action, in the current controller and package.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\FormViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	enctype (string, optional): MIME type with which the form is submitted


	method (string, optional): Transfer type (GET or POST or dialog)


	name (string, optional): Name of form


	onreset (string, optional): JavaScript: On reset of the form


	onsubmit (string, optional): JavaScript: On submit of the form


	action (string, optional): Target action


	arguments (array, optional): Arguments


	controller (string, optional): Target controller. If NULL current controllerName is used


	package (string, optional): Target package. if NULL current package is used


	subpackage (string, optional): Target subpackage. if NULL current subpackage is used


	object (mixed, optional): object to use for the form. Use in conjunction with the “property” attribute on the sub tags


	section (string, optional): The anchor to be added to the URI


	format (string, optional): The requested format, e.g. “.html”


	additionalParams (array, optional): additional query parameters that won’t be prefixed like $arguments (overrule $arguments)


	absolute (boolean, optional): If set, an absolute action URI is rendered (only active if $actionUri is not set)


	addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI


	argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the URI. Only active if $addQueryString = true


	fieldNamePrefix (string, optional): Prefix that will be added to all field names within this form


	actionUri (string, optional): can be used to overwrite the “action” attribute of the form tag


	objectName (string, optional): name of the object that is bound to this form. If this argument is not specified, the name attribute of this form is used to determine the FormObjectName


	useParentRequest (boolean, optional): If set, the parent Request will be used instead ob the current one


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event






Examples

Basic usage, POST method:

<f:form action="...">...</f:form>





Expected result:

<form action="...">...</form>





Basic usage, GET method:

<f:form action="..." method="get">...</f:form>





Expected result:

<form method="GET" action="...">...</form>





Form with a sepcified encoding type:

<f:form action=".." controller="..." package="..." enctype="multipart/form-data">...</f:form>





Expected result:

<form enctype="multipart/form-data" action="...">...</form>





Binding a domain object to a form:

<f:form action="..." name="customer" object="{customer}">
  <f:form.hidden property="id" />
  <f:form.textfield property="name" />
</f:form>





Expected result:

A form where the value of {customer.name} is automatically inserted inside the textbox; the name of the textbox is
set to match the property name.








f:form.button

Creates a button.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\ButtonViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	name (string, optional): Name of input tag


	value (mixed, optional): Value of input tag


	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.


	autofocus (string, optional): Specifies that a button should automatically get focus when the page loads


	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads


	form (string, optional): Specifies one or more forms the button belongs to


	formaction (string, optional): Specifies where to send the form-data when a form is submitted. Only for type=”submit”


	formenctype (string, optional): Specifies how form-data should be encoded before sending it to a server. Only for type=”submit” (e.g. “application/x-www-form-urlencoded”, “multipart/form-data” or “text/plain”)


	formmethod (string, optional): Specifies how to send the form-data (which HTTP method to use). Only for type=”submit” (e.g. “get” or “post”)


	formnovalidate (string, optional): Specifies that the form-data should not be validated on submission. Only for type=”submit”


	formtarget (string, optional): Specifies where to display the response after submitting the form. Only for type=”submit” (e.g. “_blank”, “_self”, “_parent”, “_top”, “framename”)


	type (string, optional): Specifies the type of button (e.g. “button”, “reset” or “submit”)


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event






Examples

Defaults:

<f:form.button>Send Mail</f:form.button>





Expected result:

<button type="submit" name="" value="">Send Mail</button>





Disabled cancel button with some HTML5 attributes:

<f:form.button type="reset" name="buttonName" value="buttonValue" disabled="disabled" formmethod="post" formnovalidate="formnovalidate">Cancel</f:form.button>





Expected result:

<button disabled="disabled" formmethod="post" formnovalidate="formnovalidate" type="reset" name="myForm[buttonName]" value="buttonValue">Cancel</button>








f:form.checkbox

View Helper which creates a simple checkbox (<input type=”checkbox”>).


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\CheckboxViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	name (string, optional): Name of input tag


	value (mixed): Value of input tag. Required for checkboxes


	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.


	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads


	errorClass (string, optional): CSS class to set if there are errors for this view helper


	checked (boolean, optional): Specifies that the input element should be preselected


	multiple (boolean, optional): Specifies whether this checkbox belongs to a multivalue (is part of a checkbox group)


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event






Examples

Example:

<f:form.checkbox name="myCheckBox" value="someValue" />





Expected result:

<input type="checkbox" name="myCheckBox" value="someValue" />





Preselect:

<f:form.checkbox name="myCheckBox" value="someValue" checked="{object.value} == 5" />





Expected result:

<input type="checkbox" name="myCheckBox" value="someValue" checked="checked" />
(depending on $object)





Bind to object property:

<f:form.checkbox property="interests" value="TYPO3" />





Expected result:

<input type="checkbox" name="user[interests][]" value="TYPO3" checked="checked" />
(depending on property "interests")








f:form.hidden

Renders an <input type=”hidden” …> tag.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\HiddenViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	name (string, optional): Name of input tag


	value (mixed, optional): Value of input tag


	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event






Examples

Example:

<f:form.hidden name="myHiddenValue" value="42" />





Expected result:

<input type="hidden" name="myHiddenValue" value="42" />








f:form.password

View Helper which creates a simple Password Text Box (<input type=”password”>).


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\PasswordViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	name (string, optional): Name of input tag


	value (mixed, optional): Value of input tag


	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.


	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads


	required (boolean, optional): Specifies that the input element requires a entry pre submit


	maxlength (int, optional): The maxlength attribute of the input field (will not be validated)


	readonly (string, optional): The readonly attribute of the input field


	size (int, optional): The size of the input field


	placeholder (string, optional): The placeholder of the input field


	errorClass (string, optional): CSS class to set if there are errors for this view helper


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event






Examples

Example:

<f:form.password name="myPassword" />





Expected result:

<input type="password" name="myPassword" value="default value" />








f:form.radio

View Helper which creates a simple radio button (<input type=”radio”>).


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\RadioViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	name (string, optional): Name of input tag


	value (mixed): Value of input tag. Required for radio buttons


	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.


	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads


	errorClass (string, optional): CSS class to set if there are errors for this view helper


	checked (boolean, optional): Specifies that the input element should be preselected


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event






Examples

Example:

<f:form.radio name="myRadioButton" value="someValue" />





Expected result:

<input type="radio" name="myRadioButton" value="someValue" />





Preselect:

<f:form.radio name="myRadioButton" value="someValue" checked="{object.value} == 5" />





Expected result:

<input type="radio" name="myRadioButton" value="someValue" checked="checked" />
(depending on $object)





Bind to object property:

<f:form.radio property="newsletter" value="1" /> yes
<f:form.radio property="newsletter" value="0" /> no





Expected result:

<input type="radio" name="user[newsletter]" value="1" checked="checked" /> yes
<input type="radio" name="user[newsletter]" value="0" /> no
(depending on property "newsletter")








f:form.select

This ViewHelper generates a <select> dropdown list for the use with a form.

Basic usage

The most straightforward way is to supply an associative array as the “options” parameter.
The array key is used as option key, and the array value is used as human-readable name.

To pre-select a value, set “value” to the option key which should be selected. If the select box is a multi-select
box (multiple=”true”), then “value” can be an array as well.

Usage on domain objects

If you want to output domain objects, you can just pass them as array into the “options” parameter.
To define what domain object value should be used as option key, use the “optionValueField” variable. Same goes for optionLabelField.
If neither is given, the Identifier (UUID/uid) and the __toString() method are tried as fallbacks.

If the optionValueField variable is set, the getter named after that value is used to retrieve the option key.
If the optionLabelField variable is set, the getter named after that value is used to retrieve the option value.

If the prependOptionLabel variable is set, an option item is added in first position, bearing an empty string
or - if specified - the value of the prependOptionValue variable as value.

In the example below, the userArray is an array of “User” domain objects, with no array key specified. Thus the
method $user->getId() is called to retrieve the key, and $user->getFirstName() to retrieve the displayed value of
each entry. The “value” property now expects a domain object, and tests for object equivalence.

Translation of select content

The ViewHelper can be given a “translate” argument with configuration on how to translate option labels.
The array can have the following keys:
- “by” defines if translation by message id or original label is to be used (“id” or “label”)
- “using” defines if the option tag’s “value” or “label” should be used as translation input, defaults to “value”
- “locale” defines the locale identifier to use, optional, defaults to current locale
- “source” defines the translation source name, optional, defaults to “Main”
- “package” defines the package key of the translation source, optional, defaults to current package
- “prefix” defines a prefix to use for the message id – only works in combination with “by id”


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\SelectViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	name (string, optional): Name of input tag


	value (mixed, optional): Value of input tag


	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event


	multiple (string, optional): if set, multiple select field


	size (string, optional): Size of input field


	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads


	required (boolean, optional): Specifies that the select element requires at least one selected option


	options (array): Associative array with internal IDs as key, and the values are displayed in the select box


	optionValueField (string, optional): If specified, will call the appropriate getter on each object to determine the value.


	optionLabelField (string, optional): If specified, will call the appropriate getter on each object to determine the label.


	sortByOptionLabel (boolean, optional): If true, List will be sorted by label.


	selectAllByDefault (boolean, optional): If specified options are selected if none was set before.


	errorClass (string, optional): CSS class to set if there are errors for this ViewHelper


	translate (array, optional): Configures translation of ViewHelper output.


	prependOptionLabel (string, optional): If specified, will provide an option at first position with the specified label.


	prependOptionValue (string, optional): If specified, will provide an option at first position with the specified value. This argument is only respected if prependOptionLabel is set.






Examples

Basic usage:

<f:form.select name="paymentOptions" options="{payPal: 'PayPal International Services', visa: 'VISA Card'}" />





Expected result:

<select name="paymentOptions">
  <option value="payPal">PayPal International Services</option>
  <option value="visa">VISA Card</option>
</select>





Preselect a default value:

<f:form.select name="paymentOptions" options="{payPal: 'PayPal International Services', visa: 'VISA Card'}" value="visa" />





Expected result:

(Generates a dropdown box like above, except that "VISA Card" is selected.)





Use with domain objects:

<f:form.select name="users" options="{userArray}" optionValueField="id" optionLabelField="firstName" />





Expected result:

(Generates a dropdown box, using ids and first names of the User instances.)





Prepend a fixed option:

<f:form.select property="salutation" options="{salutations}" prependOptionLabel="- select one -" />





Expected result:

<select name="salutation">
  <option value="">- select one -</option>
  <option value="Mr">Mr</option>
  <option value="Mrs">Mrs</option>
  <option value="Ms">Ms</option>
</select>
(depending on variable "salutations")





Label translation:

<f:form.select name="paymentOption" options="{payPal: 'PayPal International Services', visa: 'VISA Card'}" translate="{by: 'id'}" />





Expected result:

(Generates a dropdown box and uses the values "payPal" and "visa" to look up
translations for those ids in the current package's "Main" XLIFF file.)





Label translation usign a prefix:

<f:form.select name="paymentOption" options="{payPal: 'PayPal International Services', visa: 'VISA Card'}" translate="{by: 'id', prefix: 'shop.paymentOptions.'}" />





Expected result:

(Generates a dropdown box and uses the values "shop.paymentOptions.payPal"
and "shop.paymentOptions.visa" to look up translations for those ids in the
current package's "Main" XLIFF file.)








f:form.submit

Creates a submit button.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\SubmitViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	name (string, optional): Name of input tag


	value (mixed, optional): Value of input tag


	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.


	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event






Examples

Defaults:

<f:form.submit value="Send Mail" />





Expected result:

<input type="submit" />





Dummy content for template preview:

<f:form.submit name="mySubmit" value="Send Mail"><button>dummy button</button></f:form.submit>





Expected result:

<input type="submit" name="mySubmit" value="Send Mail" />








f:form.textarea

Textarea view helper.
The value of the text area needs to be set via the “value” attribute, as with all other form ViewHelpers.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\TextareaViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	name (string, optional): Name of input tag


	value (mixed, optional): Value of input tag


	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.


	rows (int, optional): The number of rows of a text area


	cols (int, optional): The number of columns of a text area


	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads


	required (boolean, optional): If the field should be marked as required or not


	placeholder (string, optional): The placeholder of the textarea


	autofocus (string, optional): Specifies that a text area should automatically get focus when the page loads


	maxlength (int, optional): The maxlength attribute of the textarea (will not be validated)


	errorClass (string, optional): CSS class to set if there are errors for this view helper


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event






Examples

Example:

<f:form.textarea name="myTextArea" value="This is shown inside the textarea" />





Expected result:

<textarea name="myTextArea">This is shown inside the textarea</textarea>








f:form.textfield

View Helper which creates a text field (<input type=”text”>).


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\TextfieldViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	name (string, optional): Name of input tag


	value (mixed, optional): Value of input tag


	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.


	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads


	required (boolean, optional): If the field should be marked as required or not


	maxlength (int, optional): The maxlength attribute of the input field (will not be validated)


	readonly (string, optional): The readonly attribute of the input field


	size (int, optional): The size of the input field


	placeholder (string, optional): The placeholder of the input field


	autofocus (string, optional): Specifies that a input field should automatically get focus when the page loads


	type (string, optional): The field type, e.g. “text”, “email”, “url” etc.


	errorClass (string, optional): CSS class to set if there are errors for this view helper


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event






Examples

Example:

<f:form.textfield name="myTextBox" value="default value" />





Expected result:

<input type="text" name="myTextBox" value="default value" />








f:form.upload

A view helper which generates an <input type=”file”> HTML element.
Make sure to set enctype=”multipart/form-data” on the form!

If a file has been uploaded successfully and the form is re-displayed due to validation errors,
this ViewHelper will render hidden fields that contain the previously generated resource so you
won’t have to upload the file again.

You can use a separate ViewHelper to display previously uploaded resources in order to remove/replace them.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\UploadViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	name (string, optional): Name of input tag


	value (mixed, optional): Value of input tag


	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.


	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads


	errorClass (string, optional): CSS class to set if there are errors for this view helper


	collection (string, optional): Name of the resource collection this file should be uploaded to


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event






Examples

Example:

<f:form.upload name="file" />





Expected result:

<input type="file" name="file" />





Multiple Uploads:

<f:form.upload property="attachments.0.originalResource" />
<f:form.upload property="attachments.1.originalResource" />





Expected result:

<input type="file" name="formObject[attachments][0][originalResource]">
<input type="file" name="formObject[attachments][0][originalResource]">





Default resource:

<f:form.upload name="file" value="{someDefaultResource}" />





Expected result:

<input type="hidden" name="file[originallySubmittedResource][__identity]" value="<someDefaultResource-UUID>" />
<input type="file" name="file" />





Specifying the resource collection for the new resource:

<f:form.upload name="file" collection="invoices"/>





Expected result:

<input type="file" name="yourInvoice" />
<input type="hidden" name="yourInvoice[__collectionName]" value="invoices" />








f:format.base64Decode

Applies base64_decode to the input


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\Base64DecodeViewHelper






Arguments


	value (string, optional): string to format







f:format.bytes

Formats an integer with a byte count into human-readable form.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\BytesViewHelper






Arguments


	value (integer, optional): The incoming data to convert, or NULL if VH children should be used


	decimals (integer, optional): The number of digits after the decimal point


	decimalSeparator (string, optional): The decimal point character


	thousandsSeparator (string, optional): The character for grouping the thousand digits






Examples

Defaults:

{fileSize -> f:format.bytes()}





Expected result:

123 KB
// depending on the value of {fileSize}





Defaults:

{fileSize -> f:format.bytes(decimals: 2, decimalSeparator: ',', thousandsSeparator: ',')}





Expected result:

1,023.00 B
// depending on the value of {fileSize}








f:format.case

Modifies the case of an input string to upper- or lowercase or capitalization.
The default transformation will be uppercase as in mb_convert_case [1].

Possible modes are:


	lower
	Transforms the input string to its lowercase representation



	upper
	Transforms the input string to its uppercase representation



	capital
	Transforms the input string to its first letter upper-cased, i.e. capitalization



	uncapital
	Transforms the input string to its first letter lower-cased, i.e. uncapitalization



	capitalWords
	Transforms the input string to each containing word being capitalized





Note that the behavior will be the same as in the appropriate PHP function mb_convert_case [1];
especially regarding locale and multibyte behavior.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\CaseViewHelper






Arguments


	value (string, optional): The input value. If not given, the evaluated child nodes will be used


	mode (string, optional): The case to apply, must be one of this’ CASE_* constants. Defaults to uppercase application







f:format.crop

Use this view helper to crop the text between its opening and closing tags.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\CropViewHelper






Arguments


	maxCharacters (integer): Place where to truncate the string


	append (string, optional): What to append, if truncation happened


	value (string, optional): The input value which should be cropped. If not set, the evaluated contents of the child nodes will be used






Examples

Defaults:

<f:format.crop maxCharacters="10">This is some very long text</f:format.crop>





Expected result:

This is so...





Custom suffix:

<f:format.crop maxCharacters="17" append=" [more]">This is some very long text</f:format.crop>





Expected result:

This is some very [more]





Inline notation:

<span title="Location: {user.city -> f:format.crop(maxCharacters: '12')}">John Doe</span>





Expected result:

<span title="Location: Newtownmount...">John Doe</span>








f:format.currency

Formats a given float to a currency representation.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\CurrencyViewHelper






Arguments


	forceLocale (mixed, optional): Whether if, and what, Locale should be used. May be boolean, string or NeosFlowI18nLocale


	currencySign (string, optional): (optional) The currency sign, eg $ or €.


	decimalSeparator (string, optional): (optional) The separator for the decimal point.


	thousandsSeparator (string, optional): (optional) The thousands separator.


	prependCurrency (boolean, optional): (optional) Indicates if currency symbol should be placed before or after the numeric value.


	separateCurrency (boolean, optional): (optional) Indicates if a space character should be placed between the number and the currency sign.


	decimals (integer, optional): (optional) The number of decimal places.


	currencyCode (string, optional): (optional) The ISO 4217 currency code of the currency to format. Used to set decimal places and rounding.






Examples

Defaults:

<f:format.currency>123.456</f:format.currency>





Expected result:

123,46





All parameters:

<f:format.currency currencySign="$" decimalSeparator="." thousandsSeparator="," prependCurrency="false", separateCurrency="true", decimals="2">54321</f:format.currency>





Expected result:

54,321.00 $





Inline notation:

{someNumber -> f:format.currency(thousandsSeparator: ',', currencySign: '€')}





Expected result:

54,321,00 €
(depending on the value of {someNumber})





Inline notation with current locale used:

{someNumber -> f:format.currency(currencySign: '€', forceLocale: true)}





Expected result:

54.321,00 €
(depending on the value of {someNumber} and the current locale)





Inline notation with specific locale used:

{someNumber -> f:format.currency(currencySign: 'EUR', forceLocale: 'de_DE')}





Expected result:

54.321,00 EUR
(depending on the value of {someNumber})





Inline notation with different position for the currency sign:

{someNumber -> f:format.currency(currencySign: '€', prependCurrency: 'true')}





Expected result:

€ 54.321,00
(depending on the value of {someNumber})





Inline notation with no space between the currency and no decimal places:

{someNumber -> f:format.currency(currencySign: '€', separateCurrency: 'false', decimals: '0')}





Expected result:

54.321€
(depending on the value of {someNumber})








f:format.date

Formats a DateTime object.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\DateViewHelper






Arguments


	forceLocale (mixed, optional): Whether if, and what, Locale should be used. May be boolean, string or NeosFlowI18nLocale


	date (mixed, optional): either a DateTime object or a string that is accepted by DateTime constructor


	format (string, optional): Format String which is taken to format the Date/Time if none of the locale options are set.


	localeFormatType (string, optional): Whether to format (according to locale set in $forceLocale) date, time or datetime. Must be one of NeosFlowI18nCldrReaderDatesReader::FORMAT_TYPE_*’s constants.


	localeFormatLength (string, optional): Format length if locale set in $forceLocale. Must be one of NeosFlowI18nCldrReaderDatesReader::FORMAT_LENGTH_*’s constants.


	cldrFormat (string, optional): Format string in CLDR format (see http://cldr.unicode.org/translation/date-time)






Examples

Defaults:

<f:format.date>{dateObject}</f:format.date>





Expected result:

1980-12-13
(depending on the current date)





Custom date format:

<f:format.date format="H:i">{dateObject}</f:format.date>





Expected result:

01:23
(depending on the current time)





strtotime string:

<f:format.date format="d.m.Y - H:i:s">+1 week 2 days 4 hours 2 seconds</f:format.date>





Expected result:

13.12.1980 - 21:03:42
(depending on the current time, see http://www.php.net/manual/en/function.strtotime.php)





output date from unix timestamp:

<f:format.date format="d.m.Y - H:i:s">@{someTimestamp}</f:format.date>





Expected result:

13.12.1980 - 21:03:42
(depending on the current time. Don't forget the "@" in front of the timestamp see http://www.php.net/manual/en/function.strtotime.php)





Inline notation:

{f:format.date(date: dateObject)}





Expected result:

1980-12-13
(depending on the value of {dateObject})





Inline notation (2nd variant):

{dateObject -> f:format.date()}





Expected result:

1980-12-13
(depending on the value of {dateObject})





Inline notation, outputting date only, using current locale:

{dateObject -> f:format.date(localeFormatType: 'date', forceLocale: true)}





Expected result:

13.12.1980
(depending on the value of {dateObject} and the current locale)





Inline notation with specific locale used:

{dateObject -> f:format.date(forceLocale: 'de_DE')}





Expected result:

13.12.1980 11:15:42
(depending on the value of {dateObject})








f:format.htmlentities

Applies htmlentities() escaping to a value


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\HtmlentitiesViewHelper






Arguments


	value (string, optional): string to format


	keepQuotes (boolean, optional): if true, single and double quotes won’t be replaced (sets ENT_NOQUOTES flag)


	encoding (string, optional): the encoding format


	doubleEncode (string, optional): If false existing html entities won’t be encoded, the default is to convert everything.







f:format.htmlentitiesDecode

Applies html_entity_decode() to a value


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\HtmlentitiesDecodeViewHelper






Arguments


	value (string, optional): string to format


	keepQuotes (boolean, optional): if true, single and double quotes won’t be replaced (sets ENT_NOQUOTES flag)


	encoding (string, optional): the encoding format







f:format.identifier

This ViewHelper renders the identifier of a persisted object (if it has an identity).
Usually the identifier is the UUID of the object, but it could be an array of the
identity properties, too.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\IdentifierViewHelper






Arguments


	value (object, optional): the object to render the identifier for, or NULL if VH children should be used







f:format.json

Wrapper for PHPs json_encode function.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\JsonViewHelper






Arguments


	value (mixed, optional): The incoming data to convert, or NULL if VH children should be used


	forceObject (boolean, optional): Outputs an JSON object rather than an array






Examples

encoding a view variable:

{someArray -> f:format.json()}





Expected result:

["array","values"]
// depending on the value of {someArray}





associative array:

{f:format.json(value: {foo: 'bar', bar: 'baz'})}





Expected result:

{"foo":"bar","bar":"baz"}





non-associative array with forced object:

{f:format.json(value: {0: 'bar', 1: 'baz'}, forceObject: true)}





Expected result:

{"0":"bar","1":"baz"}








f:format.nl2br

Wrapper for PHPs nl2br function.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\Nl2brViewHelper






Arguments


	value (string, optional): string to format







f:format.number

Formats a number with custom precision, decimal point and grouped thousands.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\NumberViewHelper






Arguments


	forceLocale (mixed, optional): Whether if, and what, Locale should be used. May be boolean, string or NeosFlowI18nLocale


	decimals (integer, optional): The number of digits after the decimal point


	decimalSeparator (string, optional): The decimal point character


	thousandsSeparator (string, optional): The character for grouping the thousand digits


	localeFormatLength (string, optional): Format length if locale set in $forceLocale. Must be one of NeosFlowI18nCldrReaderNumbersReader::FORMAT_LENGTH_*’s constants.







f:format.padding

Formats a string using PHPs str_pad function.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\PaddingViewHelper






Arguments


	padLength (integer): Length of the resulting string. If the value of pad_length is negative or less than the length of the input string, no padding takes place.


	padString (string, optional): The padding string


	padType (string, optional): Append the padding at this site (Possible values: right,left,both. Default: right)


	value (string, optional): string to format







f:format.stripTags

Removes tags from the given string (applying PHPs strip_tags() function)


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\StripTagsViewHelper






Arguments


	value (string, optional): string to format







f:format.urlencode

Encodes the given string according to http://www.faqs.org/rfcs/rfc3986.html (applying PHPs rawurlencode() function)


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\UrlencodeViewHelper






Arguments


	value (string, optional): string to format







f:link.action

A view helper for creating links to actions.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Link\ActionViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event


	name (string, optional): Specifies the name of an anchor


	rel (string, optional): Specifies the relationship between the current document and the linked document


	rev (string, optional): Specifies the relationship between the linked document and the current document


	target (string, optional): Specifies where to open the linked document


	action (string): Target action


	arguments (array, optional): Arguments


	controller (string, optional): Target controller. If NULL current controllerName is used


	package (string, optional): Target package. if NULL current package is used


	subpackage (string, optional): Target subpackage. if NULL current subpackage is used


	section (string, optional): The anchor to be added to the URI


	format (string, optional): The requested format, e.g. “.html”


	additionalParams (array, optional): additional query parameters that won’t be prefixed like $arguments (overrule $arguments)


	addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI


	argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the URI. Only active if $addQueryString = true


	useParentRequest (boolean, optional): If set, the parent Request will be used instead of the current one. Note: using this argument can be a sign of undesired tight coupling, use with care


	absolute (boolean, optional): By default this ViewHelper renders links with absolute URIs. If this is false, a relative URI is created instead


	useMainRequest (boolean, optional): If set, the main Request will be used instead of the current one. Note: using this argument can be a sign of undesired tight coupling, use with care






Examples

Defaults:

<f:link.action>some link</f:link.action>





Expected result:

<a href="currentpackage/currentcontroller">some link</a>
(depending on routing setup and current package/controller/action)





Additional arguments:

<f:link.action action="myAction" controller="MyController" package="YourCompanyName.MyPackage" subpackage="YourCompanyName.MySubpackage" arguments="{key1: 'value1', key2: 'value2'}">some link</f:link.action>





Expected result:

<a href="mypackage/mycontroller/mysubpackage/myaction?key1=value1&amp;key2=value2">some link</a>
(depending on routing setup)








f:link.email

Email link view helper.
Generates an email link.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Link\EmailViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event


	name (string, optional): Specifies the name of an anchor


	rel (string, optional): Specifies the relationship between the current document and the linked document


	rev (string, optional): Specifies the relationship between the linked document and the current document


	target (string, optional): Specifies where to open the linked document


	email (string): The email address to be turned into a link.






Examples

basic email link:

<f:link.email email="foo@bar.tld" />





Expected result:

<a href="mailto:foo@bar.tld">foo@bar.tld</a>





Email link with custom linktext:

<f:link.email email="foo@bar.tld">some custom content</f:link.email>





Expected result:

<a href="mailto:foo@bar.tld">some custom content</a>








f:link.external

A view helper for creating links to external targets.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Link\ExternalViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event


	name (string, optional): Specifies the name of an anchor


	rel (string, optional): Specifies the relationship between the current document and the linked document


	rev (string, optional): Specifies the relationship between the linked document and the current document


	target (string, optional): Specifies where to open the linked document


	uri (string): the URI that will be put in the href attribute of the rendered link tag


	defaultScheme (string, optional): scheme the href attribute will be prefixed with if specified $uri does not contain a scheme already






Examples

custom default scheme:

<f:link.external uri="neos.io" defaultScheme="sftp">external ftp link</f:link.external>





Expected result:

<a href="sftp://neos.io">external ftp link</a>








f:renderChildren

Render the inner parts of a Widget.
This ViewHelper can only be used in a template which belongs to a Widget Controller.

It renders everything inside the Widget ViewHelper, and you can pass additional
arguments.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\RenderChildrenViewHelper






Arguments


	arguments (array, optional)






Examples

Basic usage:

<!-- in the widget template -->
Header
<f:renderChildren arguments="{foo: 'bar'}" />
Footer

<-- in the outer template, using the widget -->

<x:widget.someWidget>
  Foo: {foo}
</x:widget.someWidget>





Expected result:

Header
Foo: bar
Footer








f:security.csrfToken

ViewHelper that outputs a CSRF token which is required for “unsafe” requests (e.g. POST, PUT, DELETE, …).

Note: You won’t need this ViewHelper if you use the Form ViewHelper, because that creates a hidden field with
the CSRF token for unsafe requests automatically. This ViewHelper is mainly useful in conjunction with AJAX.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Security\CsrfTokenViewHelper







f:security.ifAccess

This view helper implements an ifAccess/else condition.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Security\IfAccessViewHelper






Arguments


	then (mixed, optional): Value to be returned if the condition if met.


	else (mixed, optional): Value to be returned if the condition if not met.


	condition (boolean, optional): Condition expression conforming to Fluid boolean rules


	privilegeTarget (string): Condition expression conforming to Fluid boolean rules


	parameters (array, optional): Condition expression conforming to Fluid boolean rules







f:security.ifAuthenticated

This view helper implements an ifAuthenticated/else condition.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Security\IfAuthenticatedViewHelper






Arguments


	then (mixed, optional): Value to be returned if the condition if met.


	else (mixed, optional): Value to be returned if the condition if not met.


	condition (boolean, optional): Condition expression conforming to Fluid boolean rules







f:security.ifHasRole

This view helper implements an ifHasRole/else condition.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Security\IfHasRoleViewHelper






Arguments


	then (mixed, optional): Value to be returned if the condition if met.


	else (mixed, optional): Value to be returned if the condition if not met.


	condition (boolean, optional): Condition expression conforming to Fluid boolean rules


	role (mixed): The role or role identifier.


	packageKey (string, optional): PackageKey of the package defining the role.


	account (NeosFlowSecurityAccount, optional): If specified, this subject of this check is the given Account instead of the currently authenticated account







f:translate

Returns translated message using source message or key ID.

Also replaces all placeholders with formatted versions of provided values.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\TranslateViewHelper






Arguments


	id (string, optional): Id to use for finding translation (trans-unit id in XLIFF)


	value (string, optional): If $key is not specified or could not be resolved, this value is used. If this argument is not set, child nodes will be used to render the default


	arguments (array, optional): Numerically indexed array of values to be inserted into placeholders


	source (string, optional): Name of file with translations (use / as a directory separator)


	package (string, optional): Target package key. If not set, the current package key will be used


	quantity (mixed, optional): A number to find plural form for (float or int), NULL to not use plural forms


	locale (string, optional): An identifier of locale to use (NULL for use the default locale)






Examples

Translation by id:

<f:translate id="user.unregistered">Unregistered User</f:translate>





Expected result:

translation of label with the id "user.unregistered" and a fallback to "Unregistered User"





Inline notation:

{f:translate(id: 'some.label.id', value: 'fallback result')}





Expected result:

translation of label with the id "some.label.id" and a fallback to "fallback result"





Custom source and locale:

<f:translate id="some.label.id" source="LabelsCatalog" locale="de_DE"/>





Expected result:

translation from custom source "SomeLabelsCatalog" for locale "de_DE"





Custom source from other package:

<f:translate id="some.label.id" source="LabelsCatalog" package="OtherPackage"/>





Expected result:

translation from custom source "LabelsCatalog" in "OtherPackage"





Arguments:

<f:translate arguments="{0: 'foo', 1: '99.9'}"><![CDATA[Untranslated {0} and {1,number}]]></f:translate>





Expected result:

translation of the label "Untranslated foo and 99.9"





Translation by label:

<f:translate>Untranslated label</f:translate>





Expected result:

translation of the label "Untranslated label"








f:uri.action

A view helper for creating URIs to actions.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Uri\ActionViewHelper






Arguments


	action (string): Target action


	arguments (array, optional): Arguments


	controller (string, optional): Target controller. If NULL current controllerName is used


	package (string, optional): Target package. if NULL current package is used


	subpackage (string, optional): Target subpackage. if NULL current subpackage is used


	section (string, optional): The anchor to be added to the URI


	format (string, optional): The requested format, e.g. “.html”


	additionalParams (array, optional): additional query parameters that won’t be prefixed like $arguments (overrule $arguments)


	absolute (boolean, optional): By default this ViewHelper renders links with absolute URIs. If this is false, a relative URI is created instead


	addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI


	argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the URI. Only active if $addQueryString = true


	useParentRequest (boolean, optional): If set, the parent Request will be used instead of the current one. Note: using this argument can be a sign of undesired tight coupling, use with care


	useMainRequest (boolean, optional): If set, the main Request will be used instead of the current one. Note: using this argument can be a sign of undesired tight coupling, use with care






Examples

Defaults:

<f:uri.action>some link</f:uri.action>





Expected result:

currentpackage/currentcontroller
(depending on routing setup and current package/controller/action)





Additional arguments:

<f:uri.action action="myAction" controller="MyController" package="YourCompanyName.MyPackage" subpackage="YourCompanyName.MySubpackage" arguments="{key1: 'value1', key2: 'value2'}">some link</f:uri.action>





Expected result:

mypackage/mycontroller/mysubpackage/myaction?key1=value1&amp;key2=value2
(depending on routing setup)








f:uri.email

Email uri view helper.
Currently the specified email is simply prepended by “mailto:” but we might add spam protection.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Uri\EmailViewHelper






Arguments


	email (string): The email address to be turned into a mailto uri.






Examples

basic email uri:

<f:uri.email email="foo@bar.tld" />





Expected result:

mailto:foo@bar.tld








f:uri.external

A view helper for creating URIs to external targets.
Currently the specified URI is simply passed through.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Uri\ExternalViewHelper






Arguments


	uri (string): target URI


	defaultScheme (string, optional): target URI






Examples

custom default scheme:

<f:uri.external uri="neos.io" defaultScheme="sftp" />





Expected result:

sftp://neos.io








f:uri.resource

A view helper for creating URIs to resources.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Uri\ResourceViewHelper






Arguments


	path (string, optional): Location of the resource, can be either a path relative to the Public resource directory of the package or a resource://… URI


	package (string, optional): Target package key. If not set, the current package key will be used


	resource (NeosFlowResourceManagementPersistentResource, optional): If specified, this resource object is used instead of the path and package information


	localize (bool, optional): Whether resource localization should be attempted or not.






Examples

Defaults:

<link href="{f:uri.resource(path: 'CSS/Stylesheet.css')}" rel="stylesheet" />





Expected result:

<link href="http://yourdomain.tld/_Resources/Static/YourPackage/CSS/Stylesheet.css" rel="stylesheet" />
(depending on current package)





Other package resource:

{f:uri.resource(path: 'gfx/SomeImage.png', package: 'DifferentPackage')}





Expected result:

http://yourdomain.tld/_Resources/Static/DifferentPackage/gfx/SomeImage.png
(depending on domain)





Static resource URI:

{f:uri.resource(path: 'resource://DifferentPackage/Public/gfx/SomeImage.png')}





Expected result:

http://yourdomain.tld/_Resources/Static/DifferentPackage/gfx/SomeImage.png
(depending on domain)





Persistent resource object:

<img src="{f:uri.resource(resource: myImage.resource)}" />





Expected result:

<img src="http://yourdomain.tld/_Resources/Persistent/69e73da3ce0ad08c717b7b9f1c759182d6650944.jpg" />
(depending on your resource object)








f:validation.ifHasErrors

This view helper allows to check whether validation errors adhere to the current request.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Validation\IfHasErrorsViewHelper






Arguments


	then (mixed, optional): Value to be returned if the condition if met.


	else (mixed, optional): Value to be returned if the condition if not met.


	for (string, optional): The argument or property name or path to check for error(s). If not set any validation error leads to the “then child” to be rendered







f:validation.results

Validation results view helper


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Validation\ResultsViewHelper






Arguments


	for (string, optional): The name of the error name (e.g. argument name or property name). This can also be a property path (like blog.title), and will then only display the validation errors of that property.


	as (string, optional): The name of the variable to store the current error






Examples

Output error messages as a list:

<f:validation.results>
  <f:if condition="{validationResults.flattenedErrors}">
    <ul class="errors">
      <f:for each="{validationResults.flattenedErrors}" as="errors" key="propertyPath">
        <li>{propertyPath}
          <ul>
          <f:for each="{errors}" as="error">
            <li>{error.code}: {error}</li>
          </f:for>
          </ul>
        </li>
      </f:for>
    </ul>
  </f:if>
</f:validation.results>





Expected result:

<ul class="errors">
  <li>1234567890: Validation errors for argument "newBlog"</li>
</ul>





Output error messages for a single property:

<f:validation.results for="someProperty">
  <f:if condition="{validationResults.flattenedErrors}">
    <ul class="errors">
      <f:for each="{validationResults.errors}" as="error">
        <li>{error.code}: {error}</li>
      </f:for>
    </ul>
  </f:if>
</f:validation.results>





Expected result:

<ul class="errors">
  <li>1234567890: Some error message</li>
</ul>








f:widget.autocomplete

Usage:
<f:input id=”name” … />
<f:widget.autocomplete for=”name” objects=”{posts}” searchProperty=”author”>


	Make sure to include jQuery and jQuery UI in the HTML, like that:
	<script type=”text/javascript” src=”http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js”></script>
<script type=”text/javascript” src=”http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.4/jquery-ui.min.js”></script>
<link rel=”stylesheet” href=”http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.3/themes/base/jquery-ui.css” type=”text/css” media=”all” />
<link rel=”stylesheet” href=”http://static.jquery.com/ui/css/demo-docs-theme/ui.theme.css” type=”text/css” media=”all” />






	Implementation

	Neos\FluidAdaptor\ViewHelpers\Widget\AutocompleteViewHelper






Arguments


	objects (NeosFlowPersistenceQueryResultInterface)


	for (string)


	searchProperty (string)


	configuration (array, optional)


	widgetId (string, optional): Unique identifier of the widget instance







f:widget.link

widget.link ViewHelper
This ViewHelper can be used inside widget templates in order to render links pointing to widget actions


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Widget\LinkViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	action (string, optional): Target action


	arguments (array, optional): Arguments


	section (string, optional): The anchor to be added to the URI


	format (string, optional): The requested format, e.g. “.html


	ajax (boolean, optional): true if the URI should be to an AJAX widget, false otherwise.


	includeWidgetContext (boolean, optional): true if the URI should contain the serialized widget context (only useful for stateless AJAX widgets)


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event


	name (string, optional): Specifies the name of an anchor


	rel (string, optional): Specifies the relationship between the current document and the linked document


	rev (string, optional): Specifies the relationship between the linked document and the current document


	target (string, optional): Specifies where to open the linked document







f:widget.paginate

This ViewHelper renders a Pagination of objects.


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Widget\PaginateViewHelper






Arguments


	objects (NeosFlowPersistenceQueryResultInterface)


	as (string)


	configuration (array, optional)


	widgetId (string, optional): Unique identifier of the widget instance







f:widget.uri

widget.uri ViewHelper
This ViewHelper can be used inside widget templates in order to render URIs pointing to widget actions


	Implementation

	Neos\FluidAdaptor\ViewHelpers\Widget\UriViewHelper






Arguments


	action (string, optional): Target action


	arguments (array, optional): Arguments


	section (string, optional): The anchor to be added to the URI


	format (string, optional): The requested format, e.g. “.html


	ajax (boolean, optional): true if the URI should be to an AJAX widget, false otherwise.


	includeWidgetContext (boolean, optional): true if the URI should contain the serialized widget context (only useful for stateless AJAX widgets)









            

          

      

      

    

  

    
      
          
            
  
Form ViewHelper Reference

This reference was automatically generated from code on 2019-03-05


neos.form:form

Custom form ViewHelper that renders the form state instead of referrer fields


	Implementation

	Neos\Form\ViewHelpers\FormViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	enctype (string, optional): MIME type with which the form is submitted


	method (string, optional): Transfer type (GET or POST or dialog)


	name (string, optional): Name of form


	onreset (string, optional): JavaScript: On reset of the form


	onsubmit (string, optional): JavaScript: On submit of the form


	action (string, optional): Target action


	arguments (array, optional): Arguments


	controller (string, optional): Target controller. If NULL current controllerName is used


	package (string, optional): Target package. if NULL current package is used


	subpackage (string, optional): Target subpackage. if NULL current subpackage is used


	object (mixed, optional): object to use for the form. Use in conjunction with the “property” attribute on the sub tags


	section (string, optional): The anchor to be added to the URI


	format (string, optional): The requested format, e.g. “.html”


	additionalParams (array, optional): additional query parameters that won’t be prefixed like $arguments (overrule $arguments)


	absolute (boolean, optional): If set, an absolute action URI is rendered (only active if $actionUri is not set)


	addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI


	argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the URI. Only active if $addQueryString = true


	fieldNamePrefix (string, optional): Prefix that will be added to all field names within this form


	actionUri (string, optional): can be used to overwrite the “action” attribute of the form tag


	objectName (string, optional): name of the object that is bound to this form. If this argument is not specified, the name attribute of this form is used to determine the FormObjectName


	useParentRequest (boolean, optional): If set, the parent Request will be used instead ob the current one


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event







neos.form:form.datePicker

Display a jQuery date picker.

Note: Requires jQuery UI to be included on the page.


	Implementation

	Neos\Form\ViewHelpers\Form\DatePickerViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	dateFormat (string, optional)


	enableDatePicker (boolean, optional)


	name (string, optional): Name of input tag


	value (mixed, optional): Value of input tag


	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.


	size (int, optional): The size of the input field


	placeholder (string, optional): Specifies a short hint that describes the expected value of an input element


	errorClass (string, optional): CSS class to set if there are errors for this view helper


	initialDate (string, optional): Initial date (@see http://www.php.net/manual/en/datetime.formats.php for supported formats)


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event







neos.form:form.formElementRootlinePath

Form Element Rootline Path


	Implementation

	Neos\Form\ViewHelpers\Form\FormElementRootlinePathViewHelper






Arguments


	renderable (NeosFormCoreModelRenderableRenderableInterface)







neos.form:form.timePicker

Displays two select-boxes for hour and minute selection.


	Implementation

	Neos\Form\ViewHelpers\Form\TimePickerViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	name (string, optional): Name of input tag


	value (mixed, optional): Value of input tag


	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.


	size (int, optional): The size of the select field


	placeholder (string, optional): Specifies a short hint that describes the expected value of an input element


	disabled (string, optional): Specifies that the select element should be disabled when the page loads


	errorClass (string, optional): CSS class to set if there are errors for this view helper


	initialDate (string, optional): Initial time (@see http://www.php.net/manual/en/datetime.formats.php for supported formats)


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event







neos.form:form.uploadedImage

This ViewHelper makes the specified Image object available for its
childNodes.
In case the form is redisplayed because of validation errors, a previously
uploaded image will be correctly used.


	Implementation

	Neos\Form\ViewHelpers\Form\UploadedImageViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	as (string, optional)


	name (string, optional): Name of input tag


	value (mixed, optional): Value of input tag


	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.






Examples

Example:

<f:form.upload property="image" />
<c:form.uploadedImage property="image" as="theImage">
  <a href="{f:uri.resource(resource: theImage.resource)}">Link to image resource</a>
</c:form.uploadedImage>





Expected result:

<a href="...">Link to image resource</a>








neos.form:form.uploadedResource

This ViewHelper makes the specified PersistentResource available for its
childNodes. If no resource object was found at the specified position,
the child nodes are not rendered.

In case the form is redisplayed because of validation errors, a previously
uploaded resource will be correctly used.


	Implementation

	Neos\Form\ViewHelpers\Form\UploadedResourceViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	as (string, optional)


	name (string, optional): Name of input tag


	value (mixed, optional): Value of input tag


	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.






Examples

Example:

<f:form.upload property="file" />
<c:form.uploadedResource property="file" as="theResource">
  <a href="{f:uri.resource(resource: theResource)}">Link to resource</a>
</c:form.uploadedResource>





Expected result:

<a href="...">Link to resource</a>








neos.form:render

Main Entry Point to render a Form into a Fluid Template

<pre>
{namespace form=NeosFormViewHelpers}
<form:render factoryClass=”NameOfYourCustomFactoryClass” />
</pre>

The factory class must implement {@link NeosFormFactoryFormFactoryInterface}.


	Implementation

	Neos\Form\ViewHelpers\RenderViewHelper






Arguments


	persistenceIdentifier (string, optional): the persistence identifier for the form.


	factoryClass (string, optional): The fully qualified class name of the factory (which has to implement NeosFormFactoryFormFactoryInterface)


	presetName (string, optional): name of the preset to use


	overrideConfiguration (array, optional): factory specific configuration







neos.form:renderHead

Output the configured stylesheets and JavaScript include tags for a given preset


	Implementation

	Neos\Form\ViewHelpers\RenderHeadViewHelper






Arguments


	presetName (string, optional): name of the preset to use







neos.form:renderRenderable

Render a renderable


	Implementation

	Neos\Form\ViewHelpers\RenderRenderableViewHelper






Arguments


	renderable (NeosFormCoreModelRenderableRenderableInterface)







neos.form:renderValues

Renders the values of a form


	Implementation

	Neos\Form\ViewHelpers\RenderValuesViewHelper






Arguments


	renderable (NeosFormCoreModelRenderableRootRenderableInterface, optional): If specified, only the values of the given renderable are rendered, otherwise all form elements are rendered


	formRuntime (NeosFormCoreRuntimeFormRuntime, optional): If not set, the Form Runtime will be fetched from the View, which only works within the FluidFormRenderer


	as (string, optional)







neos.form:translateElementProperty

ViewHelper to translate the property of a given form element based on its rendering options


	Implementation

	Neos\Form\ViewHelpers\TranslateElementPropertyViewHelper






Arguments


	property (string)


	element (NeosFormCoreModelFormElementInterface, optional)









            

          

      

      

    

  

    
      
          
            
  
Fusion ViewHelper Reference

This reference was automatically generated from code on 2019-03-05


fusion:render

Render a Fusion object with a relative Fusion path, optionally
pushing new variables onto the Fusion context.


	Implementation

	Neos\Fusion\ViewHelpers\RenderViewHelper






Arguments


	path (string): Relative Fusion path to be rendered


	context (array, optional): Additional context variables to be set.


	fusionPackageKey (string, optional): The key of the package to load Fusion from, if not from the current context.


	fusionFilePathPattern (string, optional): Resource pattern to load Fusion from. Defaults to: resource://@package/Private/Fusion/






Examples

Simple:

Fusion:
some.given {
        path = Neos.Fusion:Template
        …
}
ViewHelper:
<ts:render path="some.given.path" />





Expected result:

(the evaluated Fusion, depending on the given path)





Fusion from a foreign package:

<ts:render path="some.given.path" fusionPackageKey="Acme.Bookstore" />





Expected result:

(the evaluated Fusion, depending on the given path)










            

          

      

      

    

  

    
      
          
            
  
Media ViewHelper Reference

This reference was automatically generated from code on 2019-03-05


neos.media:fileTypeIcon

Renders an <img> HTML tag for a file type icon for a given Neos.Media’s asset instance


	Implementation

	Neos\Media\ViewHelpers\FileTypeIconViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	file (mixed, optional): The Asset object. DEPRECATED, use $asset instead!


	asset (mixed, optional): An Asset object to determine the file type icon for. Alternatively $filename can be specified.


	filename (string, optional):  A filename to determine the file type icon for. Alternatively $asset can be specified.


	width (mixed, optional)


	height (mixed, optional)


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event






Examples

Rendering an asset file type icon:

<neos.media:fileTypeIcon asset="{assetObject}" height="16" />





Expected result:

(depending on the asset, no scaling applied)
<img src="_Resources/Static/Packages/Neos/Media/Icons/16px/jpg.png" height="16" alt="file type alt text" />





Rendering a file type icon by given filename:

<neos.media:fileTypeIcon filename="{someFilename}" height="16" />





Expected result:

(depending on the asset, no scaling applied)
<img src="_Resources/Static/Packages/Neos/Media/Icons/16px/jpg.png" height="16" alt="file type alt text" />








neos.media:form.checkbox

View Helper which creates a simple checkbox (<input type=”checkbox”>).


	Implementation

	Neos\Media\ViewHelpers\Form\CheckboxViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	checked (boolean, optional): Specifies that the input element should be preselected


	multiple (boolean, optional): Specifies whether this checkbox belongs to a multivalue (is part of a checkbox group)


	name (string, optional): Name of input tag


	value (mixed): Value of input tag. Required for checkboxes


	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.


	disabled (string, optional): Specifies that the input element should be disabled when the page loads


	errorClass (string, optional): CSS class to set if there are errors for this view helper


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event






Examples

Example:

<neos.media:form.checkbox name="myCheckBox" value="someValue" />





Expected result:

<input type="checkbox" name="myCheckBox" value="someValue" />





Preselect:

<neos.media:form.checkbox name="myCheckBox" value="someValue" checked="{object.value} == 5" />





Expected result:

<input type="checkbox" name="myCheckBox" value="someValue" checked="checked" />
(depending on $object)





Bind to object property:

<neos.media:form.checkbox property="interests" value="Neos" />





Expected result:

<input type="checkbox" name="user[interests][]" value="Neos" checked="checked" />
(depending on property "interests")








neos.media:format.relativeDate

Renders a DateTime formatted relative to the current date


	Implementation

	Neos\Media\ViewHelpers\Format\RelativeDateViewHelper






Arguments


	date (DateTime, optional)







neos.media:image

Renders an <img> HTML tag from a given Neos.Media’s image instance


	Implementation

	Neos\Media\ViewHelpers\ImageViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	image (NeosMediaDomainModelImageInterface, optional): The image to be rendered as an image


	width (integer, optional): Desired width of the image


	maximumWidth (integer, optional): Desired maximum width of the image


	height (integer, optional): Desired height of the image


	maximumHeight (integer, optional): Desired maximum height of the image


	allowCropping (boolean, optional): Whether the image should be cropped if the given sizes would hurt the aspect ratio


	allowUpScaling (boolean, optional): Whether the resulting image size might exceed the size of the original image


	async (boolean, optional): Return asynchronous image URI in case the requested image does not exist already


	preset (string, optional): Preset used to determine image configuration


	quality (integer, optional): Quality of the image


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event


	alt (string): Specifies an alternate text for an image


	ismap (string, optional): Specifies an image as a server-side image-map. Rarely used. Look at usemap instead


	usemap (string, optional): Specifies an image as a client-side image-map






Examples

Rendering an image as-is:

<neos.media:image image="{imageObject}" alt="a sample image without scaling" />





Expected result:

(depending on the image, no scaling applied)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="120" height="180" alt="a sample image without scaling" />





Rendering an image with scaling at a given width only:

<neos.media:image image="{imageObject}" maximumWidth="80" alt="sample" />





Expected result:

(depending on the image; scaled down to a maximum width of 80 pixels, keeping the aspect ratio)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="80" height="120" alt="sample" />





Rendering an image with scaling at given width and height, keeping aspect ratio:

<neos.media:image image="{imageObject}" maximumWidth="80" maximumHeight="80" alt="sample" />





Expected result:

(depending on the image; scaled down to a maximum width and height of 80 pixels, keeping the aspect ratio)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="53" height="80" alt="sample" />





Rendering an image with crop-scaling at given width and height:

<neos.media:image image="{imageObject}" maximumWidth="80" maximumHeight="80" allowCropping="true" alt="sample" />





Expected result:

(depending on the image; scaled down to a width and height of 80 pixels, possibly changing aspect ratio)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="80" height="80" alt="sample" />





Rendering an image with allowed up-scaling at given width and height:

<neos.media:image image="{imageObject}" maximumWidth="5000" allowUpScaling="true" alt="sample" />





Expected result:

(depending on the image; scaled up or down to a width 5000 pixels, keeping aspect ratio)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="80" height="80" alt="sample" />








neos.media:thumbnail

Renders an <img> HTML tag from a given Neos.Media’s asset instance


	Implementation

	Neos\Media\ViewHelpers\ThumbnailViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	asset (NeosMediaDomainModelAssetInterface, optional): The asset to be rendered as a thumbnail


	width (integer, optional): Desired width of the thumbnail


	maximumWidth (integer, optional): Desired maximum width of the thumbnail


	height (integer, optional): Desired height of the thumbnail


	maximumHeight (integer, optional): Desired maximum height of the thumbnail


	allowCropping (boolean, optional): Whether the thumbnail should be cropped if the given sizes would hurt the aspect ratio


	allowUpScaling (boolean, optional): Whether the resulting thumbnail size might exceed the size of the original asset


	async (boolean, optional): Return asynchronous image URI in case the requested image does not exist already


	preset (string, optional): Preset used to determine image configuration


	quality (integer, optional): Quality of the image


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event


	alt (string): Specifies an alternate text for an asset






Examples

Rendering an asset thumbnail:

<neos.media:thumbnail asset="{assetObject}" alt="a sample asset without scaling" />





Expected result:

(depending on the asset, no scaling applied)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="120" height="180" alt="a sample asset without scaling" />





Rendering an asset thumbnail with scaling at a given width only:

<neos.media:thumbnail asset="{assetObject}" maximumWidth="80" alt="sample" />





Expected result:

(depending on the asset; scaled down to a maximum width of 80 pixels, keeping the aspect ratio)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="80" height="120" alt="sample" />





Rendering an asset thumbnail with scaling at given width and height, keeping aspect ratio:

<neos.media:thumbnail asset="{assetObject}" maximumWidth="80" maximumHeight="80" alt="sample" />





Expected result:

(depending on the asset; scaled down to a maximum width and height of 80 pixels, keeping the aspect ratio)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="53" height="80" alt="sample" />





Rendering an asset thumbnail with crop-scaling at given width and height:

<neos.media:thumbnail asset="{assetObject}" maximumWidth="80" maximumHeight="80" allowCropping="true" alt="sample" />





Expected result:

(depending on the asset; scaled down to a width and height of 80 pixels, possibly changing aspect ratio)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="80" height="80" alt="sample" />





Rendering an asset thumbnail with allowed up-scaling at given width and height:

<neos.media:thumbnail asset="{assetObject}" maximumWidth="5000" allowUpScaling="true" alt="sample" />





Expected result:

(depending on the asset; scaled up or down to a width 5000 pixels, keeping aspect ratio)
<img src="_Resources/Persistent/b29[...]95d.jpeg" width="80" height="80" alt="sample" />








neos.media:uri.image

Renders the src path of a thumbnail image of a given Neos.Media image instance


	Implementation

	Neos\Media\ViewHelpers\Uri\ImageViewHelper






Arguments


	image (NeosMediaDomainModelImageInterface, optional): The image to retrieve the path from


	width (integer, optional): Desired width of the image


	maximumWidth (integer, optional): Desired maximum width of the image


	height (integer, optional): Desired height of the image


	maximumHeight (integer, optional): Desired maximum height of the image


	allowCropping (boolean, optional): Whether the image should be cropped if the given sizes would hurt the aspect ratio


	allowUpScaling (boolean, optional): Whether the resulting image size might exceed the size of the original image


	async (boolean, optional): Return asynchronous image URI in case the requested image does not exist already


	preset (string, optional): Preset used to determine image configuration


	quality (integer, optional): Quality of the image






Examples

Rendering an image path as-is:

{neos.media:uri.image(image: imageObject)}





Expected result:

(depending on the image)
_Resources/Persistent/b29[...]95d.jpeg





Rendering an image path with scaling at a given width only:

{neos.media:uri.image(image: imageObject, maximumWidth: 80)}





Expected result:

(depending on the image; has scaled keeping the aspect ratio)
_Resources/Persistent/b29[...]95d.jpeg








neos.media:uri.thumbnail

Renders the src path of a thumbnail image of a given Neos.Media asset instance


	Implementation

	Neos\Media\ViewHelpers\Uri\ThumbnailViewHelper






Arguments


	asset (NeosMediaDomainModelAssetInterface, optional)


	width (integer, optional): Desired width of the thumbnail


	maximumWidth (integer, optional): Desired maximum width of the thumbnail


	height (integer, optional): Desired height of the thumbnail


	maximumHeight (integer, optional): Desired maximum height of the thumbnail


	allowCropping (boolean, optional): Whether the thumbnail should be cropped if the given sizes would hurt the aspect ratio


	allowUpScaling (boolean, optional): Whether the resulting thumbnail size might exceed the size of the original asset


	async (boolean, optional): Return asynchronous image URI in case the requested image does not exist already


	preset (string, optional): Preset used to determine image configuration


	quality (integer, optional): Quality of the image






Examples

Rendering an asset thumbnail path as-is:

{neos.media:uri.thumbnail(asset: assetObject)}





Expected result:

(depending on the asset)
_Resources/Persistent/b29[...]95d.jpeg





Rendering an asset thumbnail path with scaling at a given width only:

{neos.media:uri.thumbnail(asset: assetObject, maximumWidth: 80)}





Expected result:

(depending on the asset; has scaled keeping the aspect ratio)
_Resources/Persistent/b29[...]95d.jpeg










            

          

      

      

    

  

    
      
          
            
  
Neos ViewHelper Reference

This reference was automatically generated from code on 2019-03-05


neos:backend.authenticationProviderLabel

Renders a label for the given authentication provider identifier


	Implementation

	Neos\Neos\ViewHelpers\Backend\AuthenticationProviderLabelViewHelper






Arguments


	identifier (string)







neos:backend.changeStats

Displays a text-based “bar graph” giving an indication of the amount and type of
changes done to something. Created for use in workspace management.


	Implementation

	Neos\Neos\ViewHelpers\Backend\ChangeStatsViewHelper






Arguments


	changeCounts (array): Expected keys: new, changed, removed







neos:backend.colorOfString

Generates a color code for a given string


	Implementation

	Neos\Neos\ViewHelpers\Backend\ColorOfStringViewHelper






Arguments


	string (string, optional)


	minimalBrightness (integer, optional)







neos:backend.configurationCacheVersion

ViewHelper for rendering the current version identifier for the
configuration cache.


	Implementation

	Neos\Neos\ViewHelpers\Backend\ConfigurationCacheVersionViewHelper







neos:backend.configurationTree

Render HTML markup for the full configuration tree in the Neos Administration -> Configuration Module.

For performance reasons, this is done inside a ViewHelper instead of Fluid itself.


	Implementation

	Neos\Neos\ViewHelpers\Backend\ConfigurationTreeViewHelper






Arguments


	configuration (array)







neos:backend.container

ViewHelper for the backend ‘container’. Renders the required HTML to integrate
the Neos backend into a website.


	Implementation

	Neos\Neos\ViewHelpers\Backend\ContainerViewHelper






Arguments


	node (NeosContentRepositoryDomainModelNodeInterface)







neos:backend.cssBuiltVersion

Returns a shortened md5 of the built CSS file


	Implementation

	Neos\Neos\ViewHelpers\Backend\CssBuiltVersionViewHelper







neos:backend.documentBreadcrumbPath

Render a bread crumb path by using the labels of documents leading to the given node path


	Implementation

	Neos\Neos\ViewHelpers\Backend\DocumentBreadcrumbPathViewHelper






Arguments


	node (NeosContentRepositoryDomainModelNodeInterface): A node







neos:backend.interfaceLanguage

ViewHelper for rendering the current backend users interface language.


	Implementation

	Neos\Neos\ViewHelpers\Backend\InterfaceLanguageViewHelper







neos:backend.javascriptBuiltVersion

Returns a shortened md5 of the built JavaScript file


	Implementation

	Neos\Neos\ViewHelpers\Backend\JavascriptBuiltVersionViewHelper







neos:backend.javascriptConfiguration

ViewHelper for the backend JavaScript configuration. Renders the required JS snippet to configure
the Neos backend.


	Implementation

	Neos\Neos\ViewHelpers\Backend\JavascriptConfigurationViewHelper







neos:backend.shouldLoadMinifiedJavascript

Returns true if the minified Neos JavaScript sources should be loaded, false otherwise.


	Implementation

	Neos\Neos\ViewHelpers\Backend\ShouldLoadMinifiedJavascriptViewHelper







neos:backend.translate

Returns translated message using source message or key ID.
uses the selected backend language
* Also replaces all placeholders with formatted versions of provided values.


	Implementation

	Neos\Neos\ViewHelpers\Backend\TranslateViewHelper






Arguments


	id (string, optional): Id to use for finding translation (trans-unit id in XLIFF)


	value (string, optional): If $key is not specified or could not be resolved, this value is used. If this argument is not set, child nodes will be used to render the default


	arguments (array, optional): Numerically indexed array of values to be inserted into placeholders


	source (string, optional): Name of file with translations (use / as a directory separator)


	package (string, optional): Target package key. If not set, the current package key will be used


	quantity (mixed, optional): A number to find plural form for (float or int), NULL to not use plural forms


	locale (string, optional): An identifier of locale to use (NULL for use the default locale)






Examples

Translation by id:

<neos:backend.translate id="user.unregistered">Unregistered User</neos:backend.translate>





Expected result:

translation of label with the id "user.unregistered" and a fallback to "Unregistered User"





Inline notation:

{neos:backend.translate(id: 'some.label.id', value: 'fallback result')}





Expected result:

translation of label with the id "some.label.id" and a fallback to "fallback result"





Custom source and locale:

<neos:backend.translate id="some.label.id" source="SomeLabelsCatalog" locale="de_DE"/>





Expected result:

translation from custom source "SomeLabelsCatalog" for locale "de_DE"





Custom source from other package:

<neos:backend.translate id="some.label.id" source="LabelsCatalog" package="OtherPackage"/>





Expected result:

translation from custom source "LabelsCatalog" in "OtherPackage"





Arguments:

<neos:backend.translate arguments="{0: 'foo', 1: '99.9'}"><![CDATA[Untranslated {0} and {1,number}]]></neos:backend.translate>





Expected result:

translation of the label "Untranslated foo and 99.9"





Translation by label:

<neos:backend.translate>Untranslated label</neos:backend.translate>





Expected result:

translation of the label "Untranslated label"








neos:backend.userInitials

Render user initials for a given username

This ViewHelper is WORK IN PROGRESS and NOT STABLE YET


	Implementation

	Neos\Neos\ViewHelpers\Backend\UserInitialsViewHelper






Arguments


	format (string, optional): Supported are “fullFirstName”, “initials” and “fullName







neos:backend.xliffCacheVersion

ViewHelper for rendering the current version identifier for the
xliff cache.


	Implementation

	Neos\Neos\ViewHelpers\Backend\XliffCacheVersionViewHelper







neos:contentElement.editable

Renders a wrapper around the inner contents of the tag to enable frontend editing.

The wrapper contains the property name which should be made editable, and is by default
a “div” tag. The tag to use can be given as tag argument to the ViewHelper.

In live workspace this just renders a tag with the specified $tag-name containing the value of the given $property.
For logged in users with access to the Backend this also adds required attributes for the RTE to work.

Note: when passing a node you have to make sure a metadata wrapper is used around this that matches the given node
(see contentElement.wrap - i.e. the WrapViewHelper).


	Implementation

	Neos\Neos\ViewHelpers\ContentElement\EditableViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	property (string): Name of the property to render. Note: If this tag has child nodes, they overrule this argument!


	tag (string, optional): The name of the tag that should be wrapped around the property. By default this is a <div>


	node (NeosContentRepositoryDomainModelNodeInterface, optional): The node of the content element. Optional, will be resolved from the Fusion context by default.


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event







neos:contentElement.wrap

A view helper for manually wrapping content editables.

Note that using this view helper is usually not necessary as Neos will automatically wrap editables of content
elements.

By explicitly wrapping template parts with node meta data that is required for the backend to show properties in the
inspector, this ViewHelper enables usage of the contentElement.editable ViewHelper outside of content element
templates. This is useful if you want to make properties of a custom document node inline-editable.


	Implementation

	Neos\Neos\ViewHelpers\ContentElement\WrapViewHelper






Arguments


	node (NeosContentRepositoryDomainModelNodeInterface, optional): The node of the content element. Optional, will be resolved from the Fusion context by default.







neos:getType

View helper to check if a given value is an array.


	Implementation

	Neos\Neos\ViewHelpers\GetTypeViewHelper






Arguments


	value (mixed, optional): The value to determine the type of






Examples

Basic usage:

{neos:getType(value: 'foo')}





Expected result:

string





Use with shorthand syntax:

{myValue -> neos:getType()}





Expected result:

string
(if myValue is a string)








neos:link.module

A view helper for creating links to modules.


	Implementation

	Neos\Neos\ViewHelpers\Link\ModuleViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	path (string): Target module path


	action (string, optional): Target module action


	arguments (array, optional): Arguments


	section (string, optional): The anchor to be added to the URI


	format (string, optional): The requested format, e.g. “.html


	additionalParams (array, optional): additional query parameters that won’t be prefixed like $arguments (overrule $arguments)


	addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI


	argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the URI. Only active if $addQueryString = true


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event


	name (string, optional): Specifies the name of an anchor


	rel (string, optional): Specifies the relationship between the current document and the linked document


	rev (string, optional): Specifies the relationship between the linked document and the current document


	target (string, optional): Specifies where to open the linked document






Examples

Defaults:

<neos:link.module path="system/useradmin">some link</neos:link.module>





Expected result:

<a href="neos/system/useradmin">some link</a>








neos:link.node

A view helper for creating links with URIs pointing to nodes.

The target node can be provided as string or as a Node object; if not specified
at all, the generated URI will refer to the current document node inside the Fusion context.

When specifying the node argument as string, the following conventions apply:

``node`` starts with ``/``:
The given path is an absolute node path and is treated as such.
Example: /sites/acmecom/home/about/us

``node`` does not start with ``/``:
The given path is treated as a path relative to the current node.
Examples: given that the current node is /sites/acmecom/products/,
stapler results in /sites/acmecom/products/stapler,
../about results in /sites/acmecom/about/,
./neos/info results in /sites/acmecom/products/neos/info.

``node`` starts with a tilde character (``~``):
The given path is treated as a path relative to the current site node.
Example: given that the current node is /sites/acmecom/products/,
~/about/us results in /sites/acmecom/about/us,
~ results in /sites/acmecom.


	Implementation

	Neos\Neos\ViewHelpers\Link\NodeViewHelper






Arguments


	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.


	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.


	node (mixed, optional): A node object, a string node path (absolute or relative), a string node://-uri or NULL


	format (string, optional): Format to use for the URL, for example “html” or “json


	absolute (boolean, optional): If set, an absolute URI is rendered


	arguments (array, optional): Additional arguments to be passed to the UriBuilder (for example pagination parameters)


	section (string, optional): The anchor to be added to the URI


	addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI


	argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the URI. Only active if $addQueryString = true


	baseNodeName (string, optional): The variable the node will be assigned to for the rendered child content


	nodeVariableName (string, optional): The name of the base node inside the Fusion context to use for the ContentContext or resolving relative paths


	resolveShortcuts (boolean, optional): INTERNAL Parameter - if false, shortcuts are not redirected to their target. Only needed on rare backend occasions when we want to link to the shortcut itself.


	class (string, optional): CSS class(es) for this element


	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)


	id (string, optional): Unique (in this file) identifier for this HTML element.


	lang (string, optional): Language for this element. Use short names specified in RFC 1766


	style (string, optional): Individual CSS styles for this element


	title (string, optional): Tooltip text of element


	accesskey (string, optional): Keyboard shortcut to access this element


	tabindex (integer, optional): Specifies the tab order of this element


	onclick (string, optional): JavaScript evaluated for the onclick event


	name (string, optional): Specifies the name of an anchor


	rel (string, optional): Specifies the relationship between the current document and the linked document


	rev (string, optional): Specifies the relationship between the linked document and the current document


	target (string, optional): Specifies where to open the linked document






Examples

Defaults:

<neos:link.node>some link</neos:link.node>





Expected result:

<a href="sites/mysite.com/homepage/about.html">some link</a>
(depending on current node, format etc.)





Generating a link with an absolute URI:

<neos:link.node absolute="{true}">bookmark this page</neos:link.node>





Expected result:

<a href="http://www.example.org/homepage/about.html">bookmark this page</a>
(depending on current workspace, current node, format, host etc.)





Target node given as absolute node path:

<neos:link.node node="/sites/exampleorg/contact/imprint">Corporate imprint</neos:link.node>





Expected result:

<a href="contact/imprint.html">Corporate imprint</a>
(depending on current workspace, current node, format etc.)





Target node given as node://-uri:

<neos:link.node node="node://30e893c1-caef-0ca5-b53d-e5699bb8e506">Corporate imprint</neos:link.node>





Expected result:

<a href="contact/imprint.html">Corporate imprint</a>
(depending on current workspace, current node, format etc.)





Target node given as relative node path:

<neos:link.node node="~/about/us">About us</neos:link.node>





Expected result:

<a href="about/us.html">About us</a>
(depending on current workspace, current node, format etc.)





Node label as tag content:

<neos:link.node node="/sites/exampleorg/contact/imprint" />





Expected result:

<a href="contact/imprint.html">Imprint</a>
(depending on current workspace, current node, format etc.)





Dynamic tag content involving the linked node&#039;s properties:

<neos:link.node node="about-us">see our <span>{linkedNode.label}</span> page</neos:link.node>





Expected result:

<a href="about-us.html">see our <span>About Us</span> page</a>
(depending on current workspace, current node, format etc.)








neos:node.closestDocument

ViewHelper to find the closest document node to a given node


	Implementation

	Neos\Neos\ViewHelpers\Node\ClosestDocumentViewHelper






Arguments


	node (NeosContentRepositoryDomainModelNodeInterface)







neos:rendering.inBackend

ViewHelper to find out if Neos is rendering the backend.


	Implementation

	Neos\Neos\ViewHelpers\Rendering\InBackendViewHelper






Arguments


	node (NeosContentRepositoryDomainModelNodeInterface, optional)






Examples

Basic usage:

<f:if condition="{neos:rendering.inBackend()}">
  <f:then>
    Shown in the backend.
  </f:then>
  <f:else>
    Shown when not in backend.
  </f:else>
</f:if>





Expected result:

Shown in the backend.








neos:rendering.inEditMode

ViewHelper to find out if Neos is rendering an edit mode.


	Implementation

	Neos\Neos\ViewHelpers\Rendering\InEditModeViewHelper






Arguments


	node (NeosContentRepositoryDomainModelNodeInterface, optional): Optional Node to use context from


	mode (string, optional): Optional rendering mode name to check if this specific mode is active






Examples

Basic usage:

<f:if condition="{neos:rendering.inEditMode()}">
  <f:then>
    Shown for editing.
  </f:then>
  <f:else>
    Shown elsewhere (preview mode or not in backend).
  </f:else>
</f:if>





Expected result:

Shown for editing.





Advanced usage:

<f:if condition="{neos:rendering.inEditMode(mode: 'rawContent')}">
  <f:then>
    Shown just for rawContent editing mode.
  </f:then>
  <f:else>
    Shown in all other cases.
  </f:else>
</f:if>





Expected result:

Shown in all other cases.








neos:rendering.inPreviewMode

ViewHelper to find out if Neos is rendering a preview mode.


	Implementation

	Neos\Neos\ViewHelpers\Rendering\InPreviewModeViewHelper






Arguments


	node (NeosContentRepositoryDomainModelNodeInterface, optional): Optional Node to use context from


	mode (string, optional): Optional rendering mode name to check if this specific mode is active






Examples

Basic usage:

<f:if condition="{neos:rendering.inPreviewMode()}">
  <f:then>
    Shown in preview.
  </f:then>
  <f:else>
    Shown elsewhere (edit mode or not in backend).
  </f:else>
</f:if>





Expected result:

Shown in preview.





Advanced usage:

<f:if condition="{neos:rendering.inPreviewMode(mode: 'print')}">
  <f:then>
    Shown just for print preview mode.
  </f:then>
  <f:else>
    Shown in all other cases.
  </f:else>
</f:if>





Expected result:

Shown in all other cases.








neos:rendering.live

ViewHelper to find out if Neos is rendering the live website.
Make sure you either give a node from the current context to
the ViewHelper or have “node” set as template variable at least.


	Implementation

	Neos\Neos\ViewHelpers\Rendering\LiveViewHelper






Arguments


	node (NeosContentRepositoryDomainModelNodeInterface, optional)






Examples

Basic usage:

<f:if condition="{neos:rendering.live()}">
  <f:then>
    Shown outside the backend.
  </f:then>
  <f:else>
    Shown in the backend.
  </f:else>
</f:if>





Expected result:

Shown in the backend.








neos:standaloneView

A View Helper to render a fluid template based on the given template path and filename.

This will just set up a standalone Fluid view and render the template found at the
given path and filename. Any arguments passed will be assigned to that template,
the rendering result is returned.


	Implementation

	Neos\Neos\ViewHelpers\StandaloneViewViewHelper






Arguments


	templatePathAndFilename (string): Path and filename of the template to render


	arguments (array, optional): Arguments to assign to the template before rendering






Examples

Basic usage:

<neos:standaloneView templatePathAndFilename="fancyTemplatePathAndFilename" arguments="{foo: bar, quux: baz}" />





Expected result:

<some><fancy/></html
(depending on template and arguments given)








neos:uri.module

A view helper for creating links to modules.


	Implementation

	Neos\Neos\ViewHelpers\Uri\ModuleViewHelper






Arguments


	path (string): Target module path


	action (string, optional): Target module action


	arguments (array, optional): Arguments


	section (string, optional): The anchor to be added to the URI


	format (string, optional): The requested format, e.g. “.html


	additionalParams (array, optional): additional query parameters that won’t be prefixed like $arguments (overrule $arguments)


	addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI


	argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the URI. Only active if $addQueryString = true






Examples

Defaults:

<link rel="some-module" href="{neos:uri.module(path: 'system/useradmin')}" />





Expected result:

<link rel="some-module" href="neos/system/useradmin" />








neos:uri.node

A view helper for creating URIs pointing to nodes.

The target node can be provided as string or as a Node object; if not specified
at all, the generated URI will refer to the current document node inside the Fusion context.

When specifying the node argument as string, the following conventions apply:

``node`` starts with ``/``:
The given path is an absolute node path and is treated as such.
Example: /sites/acmecom/home/about/us

``node`` does not start with ``/``:
The given path is treated as a path relative to the current node.
Examples: given that the current node is /sites/acmecom/products/,
stapler results in /sites/acmecom/products/stapler,
../about results in /sites/acmecom/about/,
./neos/info results in /sites/acmecom/products/neos/info.

``node`` starts with a tilde character (``~``):
The given path is treated as a path relative to the current site node.
Example: given that the current node is /sites/acmecom/products/,
~/about/us results in /sites/acmecom/about/us,
~ results in /sites/acmecom.


	Implementation

	Neos\Neos\ViewHelpers\Uri\NodeViewHelper






Arguments


	node (mixed, optional): A node object, a string node path (absolute or relative), a string node://-uri or NULL


	format (string, optional): Format to use for the URL, for example “html” or “json


	absolute (boolean, optional): If set, an absolute URI is rendered


	arguments (array, optional): Additional arguments to be passed to the UriBuilder (for example pagination parameters)


	section (string, optional)


	addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI


	argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the URI. Only active if $addQueryString = true


	baseNodeName (string, optional): The name of the base node inside the Fusion context to use for the ContentContext or resolving relative paths


	resolveShortcuts (boolean, optional): INTERNAL Parameter - if false, shortcuts are not redirected to their target. Only needed on rare backend occasions when we want to link to the shortcut itself.






Examples

Default:

<neos:uri.node />





Expected result:

homepage/about.html
(depending on current workspace, current node, format etc.)





Generating an absolute URI:

<neos:uri.node absolute="{true"} />





Expected result:

http://www.example.org/homepage/about.html
(depending on current workspace, current node, format, host etc.)





Target node given as absolute node path:

<neos:uri.node node="/sites/acmecom/about/us" />





Expected result:

about/us.html
(depending on current workspace, current node, format etc.)





Target node given as relative node path:

<neos:uri.node node="~/about/us" />





Expected result:

about/us.html
(depending on current workspace, current node, format etc.)





Target node given as node://-uri:

<neos:uri.node node="node://30e893c1-caef-0ca5-b53d-e5699bb8e506" />





Expected result:

about/us.html
(depending on current workspace, current node, format etc.)










            

          

      

      

    

  

    
      
          
            
  
TYPO3 Fluid ViewHelper Reference

This reference was automatically generated from code on 2019-03-05




            

          

      

      

    

  

    
      
          
            
  
Fusion Reference


Neos.Fusion

This package contains general-purpose Fusion objects, which are usable both within Neos and standalone.


Neos.Fusion:Array


	[key]

	(string) A nested definition (simple value, expression or object) that evaluates to a string



	[key].@ignoreProperties

	(array) A list of properties to ignore from being “rendered” during evaluation



	[key].@position

	(string/integer) Define the ordering of the nested definition






Note

The Neos.Fusion:Array object has been renamed to Neos.Fusion:Join the old name is DEPRECATED;





Neos.Fusion:Join

Render multiple nested definitions and concatenate the results.


	[key]

	(string) A nested definition (simple value, expression or object) that evaluates to a string



	[key].@ignoreProperties

	(array) A list of properties to ignore from being “rendered” during evaluation



	[key].@position

	(string/integer) Define the ordering of the nested definition



	@glue

	(string) The glue used to join the items together (default = ‘’).





The order in which nested definitions are evaluated are specified using their
@position meta property. For this argument, the following sort order applies:


	start [priority] positions. The higher the priority, the earlier
the object is added. If no priority is given, the element is sorted after all
start elements with a priority.


	[numeric ordering] positions, ordered ascending.


	end [priority] positions. The higher the priority, the later the element is
added. If no priority is given, the element is sorted before all end elements
with a priority.




Furthermore, you can specify that an element should be inserted before or after a given
other named element, using before and after syntax as follows:


	before [namedElement] [optionalPriority]: add this element before namedElement;
the higher the priority the more in front of namedElement we will add it if multiple
before [namedElement] statements exist. Statements without [optionalPriority]
are added the farthest before the element.

If [namedElement] does not exist, the element is added after all start positions.



	after [namedElement] [optionalPriority]: add this element after namedElement;
the higher the priority the more closely after namedElement we will add it if multiple
after [namedElement] statements exist. Statements without [optionalPriority]
are added farthest after the element.

If [namedElement] does not exist, the element is added before all all end positions.





Example Ordering:

# in this example, we would not need to use any @position property;
# as the default (document order) would then be used. However, the
# order (o1 ... o9) is *always* fixed, no matter in which order the
# individual statements are defined.

myArray = Neos.Fusion:Join {
        o1 = Neos.NodeTypes:Text
        o1.@position = 'start 12'
        o2 = Neos.NodeTypes:Text
        o2.@position = 'start 5'
        o2 = Neos.NodeTypes:Text
        o2.@position = 'start'

        o3 = Neos.NodeTypes:Text
        o3.@position = '10'
        o4 = Neos.NodeTypes:Text
        o4.@position = '20'

        o5 = Neos.NodeTypes:Text
        o5.@position = 'before o6'

        o6 = Neos.NodeTypes:Text
        o6.@position = 'end'
        o7 = Neos.NodeTypes:Text
        o7.@position = 'end 20'
        o8 = Neos.NodeTypes:Text
        o8.@position = 'end 30'

        o9 = Neos.NodeTypes:Text
        o9.@position = 'after o8'
}





If no @position property is defined, the array key is used. However, we suggest
to use @position and meaningful keys in your application, and not numeric ones.

Example of numeric keys (discouraged):

myArray = Neos.Fusion:Join {
        10 = Neos.NodeTypes:Text
        20 = Neos.NodeTypes:Text
}







Neos.Fusion:Collection

Render each item in collection using itemRenderer.


	collection

	(array/Iterable, required) The array or iterable to iterate over



	itemName

	(string, defaults to item) Context variable name for each item



	itemKey

	(string, defaults to itemKey) Context variable name for each item key, when working with array



	iterationName

	(string, defaults to iterator) A context variable with iteration information will be available under the given name: index (zero-based), cycle (1-based), isFirst, isLast



	itemRenderer

	(string, required) The renderer definition (simple value, expression or object) will be called once for every collection element, and its results will be concatenated (if itemRenderer cannot be rendered the path content is used as fallback for convenience in afx)






Note

The Neos.Fusion:Collection object is DEPRECATED use Neos.Fusion:Loop instead.



Example using an object itemRenderer:

myCollection = Neos.Fusion:Collection {
        collection = ${[1, 2, 3]}
        itemName = 'element'
        itemRenderer = Neos.Fusion:Template {
                templatePath = 'resource://...'
                element = ${element}
        }
}





Example using an expression itemRenderer:

myCollection = Neos.Fusion:Collection {
        collection = ${[1, 2, 3]}
        itemName = 'element'
        itemRenderer = ${element * 2}
}







Neos.Fusion:RawCollection

Render each item in collection using itemRenderer and return the result as an array (opposed to string for Neos.Fusion:Collection)


	collection

	(array/Iterable, required) The array or iterable to iterate over



	itemName

	(string, defaults to item) Context variable name for each item



	itemKey

	(string, defaults to itemKey) Context variable name for each item key, when working with array



	iterationName

	(string, defaults to iterator) A context variable with iteration information will be available under the given name: index (zero-based), cycle (1-based), isFirst, isLast



	itemRenderer

	(mixed, required) The renderer definition (simple value, expression or object) will be called once for every collection element (if itemRenderer cannot be rendered the path content is used as fallback for convenience in afx)






Note

The Neos.Fusion:RawCollection object is DEPRECATED use Neos.Fusion:Map instead.**





Neos.Fusion:Loop

Render each item in items using itemRenderer.


	items

	(array/Iterable, required) The array or iterable to iterate over



	itemName

	(string, defaults to item) Context variable name for each item



	itemKey

	(string, defaults to itemKey) Context variable name for each item key, when working with array



	iterationName

	(string, defaults to iterator) A context variable with iteration information will be available under the given name: index (zero-based), cycle (1-based), isFirst, isLast



	itemRenderer

	(string, required) The renderer definition (simple value, expression or object) will be called once for every collection element, and its results will be concatenated (if itemRenderer cannot be rendered the path content is used as fallback for convenience in afx)



	@glue

	(string) The glue used to join the items together (default = ‘’).





Example using an object itemRenderer:

myLoop = Neos.Fusion:Loop {
        items = ${[1, 2, 3]}
        itemName = 'element'
        itemRenderer = Neos.Fusion:Template {
                templatePath = 'resource://...'
                element = ${element}
        }
}





Example using an expression itemRenderer:

myLoop = Neos.Fusion:Loop {
        items = ${[1, 2, 3]}
        itemName = 'element'
        itemRenderer = ${element * 2}
}







Neos.Fusion:Map

Render each item in items using itemRenderer and return the result as an array (opposed to string for Neos.Fusion:Collection)


	items

	(array/Iterable, required) The array or iterable to iterate over



	itemName

	(string, defaults to item) Context variable name for each item



	itemKey

	(string, defaults to itemKey) Context variable name for each item key, when working with array



	iterationName

	(string, defaults to iterator) A context variable with iteration information will be available under the given name: index (zero-based), cycle (1-based), isFirst, isLast



	itemRenderer

	(mixed, required) The renderer definition (simple value, expression or object) will be called once for every collection element (if itemRenderer cannot be rendered the path content is used as fallback for convenience in afx)







Neos.Fusion:Reduce

Reduce the given items to a single value by using itemRenderer.


	items

	(array/Iterable, required) The array or iterable to iterate over



	itemName

	(string, defaults to item) Context variable name for each item



	itemKey

	(string, defaults to itemKey) Context variable name for each item key, when working with array



	carryName

	(string, defaults to carry) Context variable that contains the result of the last iteration



	iterationName

	(string, defaults to iterator) A context variable with iteration information will be available under the given name: index (zero-based), cycle (1-based), isFirst, isLast



	itemReducer

	(mixed, required) The reducer definition (simple value, expression or object) that will be applied for every item.



	initialValue

	(mixed, defaults to null) The value that is passed to the first iteration or returned if the items are empty







Neos.Fusion:Case

Conditionally evaluate nested definitions.

Evaluates all nested definitions until the first condition evaluates to TRUE. The Case object will
evaluate to a result using either renderer, renderPath or type on the matching definition.


	[key]

	A matcher definition



	[key].condition

	(boolean, required) A simple value, expression or object that will be used as a condition for this matcher



	[key].type

	(string) Object type to render (as string)



	[key].element.*

	(mixed) Properties for the rendered object (when using type)



	[key].renderPath

	(string) Relative or absolute path to render, overrules type



	[key].renderer

	(mixed) Rendering definition (simple value, expression or object), overrules renderPath and type



	[key].@position

	(string/integer) Define the ordering of the nested definition





Simple Example:

myCase = Neos.Fusion:Case {
        someCondition {
                condition = ${q(node).is('[instanceof MyNamespace:My.Special.SuperType]')}
                type = 'MyNamespace:My.Special.Type'
        }

        otherCondition {
                @position = 'start'
                condition = ${q(documentNode).property('layout') == 'special'}
                renderer = ${'<marquee>' + q(node).property('content') + '</marquee>'}
        }

        fallback {
                condition = ${true}
                renderPath = '/myPath'
        }
}





The ordering of matcher definitions can be specified with the @position property (see Neos.Fusion:Array).
Thus, the priority of existing matchers (e.g. the default Neos document rendering) can be changed by setting or
overriding the @position property.


Note

The internal Neos.Fusion:Matcher object type is used to evaluate the matcher definitions which
is based on the Neos.Fusion:Renderer.





Neos.Fusion:Renderer

The Renderer object will evaluate to a result using either renderer, renderPath or type from the configuration.


	type

	(string) Object type to render (as string)



	element.*

	(mixed) Properties for the rendered object (when using type)



	renderPath

	(string) Relative or absolute path to render, overrules type



	renderer

	(mixed) Rendering definition (simple value, expression or object), overrules renderPath and type





Simple Example:

myCase = Neos.Fusion:Renderer {
        type = 'Neos.Fusion:Value'
        element.value = 'hello World'
}






Note

This is especially handy if the prototype that should be rendered is determined via eel or passed via @context.





Neos.Fusion:Debug

Shows the result of Fusion Expressions directly.


	title

	(optional) Title for the debug output



	plaintext

	(boolean) If set true, the result will be shown as plaintext



	[key]

	(mixed) A nested definition (simple value, expression or object), [key] will be used as key for the resulting output





Example:

valueToDebug = "hello neos world"
valueToDebug.@process.debug = Neos.Fusion:Debug {
      title = 'Debug of hello world'

      # Additional values for debugging
      documentTitle = ${q(documentNode).property('title')}
      documentPath = ${documentNode.path}
}

# the initial value is not changed, so you can define the Debug prototype anywhere in your Fusion code







Neos.Fusion:Component

Create a component that adds all properties to the props context and afterward evaluates the renderer.


	renderer

	(mixed, required) The value which gets rendered





Example:

prototype(Vendor.Site:Component) < prototype(Neos.Fusion:Component) {
        title = 'Hello World'
        titleTagName = 'h1'
        description = 'Description of the Neos World'
        bold = false

        renderer = Neos.Fusion:Tag {
                attributes.class = Neos.Fusion:DataStructure {
                        component = 'component'
                        bold = ${props.bold ? 'component--bold' : false}
                }
                content = Neos.Fusion:Join {
                        headline = Neos.Fusion:Tag {
                                tagName = ${props.titleTagName}
                                content = ${props.title}
                        }

                        description = Neos.Fusion:Tag {
                                        content = ${props.description}
                        }
                }
        }
}







Neos.Fusion:Augmenter

Modify given html content and add attributes. The augmenter can be used as processor or as a standalone prototype


	content

	(string) The content that shall be augmented



	fallbackTagName

	(string, defaults to div) If no single tag that can be augmented is found the content is wrapped into the fallback-tag before augmentation



	[key]

	All other fusion properties are added to the html content as html attributes





Example as a standalone augmenter:

augmentedContent = Neos.Fusion:Augmenter {

        content = Neos.Fusion:Join {
                title = Neos.Fusion:Tag {
                        @if.hasContent = ${this.content}
                        tagName = 'h2'
                        content = ${q(node).property('title')}
                }
                text = Neos.Fusion:Tag {
                        @if.hasContent = ${this.content}
                        tagName = 'p'
                        content = ${q(node).property('text')}
                }
        }

        fallbackTagName = 'header'

        class = 'header'
        data-foo = 'bar'
}





Example as a processor augmenter:

augmentedContent = Neos.Fusion:Tag {
        tagName = 'h2'
        content = 'Hello World'
        @process.augment = Neos.Fusion:Augmenter {
                        class = 'header'
                        data-foo = 'bar'
        }
}







Neos.Fusion:Template

Render a Fluid template specified by templatePath.


	templatePath

	(string, required) Path and filename for the template to be rendered, often a resource:// URI



	partialRootPath

	(string) Path where partials are found on the file system



	layoutRootPath

	(string) Path where layouts are found on the file system



	sectionName

	(string) The Fluid <f:section> to be rendered, if given



	[key]

	(mixed) All remaining properties are directly passed into the Fluid template as template variables





Example:

myTemplate = Neos.Fusion:Template {
        templatePath = 'resource://My.Package/Private/Templates/FusionObjects/MyTemplate.html'
        someDataAvailableInsideFluid = 'my data'
}

<div class="hero">
        {someDataAvailableInsideFluid}
</div>







Neos.Fusion:Value

Evaluate any value as a Fusion object


	value

	(mixed, required) The value to evaluate





Example:

myValue = Neos.Fusion:Value {
        value = 'Hello World'
}






Note

Most of the time this can be simplified by directly assigning the value instead of using the Value object.





Neos.Fusion:RawArray

Evaluate nested definitions as an array (opposed to string for Neos.Fusion:Array)


	[key]

	(mixed) A nested definition (simple value, expression or object), [key] will be used for the resulting array key



	[key].@position

	(string/integer) Define the ordering of the nested definition






Tip

For simple cases an expression with an array literal ${[1, 2, 3]} might be easier to read




Note

The Neos.Fusion:RawArray object has been renamed to Neos.Fusion:DataStructure the old name is DEPRECATED;





Neos.Fusion:DataStructure

Evaluate nested definitions as an array (opposed to string for Neos.Fusion:Array)


	[key]

	(mixed) A nested definition (simple value, expression or object), [key] will be used for the resulting array key



	[key].@position

	(string/integer) Define the ordering of the nested definition






Tip

For simple cases an expression with an array literal ${[1, 2, 3]} might be easier to read





Neos.Fusion:Tag

Render an HTML tag with attributes and optional body


	tagName

	(string) Tag name of the HTML element, defaults to div



	omitClosingTag

	(boolean) Whether to render the element content and the closing tag, defaults to FALSE



	selfClosingTag

	(boolean) Whether the tag is a self-closing tag with no closing tag. Will be resolved from tagName by default, so default HTML tags are treated correctly.



	content

	(string) The inner content of the element, will only be rendered if the tag is not self-closing and the closing tag is not omitted



	attributes

	(Neos.Fusion:Attributes) Tag attributes






Example:

htmlTag = Neos.Fusion:Tag {
        tagName = 'html'
        omitClosingTag = TRUE

        attributes {
                version = 'HTML+RDFa 1.1'
                xmlns = 'http://www.w3.org/1999/xhtml'
        }
}





Evaluates to:

<html version="HTML+RDFa 1.1" xmlns="http://www.w3.org/1999/xhtml">








Neos.Fusion:Attributes

A Fusion object to render HTML tag attributes. This object is used by the Neos_Fusion__Tag object to
render the attributes of a tag. But it’s also useful standalone to render extensible attributes in a Fluid template.


	[key]

	(string) A single attribute, array values are joined with whitespace. Boolean values will be rendered as an empty or absent attribute.



	@allowEmpty

	(boolean) Whether empty attributes (HTML5 syntax) should be used for empty, false or null attribute values






Example:

attributes = Neos.Fusion:Attributes {
        foo = 'bar'
        class = Neos.Fusion:DataStructure {
                class1 = 'class1'
                class2 = 'class2'
        }
}





Evaluates to:

foo="bar" class="class1 class2"







Unsetting an attribute:

It’s possible to unset an attribute by assigning false or ${null} as a value. No attribute will be rendered for
this case.




Neos.Fusion:Http.Message

A prototype based on Neos.Fusion:Array for rendering an HTTP message (response). It should be used to
render documents since it generates a full HTTP response and allows to override the HTTP status code and headers.


	httpResponseHead

	(Neos.Fusion:Http.ResponseHead) An HTTP response head with properties to adjust the status and headers, the position in the Array defaults to the very beginning



	[key]

	(string) A nested definition (see Neos.Fusion:Array)






Example:

// Page extends from Http.Message
//
// prototype(Neos.Neos:Page) < prototype(Neos.Fusion:Http.Message)
//
page = Neos.Neos:Page {
        httpResponseHead.headers.Content-Type = 'application/json'
}








Neos.Fusion:Http.ResponseHead

A helper object to render the head of an HTTP response


	statusCode

	(integer) The HTTP status code for the response, defaults to 200



	headers.*

	(string) An HTTP header that should be set on the response, the property name (e.g. headers.Content-Type) will be used for the header name







Neos.Fusion:UriBuilder

Built a URI to a controller action


	package

	(string) The package key (e.g. 'My.Package')



	subpackage

	(string) The subpackage, empty by default



	controller

	(string) The controller name (e.g. 'Registration')



	action

	(string) The action name (e.g. 'new')



	arguments

	(array) Arguments to the action by named key



	format

	(string) An optional request format (e.g. 'html')



	section

	(string) An optional fragment (hash) for the URI



	additionalParams

	(array) Additional URI query parameters by named key



	addQueryString

	(boolean) Whether to keep the query parameters of the current URI



	argumentsToBeExcludedFromQueryString

	(array) Query parameters to exclude for addQueryString



	absolute

	(boolean) Whether to create an absolute URI





Example:

uri = Neos.Fusion:UriBuilder {
        package = 'My.Package'
        controller = 'Registration'
        action = 'new'
}







Neos.Fusion:ResourceUri

Build a URI to a static or persisted resource


	path

	(string) Path to resource, either a path relative to Public and package or a resource:// URI



	package

	(string) The package key (e.g. 'My.Package')



	resource

	(Resource) A Resource object instead of path and package



	localize

	(boolean) Whether resource localization should be used, defaults to true





Example:

scriptInclude = Neos.Fusion:Tag {
        tagName = 'script'
        attributes {
                src = Neos.Fusion:ResourceUri {
                        path = 'resource://My.Package/Public/Scripts/App.js'
                }
        }
}







Neos.Fusion:CanRender

Check whether a Fusion prototype can be rendered. For being renderable a prototype must exist and have an implementation class, or inherit from an existing renderable prototype. The implementation class can be defined indirectly via base prototypes.


	type

	(string) The prototype name that is checked





Example:

canRender = Neos.Fusion:CanRender {
        type = 'My.Package:Prototype'
}








Neos.Neos Fusion Objects

The Fusion objects defined in the Neos package contain all Fusion objects which
are needed to integrate a site. Often, it contains generic Fusion objects
which do not need a particular node type to work on.


Neos.Neos:Page

Subclass of Neos.Fusion:Http.Message, which is based on Neos.Fusion:Array. Main entry point
into rendering a page; responsible for rendering the <html> tag and everything inside.


	doctype

	(string) Defaults to <!DOCTYPE html>



	htmlTag

	(Neos_Fusion__Tag) The opening <html> tag



	htmlTag.attributes

	(Neos.Fusion:Attributes) Attributes for the <html> tag



	headTag

	(Neos_Fusion__Tag) The opening <head> tag



	head

	(Neos.Fusion:Array) HTML markup for the <head> tag



	head.titleTag

	(Neos_Fusion__Tag) The <title> tag



	head.javascripts

	(Neos.Fusion:Array) Script includes in the head should go here



	head.stylesheets

	(Neos.Fusion:Array) Link tags for stylesheets in the head should go here



	body.templatePath

	(string) Path to a fluid template for the page body



	bodyTag

	(Neos_Fusion__Tag) The opening <body> tag



	bodyTag.attributes

	(Neos.Fusion:Attributes) Attributes for the <body> tag



	body

	(Neos.Fusion:Template) HTML markup for the <body> tag



	body.javascripts

	(Neos.Fusion:Array) Body footer JavaScript includes



	body.[key]

	(mixed) Body template variables






Examples:


Rendering a simple page:

page = Page
page.body.templatePath = 'resource://My.Package/Private/MyTemplate.html'
// the following line is optional, but recommended for base CSS inclusions etc
page.body.sectionName = 'main'







Rendering content in the body:

Fusion:

page.body {
        sectionName = 'body'
        content.main = PrimaryContent {
                nodePath = 'main'
        }
}





Fluid:

<html>
        <body>
                <f:section name="body">
                        <div class="container">
                                {content.main -> f:format.raw()}
                        </div>
                </f:section>
        </body>
</html







Including stylesheets from a template section in the head:

page.head.stylesheets.mySite = Neos.Fusion:Template {
        templatePath = 'resource://My.Package/Private/MyTemplate.html'
        sectionName = 'stylesheets'
}







Adding body attributes with bodyTag.attributes:

page.bodyTag.attributes.class = 'body-css-class1 body-css-class2'









Neos.Neos:ContentCollection

Render nested content from a ContentCollection node. Individual nodes are rendered using the
Neos.Neos:ContentCase object.


	nodePath

	(string, required) The relative node path of the ContentCollection (e.g. 'main')



	@context.node

	(Node) The content collection node, resolved from nodePath by default



	tagName

	(string) Tag name for the wrapper element



	attributes

	(Neos.Fusion:Attributes) Tag attributes for the wrapper element





Example:

page.body {
        content {
                main = Neos.Neos:PrimaryContent {
                        nodePath = 'main'
                }
                footer = Neos.Neos:ContentCollection {
                        nodePath = 'footer'
                }
        }
}







Neos.Neos:PrimaryContent

Primary content rendering, extends Neos.Fusion:Case. This is a prototype that can be used from packages
to extend the default content rendering (e.g. to handle specific document node types).


	nodePath

	(string, required) The relative node path of the ContentCollection (e.g. 'main')



	default

	Default matcher that renders a ContentCollection



	[key]

	Additional matchers (see Neos.Fusion:Case)





Example for basic usage:

page.body {
        content {
                main = Neos.Neos:PrimaryContent {
                        nodePath = 'main'
                }
        }
}





Example for custom matcher:

prototype(Neos.Neos:PrimaryContent) {
        myArticle {
                condition = ${q(node).is('[instanceof My.Site:Article]')}
                renderer = My.Site:ArticleRenderer
        }
}







Neos.Neos:ContentCase

Render a content node, extends Neos.Fusion:Case. This is a prototype that is used by the default content
rendering (Neos.Neos:ContentCollection) and can be extended to add custom matchers.


	default

	Default matcher that renders a prototype of the same name as the node type name



	[key]

	Additional matchers (see Neos.Fusion:Case)







Neos.Neos:Content

Base type to render content nodes, extends Neos.Fusion:Template. This prototype is extended by the
auto-generated Fusion to define prototypes for each node type extending Neos.Neos:Content.


	templatePath

	(string) The template path and filename, defaults to 'resource://[packageKey]/Private/Templates/NodeTypes/[nodeType].html' (for auto-generated prototypes)



	[key]

	(mixed) Template variables, all node type properties are available by default (for auto-generated prototypes)



	attributes

	(Neos.Fusion:Attributes) Extensible attributes, used in the default templates





Example:

prototype(My.Package:MyContent) < prototype(Neos.Neos:Content) {
        templatePath = 'resource://My.Package/Private/Templates/NodeTypes/MyContent.html'
        # Auto-generated for all node type properties
        # title = ${q(node).property('title')}
}







Neos.Neos:ContentComponent

Base type to render component based content-nodes, extends Neos.Fusion:Component.


	renderer

	(mixed, required) The value which gets rendered







Neos.Neos:Editable

Create an editable tag for a property. In the frontend, only the content of the property gets rendered.


	node

	(node) A node instance that should be used to read the property. Default to ${node}



	property

	(string) The name of the property which should be accessed



	block

	(boolean) Decides if the editable tag should be a block element (div) or an inline element (span). Default to true





Example:

title = Neos.Neos:Editable {
        property = 'title'
        block = false
}







Neos.Neos:Plugin

Base type to render plugin content nodes or static plugins. A plugin is a Flow controller that can implement
arbitrary logic.


	package

	(string, required) The package key (e.g. ‘My.Package’)



	subpackage

	(string) The subpackage, defaults to empty



	controller

	(array) The controller name (e.g. ‘Registration’)



	action

	(string) The action name, defaults to ‘index’



	argumentNamespace

	(string) Namespace for action arguments, will be resolved from node type by default



	[key]

	(mixed) Pass an internal argument to the controller action (access with argument name _key)





Example:

prototype(My.Site:Registration) < prototype(Neos.Neos:Plugin) {
        package = 'My.Site'
        controller = 'Registration'
}







Neos.Neos:Menu

Render a menu with items for nodes. Extends Neos.Fusion:Template.


	templatePath

	(string) Override the template path



	entryLevel

	(integer) Start the menu at the given depth



	maximumLevels

	(integer) Restrict the maximum depth of items in the menu (relative to entryLevel)



	startingPoint

	(Node) The parent node of the first menu level (defaults to node context variable)



	lastLevel

	(integer) Restrict the menu depth by node depth (relative to site node)



	filter

	(string) Filter items by node type (e.g. '!My.Site:News,Neos.Neos:Document'), defaults to 'Neos.Neos:Document'



	renderHiddenInIndex

	(boolean) Whether nodes with hiddenInIndex should be rendered, defaults to false



	itemCollection

	(array) Explicitly set the Node items for the menu (alternative to startingPoints and levels)



	attributes

	(Neos.Fusion:Attributes) Extensible attributes for the whole menu



	normal.attributes

	(Neos.Fusion:Attributes) Attributes for normal state



	active.attributes

	(Neos.Fusion:Attributes) Attributes for active state



	current.attributes

	(Neos.Fusion:Attributes) Attributes for current state






Note

The items of the Menu are internally calculated with the prototype Neos.Neos:MenuItems which
you can use directly aswell.




Menu item properties:


	node

	(Node) A node instance (with resolved shortcuts) that should be used to link to the item



	originalNode

	(Node) Original node for the item



	state

	(string) Menu state of the item: 'normal', 'current' (the current node) or 'active' (ancestor of current node)



	label

	(string) Full label of the node



	menuLevel

	(integer) Menu level the item is rendered on







Examples:


Custom menu template:

menu = Neos.Neos:Menu {
        entryLevel = 1
        maximumLevels = 3
        templatePath = 'resource://My.Site/Private/Templates/FusionObjects/MyMenu.html'
}







Menu including site node:

menu = Neos.Neos:Menu {
        itemCollection = ${q(site).add(q(site).children('[instanceof Neos.Neos:Document]')).get()}
}







Menu with custom starting point:

menu = Neos.Neos:Menu {
        entryLevel = 2
        maximumLevels = 1
        startingPoint = ${q(site).children('[uriPathSegment="metamenu"]').get(0)}
}









Neos.Neos:BreadcrumbMenu

Render a breadcrumb (ancestor documents), based on Neos.Neos:Menu.

Example:

breadcrumb = Neos.Neos:BreadcrumbMenu






Note

The items of the BreadcrumbMenu are internally calculated with the prototype Neos.Neos:MenuItems which
you can use directly aswell.





Neos.Neos:DimensionsMenu

Create links to other node variants (e.g. variants of the current node in other dimensions) by using this Fusion object.

If the dimension setting is given, the menu will only include items for this dimension, with all other configured
dimension being set to the value(s) of the current node. Without any dimension being configured, all possible
variants will be included.

If no node variant exists for the preset combination, a NULL node will be included in the item with a state absent.


	dimension

	(optional, string): name of the dimension which this menu should be based on. Example: “language”.



	presets

	(optional, array): If set, the presets rendered will be taken from this list of preset identifiers



	includeAllPresets

	(boolean, default false) If TRUE, include all presets, not only allowed combinations



	renderHiddenInIndex

	(boolean, default true) If TRUE, render nodes which are marked as “hidded-in-index”





In the template for the menu, each item has the following properties:


	node

	(Node) A node instance (with resolved shortcuts) that should be used to link to the item



	state

	(string) Menu state of the item: normal, current (the current node), absent



	label

	(string) Label of the item (the dimension preset label)



	menuLevel

	(integer) Menu level the item is rendered on



	dimensions

	(array) Dimension values of the node, indexed by dimension name



	targetDimensions

	(array) The target dimensions, indexed by dimension name and values being arrays with value, label and isPinnedDimension






Note

The DimensionMenu is an alias to DimensionsMenu, available for compatibility reasons only.




Note

The items of the DimensionsMenu are internally calculated with the prototype Neos.Neos:DimensionsMenuItems which
you can use directly aswell.




Examples

Minimal Example, outputting a menu with all configured dimension combinations:

variantMenu = Neos.Neos:DimensionsMenu





This example will create two menus, one for the ‘language’ and one for the ‘country’ dimension:

languageMenu = Neos.Neos:DimensionsMenu {
        dimension = 'language'
}
countryMenu = Neos.Neos:DimensionsMenu {
        dimension = 'country'
}





If you only want to render a subset of the available presets or manually define a specific order for a menu,
you can override the “presets”:

languageMenu = Neos.Neos:DimensionsMenu {
        dimension = 'language'
        presets = ${['en_US', 'de_DE']} # no matter how many languages are defined, only these two are displayed.
}





In some cases, it can be good to ignore the availability of variants when rendering a dimensions menu. Consider a
situation with two independent menus for country and language, where the following variants of a node exist
(language / country):


	english / Germany


	german / Germany


	english / UK




If the user selects UK, only english will be linked in the language selector. German is only available again, if the
user switches back to Germany first. This can be changed by setting the includeAllPresets option:

languageMenu = Neos.Neos:DimensionsMenu {
        dimension = 'language'
        includeAllPresets = true
}





Now the language menu will try to find nodes for all languages, if needed the menu items will point to a different
country than currently selected. The menu tries to find a node to link to by using the current preset for the language
(in this example) and the default presets for any other dimensions. So if fallback rules are in place and a node can be
found, it is used.


Note

The item.targetDimensions will contain the “intended” dimensions, so that information can be used to
inform the user about the potentially unexpected change of dimensions when following  such a link.



Only if the current node is not available at all (even after considering default presets with their fallback rules),
no node be assigned (so no link will be created and the items will have the absent state.)




Neos.Neos:MenuItems

Create a list of menu-items items for nodes.


	entryLevel

	(integer) Start the menu at the given depth



	maximumLevels

	(integer) Restrict the maximum depth of items in the menu (relative to entryLevel)



	startingPoint

	(Node) The parent node of the first menu level (defaults to node context variable)



	lastLevel

	(integer) Restrict the menu depth by node depth (relative to site node)



	filter

	(string) Filter items by node type (e.g. '!My.Site:News,Neos.Neos:Document'), defaults to 'Neos.Neos:Document'



	renderHiddenInIndex

	(boolean) Whether nodes with hiddenInIndex should be rendered, defaults to false



	itemCollection

	(array) Explicitly set the Node items for the menu (alternative to startingPoints and levels)






MenuItems item properties:


	node

	(Node) A node instance (with resolved shortcuts) that should be used to link to the item



	originalNode

	(Node) Original node for the item



	state

	(string) Menu state of the item: 'normal', 'current' (the current node) or 'active' (ancestor of current node)



	label

	(string) Full label of the node



	menuLevel

	(integer) Men^u level the item is rendered on







Examples:

menuItems = Neos.Neos:MenuItems {
        entryLevel = 1
        maximumLevels = 3
}






MenuItems including site node:

menuItems = Neos.Neos:MenuItems {
        itemCollection = ${q(site).add(q(site).children('[instanceof Neos.Neos:Document]')).get()}
}







Menu with custom starting point:

menuItems = Neos.Neos:MenuItems {
        entryLevel = 2
        maximumLevels = 1
        startingPoint = ${q(site).children('[uriPathSegment="metamenu"]').get(0)}
}









Neos.Neos:BreadcrumbMenuItems

Create a list of of menu-items for a breadcrumb (ancestor documents), based on Neos.Neos:MenuItems.

Example:

breadcrumbItems = Neos.Neos:BreadcrumbMenuItems







Neos.Neos:DimensionsMenuItems

Create a list of menu-items for other node variants (e.g. variants of the current node in other dimensions) by using this Fusion object.

If the dimension setting is given, the menu will only include items for this dimension, with all other configured
dimension being set to the value(s) of the current node. Without any dimension being configured, all possible
variants will be included.

If no node variant exists for the preset combination, a NULL node will be included in the item with a state absent.


	dimension

	(optional, string): name of the dimension which this menu should be based on. Example: “language”.



	presets

	(optional, array): If set, the presets rendered will be taken from this list of preset identifiers



	includeAllPresets

	(boolean, default false) If TRUE, include all presets, not only allowed combinations



	renderHiddenInIndex

	(boolean, default true) If TRUE, render nodes which are marked as “hidded-in-index”





Each item has the following properties:


	node

	(Node) A node instance (with resolved shortcuts) that should be used to link to the item



	state

	(string) Menu state of the item: normal, current (the current node), absent



	label

	(string) Label of the item (the dimension preset label)



	menuLevel

	(integer) Menu level the item is rendered on



	dimensions

	(array) Dimension values of the node, indexed by dimension name



	targetDimensions

	(array) The target dimensions, indexed by dimension name and values being arrays with value, label and isPinnedDimension






Examples

Minimal Example, outputting a menu with all configured dimension combinations:

variantMenuItems = Neos.Neos:DimensionsMenuItems





This example will create two menus, one for the ‘language’ and one for the ‘country’ dimension:

languageMenuItems = Neos.Neos:DimensionsMenuItems {
        dimension = 'language'
}
countryMenuItems = Neos.Neos:DimensionsMenuItems {
        dimension = 'country'
}





If you only want to render a subset of the available presets or manually define a specific order for a menu,
you can override the “presets”:

languageMenuItems = Neos.Neos:DimensionsMenuItems {
        dimension = 'language'
        presets = ${['en_US', 'de_DE']} # no matter how many languages are defined, only these two are displayed.
}





In some cases, it can be good to ignore the availability of variants when rendering a dimensions menu. Consider a
situation with two independent menus for country and language, where the following variants of a node exist
(language / country):


	english / Germany


	german / Germany


	english / UK




If the user selects UK, only english will be linked in the language selector. German is only available again, if the
user switches back to Germany first. This can be changed by setting the includeAllPresets option:

languageMenuItems = Neos.Neos:DimensionsMenuItems {
        dimension = 'language'
        includeAllPresets = true
}





Now the language menu will try to find nodes for all languages, if needed the menu items will point to a different
country than currently selected. The menu tries to find a node to link to by using the current preset for the language
(in this example) and the default presets for any other dimensions. So if fallback rules are in place and a node can be
found, it is used.


Note

The item.targetDimensions will contain the “intended” dimensions, so that information can be used to
inform the user about the potentially unexpected change of dimensions when following  such a link.



Only if the current node is not available at all (even after considering default presets with their fallback rules),
no node be assigned (so no link will be created and the items will have the absent state.)




Neos.Neos:NodeUri

Build a URI to a node. Accepts the same arguments as the node link/uri view helpers.


	node

	(string/Node) A node object or a node path (relative or absolute) or empty to resolve the current document node



	format

	(string) An optional request format (e.g. 'html')



	section

	(string) An optional fragment (hash) for the URI



	additionalParams

	(array) Additional URI query parameters.



	argumentsToBeExcludedFromQueryString

	(array) Query parameters to exclude for addQueryString



	addQueryString

	(boolean) Whether to keep current query parameters, defaults to FALSE



	absolute

	(boolean) Whether to create an absolute URI, defaults to FALSE



	baseNodeName

	(string) Base node context variable name (for relative paths), defaults to 'documentNode'





Example:

nodeLink = Neos.Neos:NodeUri {
        node = ${q(node).parent().get(0)}
}







Neos.Neos:NodeLink

Renders an anchor tag pointing to the node given via the argument. Based on Neos.Neos:NodeUri.
The link text is the node label, unless overridden.


	*

	All Neos.Neos:NodeUri properties



	attributes

	(Neos.Fusion:Attributes) Link tag attributes



	content

	(string) The label of the link, defaults to node.label.





Example:

nodeLink = Neos.Neos:NodeLink {
        node = ${q(node).parent().get(0)}
}






Note

By default no title is generated. By setting attributes.title = ${node.label} the label is rendered as title.





Neos.Neos:ImageUri

Get a URI to a (thumbnail) image for an asset.


	asset

	(Asset) An asset object (Image, ImageInterface or other AssetInterface)



	width

	(integer) Desired width of the image



	maximumWidth

	(integer) Desired maximum height of the image



	height

	(integer) Desired height of the image



	maximumHeight

	(integer) Desired maximum width of the image



	allowCropping

	(boolean) Whether the image should be cropped if the given sizes would hurt the aspect ratio, defaults to FALSE



	allowUpScaling

	(boolean) Whether the resulting image size might exceed the size of the original image, defaults to FALSE



	async

	(boolean) Return asynchronous image URI in case the requested image does not exist already, defaults to FALSE



	quality

	(integer) Image quality, from 0 to 100



	format

	(string) Format for the image, jpg, jpeg, gif, png, wbmp, xbm, webp and bmp are supported



	preset

	(string) Preset used to determine image configuration, if set all other resize attributes will be ignored





Example:

logoUri = Neos.Neos:ImageUri {
        asset = ${q(node).property('image')}
        width = 100
        height = 100
        allowCropping = TRUE
        allowUpScaling = TRUE
}







Neos.Neos:ImageTag

Render an image tag for an asset.


	*

	All Neos.Neos:ImageUri properties



	attributes

	(Neos.Fusion:Attributes) Image tag attributes





Example:

logoImage = Neos.Neos:ImageTag {
        asset = ${q(node).property('image')}
        maximumWidth = 400
        attributes.alt = 'A company logo'
}







Neos.Neos:ConvertUris

Convert internal node and asset URIs (node://... or asset://...) in a string to public URIs and allows for
overriding the target attribute for external links and resource links.


	value

	(string) The string value, defaults to the value context variable to work as a processor by default



	node

	(Node) The current node as a reference, defaults to the node context variable



	externalLinkTarget

	(string) Override the target attribute for external links, defaults to _blank. Can be disabled with an empty value.



	resourceLinkTarget

	(string) Override the target attribute for resource links, defaults to _blank. Can be disabled with an empty value.



	forceConversion

	(boolean) Whether to convert URIs in a non-live workspace, defaults to FALSE



	absolute

	(boolean) Can be used to convert node URIs to absolute links, defaults to FALSE



	setNoOpener

	(boolean) Sets the rel=”noopener” attribute to external links, which is good practice, defaults to TRUE





Example:

prototype(My.Site:Special.Type) {
        title.@process.convertUris = Neos.Neos:ConvertUris
}







Neos.Neos:ContentElementWrapping

Processor to augment rendered HTML code with node metadata that allows the Neos UI to select the node and show
node properties in the inspector. This is especially useful if your renderer prototype is not derived from Neos.Neos:Content.

The processor expects being applied on HTML code with a single container tag that is augmented.


	node

	(Node) The node of the content element. Optional, will use the Fusion context variable node by default.





Example:

prototype(Vendor.Site:ExampleContent) {
        value = '<div>Example</div>'

        # The following line must not be removed as it adds required meta data
        # to edit content elements in the backend
        @process.contentElementWrapping = Neos.Neos:ContentElementWrapping {
                @position = 'end'
        }
}







Neos.Neos:ContentElementEditable

Processor to augment an HTML tag with metadata for inline editing to make a rendered representation of a property editable.

The processor expects beeing applied to an HTML tag with the content of the edited property.


	node

	(Node) The node of the content element. Optional, will use the Fusion context variable node by default.



	property

	(string) Node property that should be editable





Example:

renderer = Neos.Fusion:Tag {
        tagName = 'h1'
        content = ${q(node).property('title')}
        @process.contentElementEditableWrapping = Neos.Neos:ContentElementEditable {
                property = 'title'
        }
}










            

          

      

      

    

  

    
      
          
            
  
Eel Helpers Reference

This reference was automatically generated from code on 2019-03-05


Array

Array helpers for Eel contexts

The implementation uses the JavaScript specificiation where applicable, including EcmaScript 6 proposals.

See https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Array for a documentation and
specification of the JavaScript implementation.

Implemented in: Neos\Eel\Helper\ArrayHelper


Array.concat(array1, array2, array_)

Concatenate arrays or values to a new array


	array1 (array|mixed) First array or value


	array2 (array|mixed) Second array or value


	array_ (array|mixed, optional) Optional variable list of additional arrays / values




Return (array) The array with concatenated arrays or values



Array.every(array, callback)

Check if all elements in an array pass a test given by the calback,
passing each element and key as arguments

Example:

Array.every([1, 2, 3, 4], x => x % 2 == 0) // == false
Array.every([2, 4, 6, 8], x => x % 2) // == true






	array (array) Array of elements to test


	callback (callable) Callback for testing elements, current value and key will be passed as arguments




Return (bool) True if all elements passed the test



Array.filter(array, callback)

Filter an array by a test given as the callback, passing each element and key as arguments

Examples:


Array.filter([1, 2, 3, 4], x => x % 2 == 0) // == [2, 4]
Array.filter([‘foo’, ‘bar’, ‘baz’], (x, index) => index < 2) // == [‘foo’, ‘bar’]





	array (array) Array of elements to filter


	callback (callable, optional) Callback for testing if an element should be included in the result, current value and key will be passed as arguments




Return (array) The array with elements where callback returned true



Array.first(array)

Get the first element of an array


	array (array) The array




Return (mixed)



Array.flip(array)

Exchanges all keys with their associated values in an array

Note that the values of array need to be valid keys, i.e. they need to be either int or string.
If a value has several occurrences, the latest key will be used as its value, and all others will be lost.


	array (array)




Return (array) The array with flipped keys and values



Array.indexOf(array, searchElement, fromIndex)

Returns the first index at which a given element can be found in the array,
or -1 if it is not present


	array (array) The array


	searchElement (mixed) The element value to find


	fromIndex (int, optional) Position in the array to start the search.




Return (int)



Array.isEmpty(array)

Check if an array is empty


	array (array) The array




Return (bool) true if the array is empty



Array.join(array, separator)

Join values of an array with a separator


	array (array) Array with values to join


	separator (string, optional) A separator for the values




Return (string) A string with the joined values separated by the separator



Array.keys(array)

Get the array keys


	array (array) The array




Return (array)



Array.last(array)

Get the last element of an array


	array (array) The array




Return (mixed)



Array.length(array)

Get the length of an array


	array (array) The array




Return (int)



Array.map(array, callback)

Apply the callback to each element of the array, passing each element and key as arguments

Examples:

Array.map([1, 2, 3, 4], x => x * x)
Array.map([1, 2, 3, 4], (x, index) => x * index)






	array (array) Array of elements to map


	callback (callable) Callback to apply for each element, current value and key will be passed as arguments




Return (array) The array with callback applied, keys will be preserved



Array.pop(array)

Removes the last element from an array

Note: This differs from the JavaScript behavior of Array.pop which will return the popped element.

An empty array will result in an empty array again.


	array (array)




Return (array) The array without the last element



Array.push(array, element)

Insert one or more elements at the end of an array

Allows to push multiple elements at once:

Array.push(array, e1, e2)






	array (array)


	element (mixed)




Return (array) The array with the inserted elements



Array.random(array)

Picks a random element from the array


	array (array)




Return (mixed) A random entry or null if the array is empty



Array.range(start, end, step)

Create an array containing a range of elements

If a step value is given, it will be used as the increment between elements in the sequence.
step should be given as a positive number. If not specified, step will default to 1.


	start (mixed) First value of the sequence.


	end (mixed) The sequence is ended upon reaching the end value.


	step (int, optional) The increment between items, will default to 1.




Return (array) Array of elements from start to end, inclusive.



Array.reduce(array, callback, initialValue)

Apply the callback to each element of the array and accumulate a single value

Examples:

Array.reduce([1, 2, 3, 4], (accumulator, currentValue) => accumulator + currentValue) // == 10
Array.reduce([1, 2, 3, 4], (accumulator, currentValue) => accumulator + currentValue, 1) // == 11






	array (array) Array of elements to reduce to a value


	callback (callable) Callback for accumulating values, accumulator, current value and key will be passed as arguments


	initialValue (mixed, optional) Initial value, defaults to first item in array and callback starts with second entry




Return (mixed)



Array.reverse(array)

Returns an array in reverse order


	array (array) The array




Return (array)



Array.set(array, key, value)

Set the specified key in the the array


	array (array)


	key (string|integer) the key that should be set


	value (mixed) the value to assign to the key




Return (array) The modified array.



Array.shift(array)

Remove the first element of an array

Note: This differs from the JavaScript behavior of Array.shift which will return the shifted element.

An empty array will result in an empty array again.


	array (array)




Return (array) The array without the first element



Array.shuffle(array, preserveKeys)

Shuffle an array

Randomizes entries an array with the option to preserve the existing keys.
When this option is set to false, all keys will be replaced


	array (array)


	preserveKeys (bool, optional) Wether to preserve the keys when shuffling the array




Return (array) The shuffled array



Array.slice(array, begin, end)

Extract a portion of an indexed array


	array (array) The array (with numeric indices)


	begin (int)


	end (int, optional)




Return (array)



Array.some(array, callback)

Check if at least one element in an array passes a test given by the calback,
passing each element and key as arguments

Example:

Array.some([1, 2, 3, 4], x => x % 2 == 0) // == true
Array.some([1, 2, 3, 4], x => x > 4) // == false






	array (array) Array of elements to test


	callback (callable) Callback for testing elements, current value and key will be passed as arguments




Return (bool) True if at least one element passed the test



Array.sort(array)

Sorts an array

The sorting is done first by numbers, then by characters.

Internally natsort() is used as it most closely resembles javascript’s sort().
Because there are no real associative arrays in Javascript, keys of the array will be preserved.


	array (array)




Return (array) The sorted array



Array.splice(array, offset, length, replacements)

Replaces a range of an array by the given replacements

Allows to give multiple replacements at once:

Array.splice(array, 3, 2, 'a', 'b')






	array (array)


	offset (int) Index of the first element to remove


	length (int, optional) Number of elements to remove


	replacements (mixed, optional) Elements to insert instead of the removed range




Return (array) The array with removed and replaced elements



Array.unshift(array, element)

Insert one or more elements at the beginning of an array

Allows to insert multiple elements at once:

Array.unshift(array, e1, e2)






	array (array)


	element (mixed)




Return (array) The array with the inserted elements




Configuration

Configuration helpers for Eel contexts

Implemented in: Neos\Eel\Helper\ConfigurationHelper


Configuration.setting(settingPath)

Return the specified settings

Examples:

Configuration.setting('Neos.Flow.core.context') == 'Production'

Configuration.setting('Acme.Demo.speedMode') == 'light speed'






	settingPath (string)




Return (mixed)




ContentDimensions

Implemented in: Neos\Neos\Ui\Fusion\Helper\ContentDimensionsHelper


ContentDimensions.allowedPresetsByName(dimensions)


	dimensions (array) Dimension values indexed by dimension name




Return (array) Allowed preset names for the given dimension combination indexed by dimension name



ContentDimensions.contentDimensionsByName()

Return (array) Dimensions indexed by name with presets indexed by name




Date

Date helpers for Eel contexts

Implemented in: Neos\Eel\Helper\DateHelper


Date.add(date, interval)

Add an interval to a date and return a new DateTime object


	date (DateTime)


	interval (string|DateInterval)




Return (DateTime)



Date.create(time)

Get a date object by given date or time format

Examples:

Date.create('2018-12-04')
Date.create('first day of next year')






	time (String) A date/time string. For valid formats see http://php.net/manual/en/datetime.formats.php




Return (DateTime)



Date.dayOfMonth(dateTime)

Get the day of month of a date


	dateTime (DateTimeInterface)




Return (integer) The day of month of the given date



Date.diff(dateA, dateB)

Get the difference between two dates as a DateInterval object


	dateA (DateTime)


	dateB (DateTime)




Return (DateInterval)



Date.format(date, format)

Format a date (or interval) to a string with a given format

See formatting options as in PHP date()


	date (integer|string|DateTime|DateInterval)


	format (string)




Return (string)



Date.formatCldr(date, cldrFormat, locale)

Format a date to a string with a given cldr format


	date (integer|string|DateTime)


	cldrFormat (string) Format string in CLDR format (see http://cldr.unicode.org/translation/date-time)


	locale (null|string, optional) String locale - example (de|en|ru_RU)




Return (string)



Date.hour(dateTime)

Get the hour of a date (24 hour format)


	dateTime (DateTimeInterface)




Return (integer) The hour of the given date



Date.minute(dateTime)

Get the minute of a date


	dateTime (DateTimeInterface)




Return (integer) The minute of the given date



Date.month(dateTime)

Get the month of a date


	dateTime (DateTimeInterface)




Return (integer) The month of the given date



Date.now()

Get the current date and time

Examples:

Date.now().timestamp





Return (DateTime)



Date.parse(string, format)

Parse a date from string with a format to a DateTime object


	string (string)


	format (string)




Return (DateTime)



Date.second(dateTime)

Get the second of a date


	dateTime (DateTimeInterface)




Return (integer) The second of the given date



Date.subtract(date, interval)

Subtract an interval from a date and return a new DateTime object


	date (DateTime)


	interval (string|DateInterval)




Return (DateTime)



Date.today()

Get the current date

Return (DateTime)



Date.year(dateTime)

Get the year of a date


	dateTime (DateTimeInterface)




Return (integer) The year of the given date




File

Helper to read files.

Implemented in: Neos\Eel\Helper\FileHelper


File.fileInfo(filepath)

Get file name and path information


	filepath (string)




Return (array) with keys dirname, basename, extension (if any), and filename



File.getSha1(filepath)


	filepath (string)




Return (string)



File.readFile(filepath)

Read and return the files contents for further use.


	filepath (string)




Return (string)



File.stat(filepath)

Get file information like creation and modification times as well as size.


	filepath (string)




Return (array) with keys mode, uid, gid, size, atime, mtime, ctime, (blksize, blocks, dev, ino, nlink, rdev)




Json

JSON helpers for Eel contexts

Implemented in: Neos\Eel\Helper\JsonHelper


Json.parse(json, associativeArrays)

JSON decode the given string


	json (string)


	associativeArrays (boolean, optional)




Return (mixed)



Json.stringify(value, options)

JSON encode the given value

Usage example for options:

Json.stringify(value, [‘JSON_UNESCAPED_UNICODE’, ‘JSON_FORCE_OBJECT’])


	value (mixed)


	options (array, optional) Array of option constant names as strings




Return (string)




Math

Math helpers for Eel contexts

The implementation sticks to the JavaScript specificiation including EcmaScript 6 proposals.

See https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Math for a documentation and
specification of the JavaScript implementation.

Implemented in: Neos\Eel\Helper\MathHelper


Math.abs(x)


	x (float, optional) A number




Return (float) The absolute value of the given value



Math.acos(x)


	x (float) A number




Return (float) The arccosine (in radians) of the given value



Math.acosh(x)


	x (float) A number




Return (float) The hyperbolic arccosine (in radians) of the given value



Math.asin(x)


	x (float) A number




Return (float) The arcsine (in radians) of the given value



Math.asinh(x)


	x (float) A number




Return (float) The hyperbolic arcsine (in radians) of the given value



Math.atan(x)


	x (float) A number




Return (float) The arctangent (in radians) of the given value



Math.atan2(y, x)


	y (float) A number


	x (float) A number




Return (float) The arctangent of the quotient of its arguments



Math.atanh(x)


	x (float) A number




Return (float) The hyperbolic arctangent (in radians) of the given value



Math.cbrt(x)


	x (float) A number




Return (float) The cube root of the given value



Math.ceil(x)


	x (float) A number




Return (float) The smallest integer greater than or equal to the given value



Math.cos(x)


	x (float) A number given in radians




Return (float) The cosine of the given value



Math.cosh(x)


	x (float) A number




Return (float) The hyperbolic cosine of the given value



Math.exp(x)


	x (float) A number




Return (float) The power of the Euler’s constant with the given value (e^x)



Math.expm1(x)


	x (float) A number




Return (float) The power of the Euler’s constant with the given value minus 1 (e^x - 1)



Math.floor(x)


	x (float) A number




Return (float) The largest integer less than or equal to the given value



Math.getE()

Return (float) Euler’s constant and the base of natural logarithms, approximately 2.718



Math.getLN10()

Return (float) Natural logarithm of 10, approximately 2.303



Math.getLN2()

Return (float) Natural logarithm of 2, approximately 0.693



Math.getLOG10E()

Return (float) Base 10 logarithm of E, approximately 0.434



Math.getLOG2E()

Return (float) Base 2 logarithm of E, approximately 1.443



Math.getPI()

Return (float) Ratio of the circumference of a circle to its diameter, approximately 3.14159



Math.getSQRT1_2()

Return (float) Square root of 1/2; equivalently, 1 over the square root of 2, approximately 0.707



Math.getSQRT2()

Return (float) Square root of 2, approximately 1.414



Math.hypot(x, y, z_)


	x (float) A number


	y (float) A number


	z_ (float, optional) Optional variable list of additional numbers




Return (float) The square root of the sum of squares of the arguments



Math.isFinite(x)

Test if the given value is a finite number

This is equivalent to the global isFinite() function in JavaScript.


	x (mixed) A value




Return (boolean) true if the value is a finite (not NAN) number



Math.isInfinite(x)

Test if the given value is an infinite number (INF or -INF)

This function has no direct equivalent in JavaScript.


	x (mixed) A value




Return (boolean) true if the value is INF or -INF



Math.isNaN(x)

Test if the given value is not a number (either not numeric or NAN)

This is equivalent to the global isNaN() function in JavaScript.


	x (mixed) A value




Return (boolean) true if the value is not a number



Math.log(x)


	x (float) A number




Return (float) The natural logarithm (base e) of the given value



Math.log10(x)


	x (float) A number




Return (float) The base 10 logarithm of the given value



Math.log1p(x)


	x (float) A number




Return (float) The natural logarithm (base e) of 1 + the given value



Math.log2(x)


	x (float) A number




Return (float) The base 2 logarithm of the given value



Math.max(x, y_)


	x (float, optional) A number


	y_ (float, optional) Optional variable list of additional numbers




Return (float) The largest of the given numbers (zero or more)



Math.min(x, y_)


	x (float, optional) A number


	y_ (float, optional) Optional variable list of additional numbers




Return (float) The smallest of the given numbers (zero or more)



Math.pow(x, y)

Calculate the power of x by y


	x (float) The base


	y (float) The exponent




Return (float) The base to the exponent power (x^y)



Math.random()

Get a random foating point number between 0 (inclusive) and 1 (exclusive)

That means a result will always be less than 1 and greater or equal to 0, the same way Math.random() works in
JavaScript.

See Math.randomInt(min, max) for a function that returns random integer numbers from a given interval.

Return (float) A random floating point number between 0 (inclusive) and 1 (exclusive), that is from [0, 1)



Math.randomInt(min, max)

Get a random integer number between a min and max value (inclusive)

That means a result will always be greater than or equal to min and less than or equal to max.


	min (integer) The lower bound for the random number (inclusive)


	max (integer) The upper bound for the random number (inclusive)




Return (integer) A random number between min and max (inclusive), that is from [min, max]



Math.round(subject, precision)

Rounds the subject to the given precision

The precision defines the number of digits after the decimal point.
Negative values are also supported (-1 rounds to full 10ths).


	subject (float) The value to round


	precision (integer, optional) The precision (digits after decimal point) to use, defaults to 0




Return (float) The rounded value



Math.sign(x)

Get the sign of the given number, indicating whether the number is positive, negative or zero


	x (integer|float) The value




Return (integer) -1, 0, 1 depending on the sign or NAN if the given value was not numeric



Math.sin(x)


	x (float) A number given in radians




Return (float) The sine of the given value



Math.sinh(x)


	x (float) A number




Return (float) The hyperbolic sine of the given value



Math.sqrt(x)


	x (float) A number




Return (float) The square root of the given number



Math.tan(x)


	x (float) A number given in radians




Return (float) The tangent of the given value



Math.tanh(x)


	x (float) A number




Return (float) The hyperbolic tangent of the given value



Math.trunc(x)

Get the integral part of the given number by removing any fractional digits

This function doesn’t round the given number but merely calls ceil(x) or floor(x) depending
on the sign of the number.


	x (float) A number




Return (integer) The integral part of the given number




Neos.Array

Some Functional Programming Array helpers for Eel contexts

These helpers are WORK IN PROGRESS and NOT STABLE YET

Implemented in: Neos\Neos\Fusion\Helper\ArrayHelper


Neos.Array.filter(set, filterProperty)

Filter an array of objects, by only keeping the elements where each object’s $filterProperty evaluates to true.


	set (array|Collection)


	filterProperty (string)




Return (array)



Neos.Array.filterNegated(set, filterProperty)

Filter an array of objects, by only keeping the elements where each object’s $filterProperty evaluates to false.


	set (array|Collection)


	filterProperty (string)




Return (array)



Neos.Array.groupBy(set, groupingKey)

The input is assumed to be an array or Collection of objects. Groups this input by the $groupingKey property of each element.


	set (array|Collection)


	groupingKey (string)




Return (array)




Neos.Caching

Caching helper to make cache tag generation easier.

Implemented in: Neos\Neos\Fusion\Helper\CachingHelper


Neos.Caching.descendantOfTag(nodes)

Generate a @cache entry tag for descendants of a node, an array of nodes or a FlowQuery result
A cache entry with this tag will be flushed whenever a node
(for any variant) that is a descendant (child on any level) of one of
the given nodes is updated.


	nodes (mixed) (A single Node or array or Traversable of Nodes)




Return (array)



Neos.Caching.nodeTag(nodes)

Generate a @cache entry tag for a single node, array of nodes or a FlowQuery result
A cache entry with this tag will be flushed whenever one of the
given nodes (for any variant) is updated.


	nodes (mixed) (A single Node or array or Traversable of Nodes)




Return (array)



Neos.Caching.nodeTagForIdentifier(identifier, contextNode)

Generate a @cache entry tag for a single node identifier. If a NodeInterface $contextNode is given the
entry tag will respect the workspace hash.


	identifier (string)


	contextNode (NodeInterface|null, optional)




Return (string)



Neos.Caching.nodeTypeTag(nodeType, contextNode)

Generate an @cache entry tag for a node type
A cache entry with this tag will be flushed whenever a node
(for any variant) that is of the given node type(s)
(including inheritance) is updated.


	nodeType (string|NodeType|string[]|NodeType[])


	contextNode (NodeInterface|null, optional)




Return (string|string[])



Neos.Caching.renderWorkspaceTagForContextNode(workspaceName)


	workspaceName (string)




Return (string)




Neos.Link

Eel helper for the linking service

Implemented in: Neos\Neos\Fusion\Helper\LinkHelper


Neos.Link.convertUriToObject(uri, contextNode)


	uri (string|Uri)


	contextNode (NodeInterface, optional)




Return (NodeInterface|AssetInterface|NULL)



Neos.Link.getScheme(uri)


	uri (string|Uri)




Return (string)



Neos.Link.hasSupportedScheme(uri)


	uri (string|Uri)




Return (boolean)



Neos.Link.resolveAssetUri(uri)


	uri (string|Uri)




Return (string)



Neos.Link.resolveNodeUri(uri, contextNode, controllerContext)


	uri (string|Uri)


	contextNode (NodeInterface)


	controllerContext (ControllerContext)




Return (string)




Neos.Node

Eel helper for ContentRepository Nodes

Implemented in: Neos\Neos\Fusion\Helper\NodeHelper


Neos.Node.isOfType(node, nodeType)

If this node type or any of the direct or indirect super types
has the given name.


	node (NodeInterface)


	nodeType (string)




Return (bool)



Neos.Node.nearestContentCollection(node, nodePath)

Check if the given node is already a collection, find collection by nodePath otherwise, throw exception
if no content collection could be found


	node (NodeInterface)


	nodePath (string)




Return (NodeInterface)




Neos.Rendering

Render Content Dimension Names, Node Labels

These helpers are WORK IN PROGRESS and NOT STABLE YET

Implemented in: Neos\Neos\Fusion\Helper\RenderingHelper


Neos.Rendering.injectConfigurationManager(configurationManager)


	configurationManager (ConfigurationManager)




Return (void)



Neos.Rendering.labelForNodeType(nodeTypeName)

Render the label for the given $nodeTypeName


	nodeTypeName (string)




Return (string)



Neos.Rendering.renderDimensions(dimensions)

Render a human-readable description for the passed $dimensions


	dimensions (array)




Return (string)




Neos.Ui.Modules

Implemented in: Neos\Neos\Ui\Fusion\Helper\ModulesHelper


Neos.Ui.Modules.isAllowed(modulePath)

Checks whether the current user has access to a module


	modulePath (string)




Return (boolean)



Neos.Ui.Modules.isAvailable(moduleName)

Checks, whether a module is available to the current user


	moduleName (string)




Return (boolean)



Neos.Ui.Modules.isEnabled(modulePath)

Checks whether a module is enabled


	modulePath (string)




Return (boolean)




Neos.Ui.PositionalArraySorter

Implemented in: Neos\Neos\Ui\Fusion\Helper\PositionalArraySorterHelper


Neos.Ui.PositionalArraySorter.sort(array, positionPath)


	array (array)


	positionPath (string, optional)




Return (array)




Neos.Ui.Sites

Implemented in: Neos\Neos\Ui\Fusion\Helper\SitesHelper


Neos.Ui.Sites.isActive(siteNode)




Neos.Ui.StaticResources

Implemented in: Neos\Neos\Ui\Fusion\Helper\StaticResourcesHelper


Neos.Ui.StaticResources.compiledResourcePackage()




Neos.Ui.Workspace

Implemented in: Neos\Neos\Ui\Fusion\Helper\WorkspaceHelper


Neos.Ui.Workspace.getAllowedTargetWorkspaces()



Neos.Ui.Workspace.getPersonalWorkspace()



Neos.Ui.Workspace.getPublishableNodeInfo(workspace)


	workspace (Workspace)




Return (array)




NodeInfo

Implemented in: Neos\Neos\Ui\Fusion\Helper\NodeInfoHelper


NodeInfo.createRedirectToNode(controllerContext, node)


	controllerContext (ControllerContext)


	node (NodeInterface, optional)




Return (string)



NodeInfo.defaultNodesForBackend(site, documentNode, controllerContext)


	site (NodeInterface)


	documentNode (NodeInterface)


	controllerContext (ControllerContext)




Return (array)



NodeInfo.renderDocumentNodeAndChildContent(documentNode, controllerContext)


	documentNode (NodeInterface)


	controllerContext (ControllerContext)




Return (array)



NodeInfo.renderNodeWithMinimalPropertiesAndChildrenInformation(node, controllerContext, nodeTypeFilterOverride)


	node (NodeInterface)


	controllerContext (ControllerContext|null, optional)


	nodeTypeFilterOverride (string, optional)




Return (array|null)



NodeInfo.renderNodeWithPropertiesAndChildrenInformation(node, controllerContext, nodeTypeFilterOverride)


	node (NodeInterface)


	controllerContext (ControllerContext|null, optional)


	nodeTypeFilterOverride (string, optional)




Return (array|null)



NodeInfo.renderNodes(nodes, controllerContext, omitMostPropertiesForTreeState)


	nodes (array)


	controllerContext (ControllerContext)


	omitMostPropertiesForTreeState (bool, optional)




Return (array)



NodeInfo.renderNodesWithParents(nodes, controllerContext)


	nodes (array)


	controllerContext (ControllerContext)




Return (array)



NodeInfo.uri(node, controllerContext)


	node (NodeInterface)


	controllerContext (ControllerContext)




Return (string)




Security

Helper for security related information

Implemented in: Neos\Eel\Helper\SecurityHelper


Security.csrfToken()

Returns CSRF token which is required for “unsafe” requests (e.g. POST, PUT, DELETE, …)

Return (string)



Security.getAccount()

Get the account of the first authenticated token.

Return (Account|NULL)



Security.hasAccess(privilegeTarget, parameters)

Returns true, if access to the given privilege-target is granted


	privilegeTarget (string) The identifier of the privilege target to decide on


	parameters (array, optional) Optional array of privilege parameters (simple key => value array)




Return (boolean) true if access is granted, false otherwise



Security.hasRole(roleIdentifier)

Returns true, if at least one of the currently authenticated accounts holds
a role with the given identifier, also recursively.


	roleIdentifier (string) The string representation of the role to search for




Return (boolean) true, if a role with the given string representation was found



Security.isAuthenticated()

Returns true, if any account is currently authenticated

Return (boolean) true if any account is authenticated




String

String helpers for Eel contexts

Implemented in: Neos\Eel\Helper\StringHelper


String.base64decode(string, strict)

Implementation of the PHP base64_decode function


	string (string) The encoded data.


	strict (bool, optional) If TRUE this function will return FALSE if the input contains character from outside the base64 alphabet.




Return (string|bool) The decoded data or FALSE on failure. The returned data may be binary.



String.base64encode(string)

Implementation of the PHP base64_encode function


	string (string) The data to encode.




Return (string) The encoded data



String.charAt(string, index)

Get the character at a specific position

Example:

String.charAt("abcdefg", 5) == "f"






	string (string) The input string


	index (integer) The index to get




Return (string) The character at the given index



String.chr(value)

Generate a single-byte string from a number

Example:

String.chr(65) == "A"





This is a wrapper for the chr() PHP function.


	value (int) An integer between 0 and 255




Return (string) A single-character string containing the specified byte



String.crop(string, maximumCharacters, suffix)

Crop a string to maximumCharacters length, optionally appending suffix if cropping was necessary.


	string (string) The input string


	maximumCharacters (integer) Number of characters where cropping should happen


	suffix (string, optional) Suffix to be appended if cropping was necessary




Return (string) The cropped string



String.cropAtSentence(string, maximumCharacters, suffix)

Crop a string to maximumCharacters length, taking sentences into account,
optionally appending suffix if cropping was necessary.


	string (string) The input string


	maximumCharacters (integer) Number of characters where cropping should happen


	suffix (string, optional) Suffix to be appended if cropping was necessary




Return (string) The cropped string



String.cropAtWord(string, maximumCharacters, suffix)

Crop a string to maximumCharacters length, taking words into account,
optionally appending suffix if cropping was necessary.


	string (string) The input string


	maximumCharacters (integer) Number of characters where cropping should happen


	suffix (string, optional) Suffix to be appended if cropping was necessary




Return (string) The cropped string



String.endsWith(string, search, position)

Test if a string ends with the given search string

Example:

String.endsWith('Hello, World!', 'World!') == true






	string (string) The string


	search (string) A string to search


	position (integer, optional) Optional position for limiting the string




Return (boolean) true if the string ends with the given search



String.firstLetterToLowerCase(string)

Lowercase the first letter of a string

Example:

String.firstLetterToLowerCase('CamelCase') == 'camelCase'






	string (string) The input string




Return (string) The string with the first letter in lowercase



String.firstLetterToUpperCase(string)

Uppercase the first letter of a string

Example:

String.firstLetterToUpperCase('hello world') == 'Hello world'






	string (string) The input string




Return (string) The string with the first letter in uppercase



String.format(format, args)

Implementation of the PHP vsprintf function


	format (string) A formatting string containing directives


	args (array) An array of values to be inserted according to the formatting string $format




Return (string) A string produced according to the formatting string $format



String.htmlSpecialChars(string, preserveEntities)

Convert special characters to HTML entities


	string (string) The string to convert


	preserveEntities (boolean, optional) true if entities should not be double encoded




Return (string) The converted string



String.indexOf(string, search, fromIndex)

Find the first position of a substring in the given string

Example:

String.indexOf("Blue Whale", "Blue") == 0






	string (string) The input string


	search (string) The substring to search for


	fromIndex (integer, optional) The index where the search should start, defaults to the beginning




Return (integer) The index of the substring (>= 0) or -1 if the substring was not found



String.isBlank(string)

Test if the given string is blank (empty or consists of whitespace only)

Examples:

String.isBlank('') == true
String.isBlank('  ') == true






	string (string) The string to test




Return (boolean) true if the given string is blank



String.lastIndexOf(string, search, toIndex)

Find the last position of a substring in the given string

Example:

String.lastIndexOf("Developers Developers Developers!", "Developers") == 22






	string (string) The input string


	search (string) The substring to search for


	toIndex (integer, optional) The position where the backwards search should start, defaults to the end




Return (integer) The last index of the substring (>=0) or -1 if the substring was not found



String.length(string)

Get the length of a string


	string (string) The input string




Return (integer) Length of the string



String.md5(string)

Calculate the MD5 checksum of the given string

Example:

String.md5("joh316") == "bacb98acf97e0b6112b1d1b650b84971"






	string (string) The string to hash




Return (string) The MD5 hash of string



String.nl2br(string)

Insert HTML line breaks before all newlines in a string

Example:

String.nl2br(someStingWithLinebreaks) == 'line1<br />line2'





This is a wrapper for the nl2br() PHP function.


	string (string) The input string




Return (string) The string with new lines replaced



String.ord(string)

Convert the first byte of a string to a value between 0 and 255

Example:

String.ord('A') == 65





This is a wrapper for the ord() PHP function.


	string (string) A character




Return (int) An integer between 0 and 255



String.pregMatch(string, pattern)

Match a string with a regular expression (PREG style)

Example:

String.pregMatch("For more information, see Chapter 3.4.5.1", "/(chapter \d+(\.\d)*)/i")
  == ['Chapter 3.4.5.1', 'Chapter 3.4.5.1', '.1']






	string (string) The input string


	pattern (string) A PREG pattern




Return (array) The matches as array or NULL if not matched



String.pregMatchAll(string, pattern)

Perform a global regular expression match (PREG style)

Example:

String.pregMatchAll("<hr id="icon-one" /><hr id="icon-two" />", '/id="icon-(.+?)"/')
  == [['id="icon-one"', 'id="icon-two"'],['one','two']]






	string (string) The input string


	pattern (string) A PREG pattern




Return (array) The matches as array or NULL if not matched



String.pregReplace(string, pattern, replace)

Replace occurrences of a search string inside the string using regular expression matching (PREG style)

Examples:

String.pregReplace("Some.String with sp:cial characters", "/[[:^alnum:]]/", "-") == "Some-String-with-sp-cial-characters"
String.pregReplace("2016-08-31", "/([0-9]+)-([0-9]+)-([0-9]+)/", "$3.$2.$1") == "31.08.2016"






	string (string) The input string


	pattern (string) A PREG pattern


	replace (string) A replacement string, can contain references to capture groups with “\n” or “$n




Return (string) The string with all occurrences replaced



String.pregSplit(string, pattern, limit)

Split a string by a separator using regular expression matching (PREG style)

Examples:

String.pregSplit("foo bar   baz", "/\s+/") == ['foo', 'bar', 'baz']
String.pregSplit("first second third", "/\s+/", 2) == ['first', 'second third']






	string (string) The input string


	pattern (string) A PREG pattern


	limit (integer, optional) The maximum amount of items to return, in contrast to split() this will return all remaining characters in the last item (see example)




Return (array) An array of the splitted parts, excluding the matched pattern



String.rawUrlDecode(string)

Decode the string from URLs according to RFC 3986


	string (string) The string to decode




Return (string) The decoded string



String.rawUrlEncode(string)

Encode the string for URLs according to RFC 3986


	string (string) The string to encode




Return (string) The encoded string



String.replace(string, search, replace)

Replace occurrences of a search string inside the string

Example:

String.replace("canal", "ana", "oo") == "cool"





Note: this method does not perform regular expression matching, @see pregReplace().


	string (string) The input string


	search (string) A search string


	replace (string) A replacement string




Return (string) The string with all occurrences replaced



String.sha1(string)

Calculate the SHA1 checksum of the given string

Example:

String.sha1("joh316") == "063b3d108bed9f88fa618c6046de0dccadcf3158"






	string (string) The string to hash




Return (string) The SHA1 hash of string



String.split(string, separator, limit)

Split a string by a separator

Example:

String.split("My hovercraft is full of eels", " ") == ['My', 'hovercraft', 'is', 'full', 'of', 'eels']
String.split("Foo", "", 2) == ['F', 'o']





Node: This implementation follows JavaScript semantics without support of regular expressions.


	string (string) The string to split


	separator (string, optional) The separator where the string should be splitted


	limit (integer, optional) The maximum amount of items to split (exceeding items will be discarded)




Return (array) An array of the splitted parts, excluding the separators



String.startsWith(string, search, position)

Test if a string starts with the given search string

Examples:

String.startsWith('Hello world!', 'Hello') == true
String.startsWith('My hovercraft is full of...', 'Hello') == false
String.startsWith('My hovercraft is full of...', 'hovercraft', 3) == true






	string (string) The input string


	search (string) The string to search for


	position (integer, optional) The position to test (defaults to the beginning of the string)




Return (boolean)



String.stripTags(string, allowableTags)

Strip all HTML tags from the given string

Example:

String.stripTags('<a href="#">Some link</a>') == 'Some link'





This is a wrapper for the strip_tags() PHP function.


	string (string) The string to strip


	allowableTags (string, optional) Specify tags which should not be stripped




Return (string) The string with tags stripped



String.substr(string, start, length)

Return the characters in a string from start up to the given length

This implementation follows the JavaScript specification for “substr”.

Examples:

String.substr('Hello, World!', 7, 5) == 'World'
String.substr('Hello, World!', 7) == 'World!'
String.substr('Hello, World!', -6) == 'World!'






	string (string) A string


	start (integer) Start offset


	length (integer, optional) Maximum length of the substring that is returned




Return (string) The substring



String.substring(string, start, end)

Return the characters in a string from a start index to an end index

This implementation follows the JavaScript specification for “substring”.

Examples:

String.substring('Hello, World!', 7, 12) == 'World'
String.substring('Hello, World!', 7) == 'World!'






	string (string)


	start (integer) Start index


	end (integer, optional) End index




Return (string) The substring



String.toBoolean(string)

Convert a string to boolean

A value is true, if it is either the string "true" or "true" or the number 1.


	string (string) The string to convert




Return (boolean) The boolean value of the string (true or false)



String.toFloat(string)

Convert a string to float


	string (string) The string to convert




Return (float) The float value of the string



String.toInteger(string)

Convert a string to integer


	string (string) The string to convert




Return (integer) The converted string



String.toLowerCase(string)

Lowercase a string


	string (string) The input string




Return (string) The string in lowercase



String.toString(value)

Convert the given value to a string


	value (mixed) The value to convert (must be convertible to string)




Return (string) The string value



String.toUpperCase(string)

Uppercase a string


	string (string) The input string




Return (string) The string in uppercase



String.trim(string, charlist)

Trim whitespace at the beginning and end of a string


	string (string) The string to trim


	charlist (string, optional) List of characters that should be trimmed, defaults to whitespace




Return (string) The trimmed string



String.wordCount(unicodeString)

Return the count of words for a given string. Remove marks & digits and
flatten all kind of whitespaces (tabs, new lines and multiple spaces)
For example this helper can be utilized to calculate the reading time of an article.


	unicodeString (string) The input string




Return (integer) Number of words




Translation

Translation helpers for Eel contexts

Implemented in: Neos\Flow\I18n\EelHelper\TranslationHelper


Translation.id(id)

Start collection of parameters for translation by id


	id (string) Id to use for finding translation (trans-unit id in XLIFF)




Return (TranslationParameterToken)



Translation.translate(id, originalLabel, arguments, source, package, quantity, locale)

Get the translated value for an id or original label

If only id is set and contains a translation shorthand string, translate
according to that shorthand

In all other cases:

Replace all placeholders with corresponding values if they exist in the
translated label.


	id (string) Id to use for finding translation (trans-unit id in XLIFF)


	originalLabel (string, optional) The original translation value (the untranslated source string).


	arguments (array, optional) Array of numerically indexed or named values to be inserted into placeholders. Have a look at the internationalization documentation in the definitive guide for details.


	source (string, optional) Name of file with translations


	package (string, optional) Target package key. If not set, the current package key will be used


	quantity (mixed, optional) A number to find plural form for (float or int), NULL to not use plural forms


	locale (string, optional) An identifier of locale to use (NULL for use the default locale)




Return (string) Translated label or source label / ID key



Translation.value(value)

Start collection of parameters for translation by original label


	value (string)




Return (TranslationParameterToken)




Type

Type helper for Eel contexts

Implemented in: Neos\Eel\Helper\TypeHelper


Type.className(variable)

Get the class name of the given variable or NULL if it wasn’t an object


	variable (object)




Return (string|NULL)



Type.getType(variable)

Get the variable type


	variable (mixed)




Return (string)



Type.instance(variable, expectedObjectType)

Is the given variable of the provided object type.


	variable (mixed)


	expectedObjectType (string)




Return (boolean)



Type.isArray(variable)

Is the given variable an array.


	variable (mixed)




Return (boolean)



Type.isBoolean(variable)

Is the given variable boolean.


	variable (mixed)




Return (boolean)



Type.isFloat(variable)

Is the given variable a float.


	variable (mixed)




Return (boolean)



Type.isInteger(variable)

Is the given variable an integer.


	variable (mixed)




Return (boolean)



Type.isNumeric(variable)

Is the given variable numeric.


	variable (mixed)




Return (boolean)



Type.isObject(variable)

Is the given variable an object.


	variable (mixed)




Return (boolean)



Type.isScalar(variable)

Is the given variable a scalar.


	variable (mixed)




Return (boolean)



Type.isString(variable)

Is the given variable a string.


	variable (mixed)




Return (boolean)



Type.typeof(variable)

Get the variable type


	variable (mixed)




Return (string)






            

          

      

      

    

  

    
      
          
            
  
FlowQuery Operation Reference

This reference was automatically generated from code on 2019-03-05


add

Adds the given items to the current context.
The operation accepts one argument that may be an Array, a FlowQuery
or an Object.


	Implementation

	Neos\Eel\FlowQuery\Operations\AddOperation



	Priority

	1



	Final

	No



	Returns

	void







cacheLifetime

“cacheLifetime” operation working on ContentRepository nodes. Will get the minimum of all allowed cache lifetimes for the
nodes in the current FlowQuery context. This means it will evaluate to the nearest future value of the
hiddenBeforeDateTime or hiddenAfterDateTime properties of all nodes in the context. If none are set or all values
are in the past it will evaluate to NULL.

To include already hidden nodes (with a hiddenBeforeDateTime value in the future) in the result, also invisible nodes
have to be included in the context. This can be achieved using the “context” operation before fetching child nodes.

Example:


q(node).context({‘invisibleContentShown’: true}).children().cacheLifetime()





	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\CacheLifetimeOperation



	Priority

	1



	Final

	Yes



	Returns

	integer The cache lifetime in seconds or NULL if either no content collection was given or no child node had a “hiddenBeforeDateTime” or “hiddenAfterDateTime” property set







children

“children” operation working on generic objects. It iterates over all
context elements and returns the values of the properties given in the
filter expression that has to be specified as argument or in a following
filter operation.


	Implementation

	Neos\Eel\FlowQuery\Operations\Object\ChildrenOperation



	Priority

	1



	Final

	No



	Returns

	void







children

“children” operation working on ContentRepository nodes. It iterates over all
context elements and returns all child nodes or only those matching
the filter expression specified as optional argument.


	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\ChildrenOperation



	Priority

	100



	Final

	No



	Returns

	void







closest

“closest” operation working on ContentRepository nodes. For each node in the context,
get the first node that matches the selector by testing the node itself and
traversing up through its ancestors.


	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\ClosestOperation



	Priority

	100



	Final

	No



	Returns

	void







context

“context” operation working on ContentRepository nodes. Modifies the ContentRepository Context of each
node in the current FlowQuery context by the given properties and returns the same
nodes by identifier if they can be accessed in the new Context (otherwise they
will be skipped).

Example:


q(node).context({‘invisibleContentShown’: true}).children()





	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\ContextOperation



	Priority

	1



	Final

	No



	Returns

	void







count

Count the number of elements in the context.

If arguments are given, these are used to filter the elements before counting.


	Implementation

	Neos\Eel\FlowQuery\Operations\CountOperation



	Priority

	1



	Final

	Yes



	Returns

	void|integer with the number of elements







filter

Filter operation, limiting the set of objects. The filter expression is
expected as string argument and used to reduce the context to matching
elements by checking each value against the filter.

A filter expression is written in Fizzle, a grammar inspired by CSS selectors.
It has the form “[” [<value>] <operator> <operand> “]” and supports the
following operators:


	=
	Strict equality of value and operand



	!=
	Strict inequality of value and operand






	<
	Value is less than operand



	<=
	Value is less than or equal to operand






	>
	Value is greater than operand



	>=
	Value is greater than or equal to operand



	$=
	Value ends with operand (string-based) or value’s last element is equal to operand (array-based)



	^=
	Value starts with operand (string-based) or value’s first element is equal to operand (array-based)



	*=
	Value contains operand (string-based) or value contains an element that is equal to operand (array based)



	instanceof
	Checks if the value is an instance of the operand



	!instanceof
	Checks if the value is not an instance of the operand





For the latter the behavior is as follows: if the operand is one of the strings
object, array, int(eger), float, double, bool(ean) or string the value is checked
for being of the specified type. For any other strings the value is used as
classname with the PHP instanceof operation to check if the value matches.


	Implementation

	Neos\Eel\FlowQuery\Operations\Object\FilterOperation



	Priority

	1



	Final

	No



	Returns

	void







filter

This filter implementation contains specific behavior for use on ContentRepository
nodes. It will not evaluate any elements that are not instances of the
NodeInterface.

The implementation changes the behavior of the instanceof operator to
work on node types instead of PHP object types, so that:

[instanceof Neos.NodeTypes:Page]





will in fact use isOfType() on the NodeType of context elements to
filter. This filter allow also to filter the current context by a given
node. Anything else remains unchanged.


	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\FilterOperation



	Priority

	100



	Final

	No



	Returns

	void







find

“find” operation working on ContentRepository nodes. This operation allows for retrieval
of nodes specified by a path, identifier or node type (recursive).

Example (node name):


q(node).find(‘main’)




Example (relative path):


q(node).find(‘main/text1’)




Example (absolute path):


q(node).find(‘/sites/my-site/home’)




Example (identifier):


q(node).find(‘#30e893c1-caef-0ca5-b53d-e5699bb8e506’)




Example (node type):


q(node).find(‘[instanceof Neos.NodeTypes:Text]’)




Example (multiple node types):


q(node).find(‘[instanceof Neos.NodeTypes:Text],[instanceof Neos.NodeTypes:Image]’)




Example (node type with filter):


q(node).find(‘[instanceof Neos.NodeTypes:Text][text*=”Neos”]’)





	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\FindOperation



	Priority

	100



	Final

	No



	Returns

	void







first

Get the first element inside the context.


	Implementation

	Neos\Eel\FlowQuery\Operations\FirstOperation



	Priority

	1



	Final

	No



	Returns

	void







get

Get a (non-wrapped) element from the context.

If FlowQuery is used, the result is always another FlowQuery. In case you
need to pass a FlowQuery result (and lazy evaluation does not work out) you
can use get() to unwrap the result from the “FlowQuery envelope”.

If no arguments are given, the full context is returned. Otherwise the
value contained in the context at the index given as argument is
returned. If no such index exists, NULL is returned.


	Implementation

	Neos\Eel\FlowQuery\Operations\GetOperation



	Priority

	1



	Final

	Yes



	Returns

	mixed







has

“has” operation working on NodeInterface. Reduce the set of matched elements
to those that have a child node that matches the selector or given subject.

Accepts a selector, an array, an object, a traversable object & a FlowQuery
object as argument.


	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\HasOperation



	Priority

	100



	Final

	No



	Returns

	void







is

Check whether the at least one of the context elements match the given filter.

Without arguments is evaluates to true if the context is not empty. If arguments
are given, they are used to filter the context before evaluation.


	Implementation

	Neos\Eel\FlowQuery\Operations\IsOperation



	Priority

	1



	Final

	Yes



	Returns

	void|boolean







last

Get the last element inside the context.


	Implementation

	Neos\Eel\FlowQuery\Operations\LastOperation



	Priority

	1



	Final

	No



	Returns

	void







neosUiDefaultNodes

Fetches all nodes needed for the given state of the UI


	Implementation

	Neos\Neos\Ui\FlowQueryOperations\NeosUiDefaultNodesOperation



	Priority

	100



	Final

	No



	Returns

	void







neosUiFilteredChildren

“children” operation working on ContentRepository nodes. It iterates over all
context elements and returns all child nodes or only those matching
the filter expression specified as optional argument.


	Implementation

	Neos\Neos\Ui\FlowQueryOperations\NeosUiFilteredChildrenOperation



	Priority

	100



	Final

	No



	Returns

	void







next

“next” operation working on ContentRepository nodes. It iterates over all
context elements and returns the immediately following sibling.
If an optional filter expression is provided, it only returns the node
if it matches the given expression.


	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\NextOperation



	Priority

	100



	Final

	No



	Returns

	void







nextAll

“nextAll” operation working on ContentRepository nodes. It iterates over all
context elements and returns each following sibling or only those matching
the filter expression specified as optional argument.


	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\NextAllOperation



	Priority

	0



	Final

	No



	Returns

	void







nextUntil

“nextUntil” operation working on ContentRepository nodes. It iterates over all context elements
and returns each following sibling until the matching sibling is found.
If an optional filter expression is provided as a second argument,
it only returns the nodes matching the given expression.


	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\NextUntilOperation



	Priority

	0



	Final

	No



	Returns

	void







parent

“parent” operation working on ContentRepository nodes. It iterates over all
context elements and returns each direct parent nodes or only those matching
the filter expression specified as optional argument.


	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\ParentOperation



	Priority

	100



	Final

	No



	Returns

	void







parents

“parents” operation working on ContentRepository nodes. It iterates over all
context elements and returns the parent nodes or only those matching
the filter expression specified as optional argument.


	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\ParentsOperation



	Priority

	0



	Final

	No



	Returns

	void







parents

“parents” operation working on ContentRepository nodes. It iterates over all
context elements and returns the parent nodes or only those matching
the filter expression specified as optional argument.


	Implementation

	Neos\Neos\Eel\FlowQueryOperations\ParentsOperation



	Priority

	100



	Final

	No



	Returns

	void







parentsUntil

“parentsUntil” operation working on ContentRepository nodes. It iterates over all
context elements and returns the parent nodes until the matching parent is found.
If an optional filter expression is provided as a second argument,
it only returns the nodes matching the given expression.


	Implementation

	Neos\Neos\Eel\FlowQueryOperations\ParentsUntilOperation



	Priority

	100



	Final

	No



	Returns

	void







parentsUntil

“parentsUntil” operation working on ContentRepository nodes. It iterates over all
context elements and returns the parent nodes until the matching parent is found.
If an optional filter expression is provided as a second argument,
it only returns the nodes matching the given expression.


	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\ParentsUntilOperation



	Priority

	0



	Final

	No



	Returns

	void







prev

“prev” operation working on ContentRepository nodes. It iterates over all
context elements and returns the immediately preceding sibling.
If an optional filter expression is provided, it only returns the node
if it matches the given expression.


	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\PrevOperation



	Priority

	100



	Final

	No



	Returns

	void







prevAll

“prevAll” operation working on ContentRepository nodes. It iterates over all
context elements and returns each preceding sibling or only those matching
the filter expression specified as optional argument


	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\PrevAllOperation



	Priority

	0



	Final

	No



	Returns

	void







prevUntil

“prevUntil” operation working on ContentRepository nodes. It iterates over all context elements
and returns each preceding sibling until the matching sibling is found.
If an optional filter expression is provided as a second argument,
it only returns the nodes matching the given expression.


	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\PrevUntilOperation



	Priority

	0



	Final

	No



	Returns

	void







property

Used to access properties of a ContentRepository Node. If the property mame is
prefixed with _, internal node properties like start time, end time,
hidden are accessed.


	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\PropertyOperation



	Priority

	100



	Final

	Yes



	Returns

	mixed







property

Access properties of an object using ObjectAccess.

Expects the name of a property as argument. If the context is empty, NULL
is returned. Otherwise the value of the property on the first context
element is returned.


	Implementation

	Neos\Eel\FlowQuery\Operations\Object\PropertyOperation



	Priority

	1



	Final

	Yes



	Returns

	mixed







remove

Removes the given items from the current context.
The operation accepts one argument that may be an Array, a FlowQuery
or an Object.


	Implementation

	Neos\Eel\FlowQuery\Operations\RemoveOperation



	Priority

	1



	Final

	No



	Returns

	void







search


	Implementation

	Neos\Neos\Ui\FlowQueryOperations\SearchOperation



	Priority

	100



	Final

	No



	Returns

	void







siblings

“siblings” operation working on ContentRepository nodes. It iterates over all
context elements and returns all sibling nodes or only those matching
the filter expression specified as optional argument.


	Implementation

	Neos\ContentRepository\Eel\FlowQueryOperations\SiblingsOperation



	Priority

	100



	Final

	No



	Returns

	void







slice

Slice the current context

If no arguments are given, the full context is returned. Otherwise the
value contained in the context are sliced with offset and length.


	Implementation

	Neos\Eel\FlowQuery\Operations\SliceOperation



	Priority

	1



	Final

	No



	Returns

	void







sort

“sort” operation working on ContentRepository nodes.
Sorts nodes by specified node properties.

{@inheritdoc}

First argument is the node property to sort by. Works with internal arguments (_xyz) as well.
Second argument is the sort direction (ASC or DESC).


	Implementation

	Neos\Neos\Eel\FlowQueryOperations\SortOperation



	Priority

	1



	Final

	No



	Returns

	mixed









            

          

      

      

    

  

    
      
          
            
  
Neos Command Reference

The commands in this reference are shown with their full command identifiers.
On your system you can use shorter identifiers, whose availability depends
on the commands available in total (to avoid overlap the shortest possible
identifier is determined during runtime).

To see the shortest possible identifiers on your system as well as further
commands that may be available, use:

./flow help





The following reference was automatically generated from code on 2017-05-11


Package NEOS.CONTENTREPOSITORY


neos.contentrepository:node:repair

Repair inconsistent nodes

This command analyzes and repairs the node tree structure and individual nodes
based on the current node type configuration.

It is possible to execute only one or more specific checks by providing the –skip
or –only option. See the full description of checks further below for possible check
identifiers.

The following checks will be performed:

Remove abstract and undefined node types
removeAbstractAndUndefinedNodes

Will remove all nodes that has an abstract or undefined node type.

Remove orphan (parentless) nodes
removeOrphanNodes

Will remove all child nodes that do not have a connection to the root node.

Remove disallowed child nodes
removeDisallowedChildNodes

Will remove all child nodes that are disallowed according to the node type’s auto-create
configuration and constraints.

Remove undefined node properties
removeUndefinedProperties

Will remove all undefined properties according to the node type configuration.

Remove broken object references
removeBrokenEntityReferences

Detects and removes references from nodes to entities which don’t exist anymore (for
example Image nodes referencing ImageVariant objects which are gone for some reason).

Remove nodes with invalid dimensions
removeNodesWithInvalidDimensions

Will check for and optionally remove nodes which have dimension values not matching
the current content dimension configuration.

Remove nodes with invalid workspace
removeNodesWithInvalidWorkspace

Will check for and optionally remove nodes which belong to a workspace which no longer
exists..

Repair inconsistent node identifiers
fixNodesWithInconsistentIdentifier

Will check for and optionally repair node identifiers which are out of sync with their
corresponding nodes in a live workspace.

Missing child nodes
createMissingChildNodes

For all nodes (or only those which match the –node-type filter specified with this
command) which currently don’t have child nodes as configured by the node type’s
configuration new child nodes will be created.

Reorder child nodes
reorderChildNodes

For all nodes (or only those which match the –node-type filter specified with this
command) which have configured child nodes, those child nodes are reordered according to the
position from the parents NodeType configuration.
Missing default properties
addMissingDefaultValues

For all nodes (or only those which match the –node-type filter specified with this
command) which currently dont have a property that have a default value configuration
the default value for that property will be set.

Repair nodes with missing shadow nodes
repairShadowNodes

This will reconstruct missing shadow nodes in case something went wrong in creating
or publishing them. This must be used on a workspace other than live.

It searches for nodes which have a corresponding node in one of the base workspaces,
have different node paths, but don’t have a corresponding shadow node with a “movedto”
value.

Generate missing URI path segments
generateUriPathSegments

Generates URI path segment properties for all document nodes which don’t have a path
segment set yet.

Remove content dimensions from / and /sites
removeContentDimensionsFromRootAndSitesNode

Removes content dimensions from the root and sites nodes

Examples:

./flow node:repair

./flow node:repair --node-type Neos.NodeTypes:Page

./flow node:repair --workspace user-robert --only removeOrphanNodes,removeNodesWithInvalidDimensions

./flow node:repair --skip removeUndefinedProperties


Options


	--node-type
	Node type name, if empty update all declared node types



	--workspace
	Workspace name, default is ‘live’



	--dry-run
	Don’t do anything, but report actions



	--cleanup
	If FALSE, cleanup tasks are skipped



	--skip
	Skip the given check or checks (comma separated)



	--only
	Only execute the given check or checks (comma separated)









Package NEOS.FLOW


neos.flow:cache:flush

Flush all caches

The flush command flushes all caches (including code caches) which have been
registered with Flow’s Cache Manager. It also removes any session data.

If fatal errors caused by a package prevent the compile time bootstrap
from running, the removal of any temporary data can be forced by specifying
the option –force.

This command does not remove the precompiled data provided by frozen
packages unless the –force option is used.


Options


	--force
	Force flushing of any temporary data







Related commands


	neos.flow:cache:warmup
	Warm up caches



	neos.flow:package:freeze
	Freeze a package



	neos.flow:package:refreeze
	Refreeze a package








neos.flow:cache:flushone

Flushes a particular cache by its identifier

Given a cache identifier, this flushes just that one cache. To find
the cache identifiers, you can use the configuration:show command with
the type set to “Caches”.

Note that this does not have a force-flush option since it’s not
meant to remove temporary code data, resulting into a broken state if
code files lack.


Arguments


	--identifier
	Cache identifier to flush cache for







Related commands


	neos.flow:cache:flush
	Flush all caches



	neos.flow:configuration:show
	Show the active configuration settings








neos.flow:cache:warmup

Warm up caches

The warm up caches command initializes and fills – as far as possible – all
registered caches to get a snappier response on the first following request.
Apart from caches, other parts of the application may hook into this command
and execute tasks which take further steps for preparing the app for the big
rush.


Related commands


	neos.flow:cache:flush
	Flush all caches








neos.flow:configuration:generateschema

Generate a schema for the given configuration or YAML file.

./flow configuration:generateschema –type Settings –path Neos.Flow.persistence

The schema will be output to standard output.


Options


	--type
	Configuration type to create a schema for



	--path
	path to the subconfiguration separated by “.” like “Neos.Flow



	--yaml
	YAML file to create a schema for








neos.flow:configuration:listtypes

List registered configuration types



neos.flow:configuration:show

Show the active configuration settings

The command shows the configuration of the current context as it is used by Flow itself.
You can specify the configuration type and path if you want to show parts of the configuration.

./flow configuration:show –type Settings –path Neos.Flow.persistence


Options


	--type
	Configuration type to show



	--path
	path to subconfiguration separated by “.” like “Neos.Flow








neos.flow:configuration:validate

Validate the given configuration

Validate all configuration
./flow configuration:validate

Validate configuration at a certain subtype
./flow configuration:validate –type Settings –path Neos.Flow.persistence

You can retrieve the available configuration types with:
./flow configuration:listtypes


Options


	--type
	Configuration type to validate



	--path
	path to the subconfiguration separated by “.” like “Neos.Flow



	--verbose
	if TRUE, output more verbose information on the schema files which were used








neos.flow:core:migrate

Migrate source files as needed

This will apply pending code migrations defined in packages to the
specified package.

For every migration that has been run, it will create a commit in
the package. This allows for easy inspection, rollback and use of
the fixed code.
If the affected package contains local changes or is not part of
a git repository, the migration will be skipped. With the –force
flag this behavior can be changed, but changes will only be committed
if the working copy was clean before applying the migration.


Arguments


	--package
	The key of the package to migrate







Options


	--status
	Show the migration status, do not run migrations



	--packages-path
	If set, use the given path as base when looking for packages



	--version
	If set, execute only the migration with the given version (e.g. “20150119114100”)



	--verbose
	If set, notes and skipped migrations will be rendered



	--force
	By default packages that are not under version control or contain local changes are skipped. With this flag set changes are applied anyways (changes are not committed if there are local changes though)







Related commands


	neos.flow:doctrine:migrate
	Migrate the database schema








neos.flow:core:setfilepermissions

Adjust file permissions for CLI and web server access

This command adjusts the file permissions of the whole Flow application to
the given command line user and webserver user / group.


Arguments


	--commandline-user
	User name of the command line user, for example “john



	--webserver-user
	User name of the webserver, for example “www-data



	--webserver-group
	Group name of the webserver, for example “www-data








neos.flow:core:shell

Run the interactive Shell

The shell command runs Flow’s interactive shell. This shell allows for
entering commands like through the regular command line interface but
additionally supports autocompletion and a user-based command history.



neos.flow:database:setcharset

Convert the database schema to use the given character set and collation (defaults to utf8mb4 and utf8mb4_unicode_ci).

This command can be used to convert the database configured in the Flow settings to the utf8mb4 character
set and the utf8mb4_unicode_ci collation (by default, a custom collation can be given). It will only
work when using the pdo_mysql driver.

Make a backup before using it, to be on the safe side. If you want to inspect the statements used
for conversion, you can use the $output parameter to write them into a file. This file can be used to do
the conversion manually.

For background information on this, see:


	http://stackoverflow.com/questions/766809/


	http://dev.mysql.com/doc/refman/5.5/en/alter-table.html




The main purpose of this is to fix setups that were created with Flow 2.3.x or earlier and whose
database server did not have a default collation of utf8mb4_unicode_ci. In those cases, the tables will
have a collation that does not match the default collation of later Flow versions, potentially leading
to problems when creating foreign key constraints (among others, potentially).

If you have special needs regarding the charset and collation, you can override the defaults with
different ones. One thing this might be useful for is when switching to the utf8mb4mb4 character set, see:


	https://mathiasbynens.be/notes/mysql-utf8mb4


	https://florian.ec/articles/mysql-doctrine-utf8/




Note: This command is not a general purpose conversion tool. It will specifically not fix cases
of actual utf8mb4 stored in latin1 columns. For this a conversion to BLOB followed by a conversion to the
proper type, charset and collation is needed instead.


Options


	--character-set
	Character set, defaults to utf8mb4



	--collation
	Collation to use, defaults to utf8mb4_unicode_ci



	--output
	A file to write SQL to, instead of executing it



	--verbose
	If set, the statements will be shown as they are executed








neos.flow:doctrine:create

Create the database schema

Creates a new database schema based on the current mapping information.

It expects the database to be empty, if tables that are to be created already
exist, this will lead to errors.


Options


	--output
	A file to write SQL to, instead of executing it







Related commands


	neos.flow:doctrine:update
	Update the database schema



	neos.flow:doctrine:migrate
	Migrate the database schema








neos.flow:doctrine:dql

Run arbitrary DQL and display results

Any DQL queries passed after the parameters will be executed, the results will be output:

doctrine:dql –limit 10 ‘SELECT a FROM NeosFlowSecurityAccount a’


Options


	--depth
	How many levels deep the result should be dumped



	--hydration-mode
	One of: object, array, scalar, single-scalar, simpleobject



	--offset
	Offset the result by this number



	--limit
	Limit the result to this number








neos.flow:doctrine:entitystatus

Show the current status of entities and mappings

Shows basic information about which entities exist and possibly if their
mapping information contains errors or not.

To run a full validation, use the validate command.


Options


	--dump-mapping-data
	If set, the mapping data will be output



	--entity-class-name
	If given, the mapping data for just this class will be output







Related commands


	neos.flow:doctrine:validate
	Validate the class/table mappings








neos.flow:doctrine:migrate

Migrate the database schema

Adjusts the database structure by applying the pending
migrations provided by currently active packages.


Options


	--version
	The version to migrate to



	--output
	A file to write SQL to, instead of executing it



	--dry-run
	Whether to do a dry run or not



	--quiet
	If set, only the executed migration versions will be output, one per line







Related commands


	neos.flow:doctrine:migrationstatus
	Show the current migration status



	neos.flow:doctrine:migrationexecute
	Execute a single migration



	neos.flow:doctrine:migrationgenerate
	Generate a new migration



	neos.flow:doctrine:migrationversion
	Mark/unmark migrations as migrated








neos.flow:doctrine:migrationexecute

Execute a single migration

Manually runs a single migration in the given direction.


Arguments


	--version
	The migration to execute







Options


	--direction
	Whether to execute the migration up (default) or down



	--output
	A file to write SQL to, instead of executing it



	--dry-run
	Whether to do a dry run or not







Related commands


	neos.flow:doctrine:migrate
	Migrate the database schema



	neos.flow:doctrine:migrationstatus
	Show the current migration status



	neos.flow:doctrine:migrationgenerate
	Generate a new migration



	neos.flow:doctrine:migrationversion
	Mark/unmark migrations as migrated








neos.flow:doctrine:migrationgenerate

Generate a new migration

If $diffAgainstCurrent is TRUE (the default), it generates a migration file
with the diff between current DB structure and the found mapping metadata.

Otherwise an empty migration skeleton is generated.

Only includes tables/sequences matching the $filterExpression regexp when
diffing models and existing schema. Include delimiters in the expression!
The use of

–filter-expression ‘/^acme_com/’

would only create a migration touching tables starting with “acme_com”.

Note: A filter-expression will overrule any filter configured through the
Neos.Flow.persistence.doctrine.migrations.ignoredTables setting


Options


	--diff-against-current
	Whether to base the migration on the current schema structure



	--filter-expression
	Only include tables/sequences matching the filter expression regexp







Related commands


	neos.flow:doctrine:migrate
	Migrate the database schema



	neos.flow:doctrine:migrationstatus
	Show the current migration status



	neos.flow:doctrine:migrationexecute
	Execute a single migration



	neos.flow:doctrine:migrationversion
	Mark/unmark migrations as migrated








neos.flow:doctrine:migrationstatus

Show the current migration status

Displays the migration configuration as well as the number of
available, executed and pending migrations.


Options


	--show-migrations
	Output a list of all migrations and their status



	--show-descriptions
	Show descriptions for the migrations (enables versions display)







Related commands


	neos.flow:doctrine:migrate
	Migrate the database schema



	neos.flow:doctrine:migrationexecute
	Execute a single migration



	neos.flow:doctrine:migrationgenerate
	Generate a new migration



	neos.flow:doctrine:migrationversion
	Mark/unmark migrations as migrated








neos.flow:doctrine:migrationversion

Mark/unmark migrations as migrated

If all is given as version, all available migrations are marked
as requested.


Arguments


	--version
	The migration to execute







Options


	--add
	The migration to mark as migrated



	--delete
	The migration to mark as not migrated







Related commands


	neos.flow:doctrine:migrate
	Migrate the database schema



	neos.flow:doctrine:migrationstatus
	Show the current migration status



	neos.flow:doctrine:migrationexecute
	Execute a single migration



	neos.flow:doctrine:migrationgenerate
	Generate a new migration








neos.flow:doctrine:update

Update the database schema

Updates the database schema without using existing migrations.

It will not drop foreign keys, sequences and tables, unless –unsafe-mode is set.


Options


	--unsafe-mode
	If set, foreign keys, sequences and tables can potentially be dropped.



	--output
	A file to write SQL to, instead of executing the update directly







Related commands


	neos.flow:doctrine:create
	Create the database schema



	neos.flow:doctrine:migrate
	Migrate the database schema








neos.flow:doctrine:validate

Validate the class/table mappings

Checks if the current class model schema is valid. Any inconsistencies
in the relations between models (for example caused by wrong or
missing annotations) will be reported.

Note that this does not check the table structure in the database in
any way.


Related commands


	neos.flow:doctrine:entitystatus
	Show the current status of entities and mappings








neos.flow:help:help

Display help for a command

The help command displays help for a given command:
./flow help <commandIdentifier>


Options


	--command-identifier
	Identifier of a command for more details








neos.flow:package:activate

Activate an available package

This command activates an existing, but currently inactive package.


Arguments


	--package-key
	The package key of the package to create







Related commands


	neos.flow:package:deactivate
	Deactivate a package








neos.flow:package:create

Create a new package

This command creates a new package which contains only the mandatory
directories and files.


Arguments


	--package-key
	The package key of the package to create







Options


	--package-type
	The package type of the package to create







Related commands


	neos.kickstarter:kickstart:package
	Kickstart a new package








neos.flow:package:deactivate

Deactivate a package

This command deactivates a currently active package.


Arguments


	--package-key
	The package key of the package to create







Related commands


	neos.flow:package:activate
	Activate an available package








neos.flow:package:delete

Delete an existing package

This command deletes an existing package identified by the package key.


Arguments


	--package-key
	The package key of the package to create








neos.flow:package:freeze

Freeze a package

This function marks a package as frozen in order to improve performance
in a development context. While a package is frozen, any modification of files
within that package won’t be tracked and can lead to unexpected behavior.

File monitoring won’t consider the given package. Further more, reflection
data for classes contained in the package is cached persistently and loaded
directly on the first request after caches have been flushed. The precompiled
reflection data is stored in the Configuration directory of the
respective package.

By specifying all as a package key, all currently frozen packages are
frozen (the default).


Options


	--package-key
	Key of the package to freeze







Related commands


	neos.flow:package:unfreeze
	Unfreeze a package



	neos.flow:package:refreeze
	Refreeze a package








neos.flow:package:list

List available packages

Lists all locally available packages. Displays the package key, version and
package title and its state – active or inactive.


Options


	--loading-order
	The returned packages are ordered by their loading order.







Related commands


	neos.flow:package:activate
	Activate an available package



	neos.flow:package:deactivate
	Deactivate a package








neos.flow:package:refreeze

Refreeze a package

Refreezes a currently frozen package: all precompiled information is removed
and file monitoring will consider the package exactly once, on the next
request. After that request, the package remains frozen again, just with the
updated data.

By specifying all as a package key, all currently frozen packages are
refrozen (the default).


Options


	--package-key
	Key of the package to refreeze, or ‘all’







Related commands


	neos.flow:package:freeze
	Freeze a package



	neos.flow:cache:flush
	Flush all caches








neos.flow:package:rescan

Rescan package availability and recreates the PackageStates configuration.



neos.flow:package:unfreeze

Unfreeze a package

Unfreezes a previously frozen package. On the next request, this package will
be considered again by the file monitoring and related services – if they are
enabled in the current context.

By specifying all as a package key, all currently frozen packages are
unfrozen (the default).


Options


	--package-key
	Key of the package to unfreeze, or ‘all’







Related commands


	neos.flow:package:freeze
	Freeze a package



	neos.flow:cache:flush
	Flush all caches








neos.flow:resource:clean

Clean up resource registry

This command checks the resource registry (that is the database tables) for orphaned resource objects which don’t
seem to have any corresponding data anymore (for example: the file in Data/Persistent/Resources has been deleted
without removing the related PersistentResource object).

If the Neos.Media package is active, this command will also detect any assets referring to broken resources
and will remove the respective Asset object from the database when the broken resource is removed.

This command will ask you interactively what to do before deleting anything.



neos.flow:resource:copy

Copy resources

This command copies all resources from one collection to another storage identified by name.
The target storage must be empty and must not be identical to the current storage of the collection.

This command merely copies the binary data from one storage to another, it does not change the related
PersistentResource objects in the database in any way. Since the PersistentResource objects in the database refer to a
collection name, you can use this command for migrating from one storage to another my configuring
the new storage with the name of the old storage collection after the resources have been copied.


Arguments


	--source-collection
	The name of the collection you want to copy the assets from



	--target-collection
	The name of the collection you want to copy the assets to







Options


	--publish
	If enabled, the target collection will be published after the resources have been copied








neos.flow:resource:publish

Publish resources

This command publishes the resources of the given or - if none was specified, all - resource collections
to their respective configured publishing targets.


Options


	--collection
	If specified, only resources of this collection are published. Example: ‘persistent’








neos.flow:routing:getpath

Generate a route path

This command takes package, controller and action and displays the
generated route path and the selected route:

./flow routing:getPath –format json Acme.Demo\Sub\Package


Arguments


	--package
	Package key and subpackage, subpackage parts are separated with backslashes







Options


	--controller
	Controller name, default is ‘Standard’



	--action
	Action name, default is ‘index’



	--format
	Requested Format name default is ‘html’








neos.flow:routing:list

List the known routes

This command displays a list of all currently registered routes.



neos.flow:routing:routepath

Route the given route path

This command takes a given path and displays the detected route and
the selected package, controller and action.


Arguments


	--path
	The route path to resolve







Options


	--method
	The request method (GET, POST, PUT, DELETE, …) to simulate








neos.flow:routing:show

Show information for a route

This command displays the configuration of a route specified by index number.


Arguments


	--index
	The index of the route as given by routing:list








neos.flow:security:generatekeypair

Generate a public/private key pair and add it to the RSAWalletService


Options


	--used-for-passwords
	If the private key should be used for passwords







Related commands


	neos.flow:security:importprivatekey
	Import a private key








neos.flow:security:importprivatekey

Import a private key

Read a PEM formatted private key from stdin and import it into the
RSAWalletService. The public key will be automatically extracted and stored
together with the private key as a key pair.

You can generate the same fingerprint returned from this using these commands:

ssh-keygen -yf my-key.pem > my-key.pub
ssh-keygen -lf my-key.pub

To create a private key to import using this method, you can use:

ssh-keygen -t rsa -f my-key
./flow security:importprivatekey < my-key

Again, the fingerprint can also be generated using:

ssh-keygen -lf my-key.pub


Options


	--used-for-passwords
	If the private key should be used for passwords







Related commands


	neos.flow:security:importpublickey
	Import a public key



	neos.flow:security:generatekeypair
	Generate a public/private key pair and add it to the RSAWalletService








neos.flow:security:importpublickey

Import a public key

Read a PEM formatted public key from stdin and import it into the
RSAWalletService.


Related commands


	neos.flow:security:importprivatekey
	Import a private key








neos.flow:security:showeffectivepolicy

Shows a list of all defined privilege targets and the effective permissions


Arguments


	--privilege-type
	The privilege type (“entity”, “method” or the FQN of a class implementing PrivilegeInterface)







Options


	--roles
	A comma separated list of role identifiers. Shows policy for an unauthenticated user when left empty.








neos.flow:security:showmethodsforprivilegetarget

Shows the methods represented by the given security privilege target

If the privilege target has parameters those can be specified separated by a colon
for example “parameter1:value1” “parameter2:value2”.
But be aware that this only works for parameters that have been specified in the policy


Arguments


	--privilege-target
	The name of the privilegeTarget as stated in the policy








neos.flow:security:showunprotectedactions

Lists all public controller actions not covered by the active security policy



neos.flow:server:run

Run a standalone development server

Starts an embedded server, see http://php.net/manual/en/features.commandline.webserver.php
Note: This requires PHP 5.4+

To change the context Flow will run in, you can set the FLOW_CONTEXT environment variable:
export FLOW_CONTEXT=Development && ./flow server:run


Options


	--host
	The host name or IP address for the server to listen on



	--port
	The server port to listen on








neos.flow:typeconverter:list

Lists all currently active and registered type converters

All active converters are listed with ordered by priority and grouped by
source type first and target type second.


Options


	--source
	Filter by source



	--target
	Filter by target type









Package NEOS.FLUIDADAPTOR


neos.fluidadaptor:documentation:generatexsd

Generate Fluid ViewHelper XSD Schema

Generates Schema documentation (XSD) for your ViewHelpers, preparing the
file to be placed online and used by any XSD-aware editor.
After creating the XSD file, reference it in your IDE and import the namespace
in your Fluid template by adding the xmlns:* attribute(s):
<html xmlns=”http://www.w3.org/1999/xhtml” xmlns:f=”http://typo3.org/ns/TYPO3/Fluid/ViewHelpers” …>


Arguments


	--php-namespace
	Namespace of the Fluid ViewHelpers without leading backslash (for example ‘NeosFluidAdaptorViewHelpers’). NOTE: Quote and/or escape this argument as needed to avoid backslashes from being interpreted!







Options


	--xsd-namespace
	Unique target namespace used in the XSD schema (for example “http://yourdomain.org/ns/viewhelpers”). Defaults to “http://typo3.org/ns/<php namespace>”.



	--target-file
	File path and name of the generated XSD schema. If not specified the schema will be output to standard output.









Package NEOS.KICKSTARTER


neos.kickstarter:kickstart:actioncontroller

Kickstart a new action controller

Generates an Action Controller with the given name in the specified package.
In its default mode it will create just the controller containing a sample
indexAction.

By specifying the –generate-actions flag, this command will also create a
set of actions. If no model or repository exists which matches the
controller name (for example “CoffeeRepository” for “CoffeeController”),
an error will be shown.

Likewise the command exits with an error if the specified package does not
exist. By using the –generate-related flag, a missing package, model or
repository can be created alongside, avoiding such an error.

By specifying the –generate-templates flag, this command will also create
matching Fluid templates for the actions created. This option can only be
used in combination with –generate-actions.

The default behavior is to not overwrite any existing code. This can be
overridden by specifying the –force flag.


Arguments


	--package-key
	The package key of the package for the new controller with an optional subpackage, (e.g. “MyCompany.MyPackage/Admin”).



	--controller-name
	The name for the new controller. This may also be a comma separated list of controller names.







Options


	--generate-actions
	Also generate index, show, new, create, edit, update and delete actions.



	--generate-templates
	Also generate the templates for each action.



	--generate-related
	Also create the mentioned package, related model and repository if neccessary.



	--force
	Overwrite any existing controller or template code. Regardless of this flag, the package, model and repository will never be overwritten.







Related commands


	neos.kickstarter:kickstart:commandcontroller
	Kickstart a new command controller








neos.kickstarter:kickstart:commandcontroller

Kickstart a new command controller

Creates a new command controller with the given name in the specified
package. The generated controller class already contains an example command.


Arguments


	--package-key
	The package key of the package for the new controller



	--controller-name
	The name for the new controller. This may also be a comma separated list of controller names.







Options


	--force
	Overwrite any existing controller.







Related commands


	neos.kickstarter:kickstart:actioncontroller
	Kickstart a new action controller








neos.kickstarter:kickstart:documentation

Kickstart documentation

Generates a documentation skeleton for the given package.


Arguments


	--package-key
	The package key of the package for the documentation








neos.kickstarter:kickstart:model

Kickstart a new domain model

This command generates a new domain model class. The fields are specified as
a variable list of arguments with field name and type separated by a colon
(for example “title:string” “size:int” “type:MyType”).


Arguments


	--package-key
	The package key of the package for the domain model



	--model-name
	The name of the new domain model class







Options


	--force
	Overwrite any existing model.







Related commands


	neos.kickstarter:kickstart:repository
	Kickstart a new domain repository








neos.kickstarter:kickstart:package

Kickstart a new package

Creates a new package and creates a standard Action Controller and a sample
template for its Index Action.

For creating a new package without sample code use the package:create command.


Arguments


	--package-key
	The package key, for example “MyCompany.MyPackageName







Related commands


	typo3.flow:package:create
	Command not available








neos.kickstarter:kickstart:repository

Kickstart a new domain repository

This command generates a new domain repository class for the given model name.


Arguments


	--package-key
	The package key



	--model-name
	The name of the domain model class







Options


	--force
	Overwrite any existing repository.







Related commands


	neos.kickstarter:kickstart:model
	Kickstart a new domain model









Package NEOS.MEDIA


neos.media:media:clearthumbnails

Remove thumbnails

Removes all thumbnail objects and their resources. Optional preset parameter to only remove thumbnails
matching a specific thumbnail preset configuration.


Options


	--preset
	Preset name, if provided only thumbnails matching that preset are cleared








neos.media:media:createthumbnails

Create thumbnails

Creates thumbnail images based on the configured thumbnail presets. Optional preset parameter to only create
thumbnails for a specific thumbnail preset configuration.

Additionally accepts a async parameter determining if the created thumbnails are generated when created.


Options


	--preset
	Preset name, if not provided thumbnails are created for all presets



	--async
	Asynchronous generation, if not provided the setting Neos.Media.asyncThumbnails is used








neos.media:media:importresources

Import resources to asset management

This command detects Flow “PersistentResource”s which are not yet available as “Asset” objects and thus don’t appear
in the asset management. The type of the imported asset is determined by the file extension provided by the
PersistentResource.


Options


	--simulate
	If set, this command will only tell what it would do instead of doing it right away








neos.media:media:renderthumbnails

Render ungenerated thumbnails

Loops over ungenerated thumbnails and renders them. Optional limit parameter to limit the amount of
thumbnails to be rendered to avoid memory exhaustion.


Options


	--limit
	Limit the amount of thumbnails to be rendered to avoid memory exhaustion









Package NEOS.NEOS


neos.neos:domain:activate

Activate a domain record by hostname


Arguments


	--hostname
	The hostname to activate








neos.neos:domain:add

Add a domain record


Arguments


	--site-node-name
	The nodeName of the site rootNode, e.g. “neostypo3org



	--hostname
	The hostname to match on, e.g. “flow.neos.io







Options


	--scheme
	The scheme for linking (http/https)



	--port
	The port for linking (0-49151)








neos.neos:domain:deactivate

Deactivate a domain record by hostname


Arguments


	--hostname
	The hostname to deactivate








neos.neos:domain:delete

Delete a domain record by hostname


Arguments


	--hostname
	The hostname to remove








neos.neos:domain:list

Display a list of available domain records


Options


	--hostname
	An optional hostname to search for








neos.neos:site:activate

Activate a site

This command activates the specified site.


Arguments


	--site-node
	The node name of the site to activate








neos.neos:site:create

Create a new site

This command allows to create a blank site with just a single empty document in the default dimension.
The name of the site, the packageKey must be specified.

If no nodeType option is specified the command will use Neos.NodeTypes:Page as fallback. The node type
must already exists and have the superType Neos.Neos:Document.

If no ``nodeName` option is specified the command will create a unique node-name from the name of the site.
If a node name is given it has to be unique for the setup.

If the flag ``activate` is set to false new site will not be activated.


Arguments


	--name
	The name of the site



	--package-key
	The site package







Options


	--node-type
	The node type to use for the site node. (Default = Neos.NodeTypes:Page)



	--node-name
	The name of the site node. If no nodeName is given it will be determined from the siteName.



	--inactive
	The new site is not activated immediately (default = false).








neos.neos:site:deactivate

Deactivate a site

This command deactivates the specified site.


Arguments


	--site-node
	The node name of the site to deactivate








neos.neos:site:export

Export sites content (e.g. site:export –package-key &quot;Neos.Demo&quot;)

This command exports all or one specific site with all its content into an XML format.

If the package key option is given, the site(s) will be exported to the given package in the default
location Resources/Private/Content/Sites.xml.

If the filename option is given, any resources will be exported to files in a folder named “Resources”
alongside the XML file.

If neither the filename nor the package key option are given, the XML will be printed to standard output and
assets will be embedded into the XML in base64 encoded form.


Options


	--site-node
	the node name of the site to be exported; if none given will export all sites



	--tidy
	Whether to export formatted XML. This is defaults to true



	--filename
	relative path and filename to the XML file to create. Any resource will be stored in a sub folder “Resources”.



	--package-key
	Package to store the XML file in. Any resource will be stored in a sub folder “Resources”.



	--node-type-filter
	Filter the node type of the nodes, allows complex expressions (e.g. “Neos.Neos:Page”, “!Neos.Neos:Page,Neos.Neos:Text”)








neos.neos:site:import

Import sites content

This command allows for importing one or more sites or partial content from an XML source. The format must
be identical to that produced by the export command.

If a filename is specified, this command expects the corresponding file to contain the XML structure. The
filename php://stdin can be used to read from standard input.

If a package key is specified, this command expects a Sites.xml file to be located in the private resources
directory of the given package (Resources/Private/Content/Sites.xml).


Options


	--package-key
	Package key specifying the package containing the sites content



	--filename
	relative path and filename to the XML file containing the sites content








neos.neos:site:list

List available sites



neos.neos:site:prune

Remove all content and related data - for now. In the future we need some more sophisticated cleanup.


Options


	--site-node
	Name of a site root node to clear only content of this site.








neos.neos:user:activate

Activate a user

This command reactivates possibly expired accounts for the given user.

If an authentication provider is specified, this command will look for an account with the given username related
to the given provider. Still, this command will activate all accounts of a user, once such a user has been
found.


Arguments


	--username
	The username of the user to be activated.







Options


	--authentication-provider
	Name of the authentication provider to use for finding the user. Example: “Neos.Neos:Backend








neos.neos:user:addrole

Add a role to a user

This command allows for adding a specific role to an existing user.

Roles can optionally be specified as a comma separated list. For all roles provided by Neos, the role
namespace “Neos.Neos:” can be omitted.

If an authentication provider was specified, the user will be determined by an account identified by “username”
related to the given provider. However, once a user has been found, the new role will be added to all
existing accounts related to that user, regardless of its authentication provider.


Arguments


	--username
	The username of the user



	--role
	Role to be added to the user, for example “Neos.Neos:Administrator” or just “Administrator







Options


	--authentication-provider
	Name of the authentication provider to use. Example: “Neos.Neos:Backend








neos.neos:user:create

Create a new user

This command creates a new user which has access to the backend user interface.

More specifically, this command will create a new user and a new account at the same time. The created account
is, by default, a Neos backend account using the the “Neos.Neos:Backend” for authentication. The given username
will be used as an account identifier for that new account.

If an authentication provider name is specified, the new account will be created for that provider instead.

Roles for the new user can optionally be specified as a comma separated list. For all roles provided by
Neos, the role namespace “Neos.Neos:” can be omitted.


Arguments


	--username
	The username of the user to be created, used as an account identifier for the newly created account



	--password
	Password of the user to be created



	--first-name
	First name of the user to be created



	--last-name
	Last name of the user to be created







Options


	--roles
	A comma separated list of roles to assign. Examples: “Editor, Acme.Foo:Reviewer



	--authentication-provider
	Name of the authentication provider to use for the new account. Example: “Neos.Neos:Backend








neos.neos:user:deactivate

Deactivate a user

This command deactivates a user by flagging all of its accounts as expired.

If an authentication provider is specified, this command will look for an account with the given username related
to the given provider. Still, this command will deactivate all accounts of a user, once such a user has been
found.


Arguments


	--username
	The username of the user to be deactivated.







Options


	--authentication-provider
	Name of the authentication provider to use for finding the user. Example: “Neos.Neos:Backend








neos.neos:user:delete

Delete a user

This command deletes an existing Neos user. All content and data directly related to this user, including but
not limited to draft workspace contents, will be removed as well.

All accounts owned by the given user will be deleted.

If an authentication provider is specified, this command will look for an account with the given username related
to the given provider. Specifying an authentication provider does not mean that only the account for that
provider is deleted! If a user was found by the combination of username and authentication provider, all
related accounts will be deleted.


Arguments


	--username
	The username of the user to be removed







Options


	--assume-yes
	Assume “yes” as the answer to the confirmation dialog



	--authentication-provider
	Name of the authentication provider to use. Example: “Neos.Neos:Backend








neos.neos:user:list

List all users

This command lists all existing Neos users.



neos.neos:user:removerole

Remove a role from a user

This command allows for removal of a specific role from an existing user.

If an authentication provider was specified, the user will be determined by an account identified by “username”
related to the given provider. However, once a user has been found, the role will be removed from all
existing accounts related to that user, regardless of its authentication provider.


Arguments


	--username
	The username of the user



	--role
	Role to be removed from the user, for example “Neos.Neos:Administrator” or just “Administrator







Options


	--authentication-provider
	Name of the authentication provider to use. Example: “Neos.Neos:Backend








neos.neos:user:setpassword

Set a new password for the given user

This command sets a new password for an existing user. More specifically, all accounts related to the user
which are based on a username / password token will receive the new password.

If an authentication provider was specified, the user will be determined by an account identified by “username”
related to the given provider.


Arguments


	--username
	Username of the user to modify



	--password
	The new password







Options


	--authentication-provider
	Name of the authentication provider to use for finding the user. Example: “Neos.Neos:Backend








neos.neos:user:show

Shows the given user

This command shows some basic details about the given user. If such a user does not exist, this command
will exit with a non-zero status code.

The user will be retrieved by looking for a Neos backend account with the given identifier (ie. the username)
and then retrieving the user which owns that account. If an authentication provider is specified, this command
will look for an account identified by “username” for that specific provider.


Arguments


	--username
	The username of the user to show. Usually refers to the account identifier of the user’s Neos backend account.







Options


	--authentication-provider
	Name of the authentication provider to use. Example: “Neos.Neos:Backend








neos.neos:workspace:create

Create a new workspace

This command creates a new workspace.


Arguments


	--workspace
	Name of the workspace, for example “christmas-campaign







Options


	--base-workspace
	Name of the base workspace. If none is specified, “live” is assumed.



	--title
	Human friendly title of the workspace, for example “Christmas Campaign



	--description
	A description explaining the purpose of the new workspace



	--owner
	The identifier of a User to own the workspace








neos.neos:workspace:delete

Deletes a workspace

This command deletes a workspace. If you only want to empty a workspace and not delete the
workspace itself, use workspace:discard instead.


Arguments


	--workspace
	Name of the workspace, for example “christmas-campaign







Options


	--force
	Delete the workspace and all of its contents







Related commands


	neos.neos:workspace:discard
	Discard changes in workspace








neos.neos:workspace:discard

Discard changes in workspace

This command discards all modified, created or deleted nodes in the specified workspace.


Arguments


	--workspace
	Name of the workspace, for example “user-john







Options


	--verbose
	If enabled, information about individual nodes will be displayed



	--dry-run
	If set, only displays which nodes would be discarded, no real changes are committed








neos.neos:workspace:discardall

Discard changes in workspace &lt;b&gt;(DEPRECATED)&lt;/b&gt;

This command discards all modified, created or deleted nodes in the specified workspace.


Arguments


	--workspace-name
	Name of the workspace, for example “user-john







Options


	--verbose
	If enabled, information about individual nodes will be displayed







Related commands


	neos.neos:workspace:discard
	Discard changes in workspace








neos.neos:workspace:list

Display a list of existing workspaces



neos.neos:workspace:publish

Publish changes of a workspace

This command publishes all modified, created or deleted nodes in the specified workspace to its base workspace.
If a target workspace is specified, the content is published to that workspace instead.


Arguments


	--workspace
	Name of the workspace containing the changes to publish, for example “user-john







Options


	--target-workspace
	If specified, the content will be published to this workspace instead of the base workspace



	--verbose
	If enabled, some information about individual nodes will be displayed



	--dry-run
	If set, only displays which nodes would be published, no real changes are committed








neos.neos:workspace:publishall

Publish changes of a workspace &lt;b&gt;(DEPRECATED)&lt;/b&gt;

This command publishes all modified, created or deleted nodes in the specified workspace to the live workspace.


Arguments


	--workspace-name
	Name of the workspace, for example “user-john







Options


	--verbose
	If enabled, information about individual nodes will be displayed







Related commands


	neos.neos:workspace:publish
	Publish changes of a workspace








neos.neos:workspace:rebase

Rebase a workspace

This command sets a new base workspace for the specified workspace. Note that doing so will put the possible
changes contained in the workspace to be rebased into a different context and thus might lead to unintended
results when being published.


Arguments


	--workspace
	Name of the workspace to rebase, for example “user-john



	--base-workspace
	Name of the new base workspace









Package NEOS.SITEKICKSTARTER


neos.sitekickstarter:kickstart:site

Kickstart a new site package

This command generates a new site package with basic Fusion and Sites.xml


Arguments


	--package-key
	The packageKey for your site



	--site-name
	The siteName of your site











            

          

      

      

    

  

    
      
          
            
  
Validator Reference



	Flow Validator Reference
	AggregateBoundaryValidator

	AlphanumericValidator

	BooleanValueValidator

	CollectionValidator

	CountValidator

	DateTimeRangeValidator

	DateTimeValidator

	EmailAddressValidator

	FloatValidator

	GenericObjectValidator

	IntegerValidator

	LabelValidator

	LocaleIdentifierValidator

	NotEmptyValidator

	NumberRangeValidator

	NumberValidator

	RawValidator

	RegularExpressionValidator

	StringLengthValidator

	StringValidator

	TextValidator

	UniqueEntityValidator

	UuidValidator





	Media Validator Reference
	ImageOrientationValidator

	ImageSizeValidator

	ImageTypeValidator





	Party Validator Reference
	AimAddressValidator

	IcqAddressValidator

	JabberAddressValidator

	MsnAddressValidator

	SipAddressValidator

	SkypeAddressValidator

	UrlAddressValidator

	YahooAddressValidator












            

          

      

      

    

  

    
      
          
            
  
Flow Validator Reference

This reference was automatically generated from code on 2019-03-05


AggregateBoundaryValidator

A validator which will not validate Aggregates that are lazy loaded and uninitialized.
Validation over Aggregate Boundaries can hence be forced by making the relation to
other Aggregate Roots eager loaded.

Note that this validator is not part of the public API and you should not use it manually.

Checks if the given value is valid according to the validator, and returns
the Error Messages object which occurred. Will skip validation if value is
an uninitialized lazy loading proxy.


Note

A value of NULL or an empty string (‘’) is considered valid





AlphanumericValidator

Validator for alphanumeric strings.

The given $value is valid if it is an alphanumeric string, which is defined as [[:alnum:]].


Note

A value of NULL or an empty string (‘’) is considered valid





BooleanValueValidator

Validator for a specific boolean value.

Checks if the given value is a specific boolean value.


Note

A value of NULL or an empty string (‘’) is considered valid




Arguments


	expectedValue (boolean, optional): The expected boolean value







CollectionValidator

A generic collection validator.

Checks for a collection and if needed validates the items in the collection.
This is done with the specified element validator or a validator based on
the given element type and validation group.

Either elementValidator or elementType must be given, otherwise validation
will be skipped.


Note

A value of NULL or an empty string (‘’) is considered valid




Arguments


	elementValidator (string, optional): The validator type to use for the collection elements


	elementValidatorOptions (array, optional): The validator options to use for the collection elements


	elementType (string, optional): The type of the elements in the collection


	validationGroups (string, optional): The validation groups to link to







CountValidator

Validator for countable things

The given value is valid if it is an array or Countable that contains the specified amount of elements.


Note

A value of NULL or an empty string (‘’) is considered valid




Arguments


	minimum (integer, optional): The minimum count to accept


	maximum (integer, optional): The maximum count to accept







DateTimeRangeValidator

Validator for checking Date and Time boundaries

Adds errors if the given DateTime does not match the set boundaries.

latestDate and earliestDate may be each <time>, <start>/<duration> or <duration>/<end>, where <duration> is an
ISO 8601 duration and <start> or <end> or <time> may be ‘now’ or a PHP supported format. (1)

In general, you are able to provide a timestamp or a timestamp with additional calculation. Calculations are done
as described in ISO 8601 (2), with an introducing “P”. P7MT2H30M for example mean a period of 7 months, 2 hours
and 30 minutes (P introduces a period at all, while a following T introduces the time-section of a period. This
is not at least in order not to confuse months and minutes, both represented as M).
A period is separated from the timestamp with a forward slash “/”. If the period follows the timestamp, that
period is added to the timestamp; if the period precedes the timestamp, it’s subtracted.
The timestamp can be one of PHP’s supported date formats (1), so also “now” is supported.

Use cases:

If you offer something that has to be manufactured and you ask for a delivery date, you might assure that this
date is at least two weeks in advance; this could be done with the expression “now/P2W”.
If you have a library of ancient goods and want to track a production date that is at least 5 years ago, you can
express it with “P5Y/now”.

Examples:


	If you want to test if a given date is at least five minutes ahead, use
	earliestDate: now/PT5M



	If you want to test if a given date was at least 10 days ago, use
	latestDate: P10D/now



	If you want to test if a given date is between two fix boundaries, just combine the latestDate and earliestDate-options:
	earliestDate: 2007-03-01T13:00:00Z
latestDate: 2007-03-30T13:00:00Z





Footnotes:

http://de.php.net/manual/en/datetime.formats.compound.php (1)
http://en.wikipedia.org/wiki/ISO_8601#Durations (2)
http://en.wikipedia.org/wiki/ISO_8601#Time_intervals (3)


Note

A value of NULL or an empty string (‘’) is considered valid




Arguments


	latestDate (string, optional): The latest date to accept


	earliestDate (string, optional): The earliest date to accept







DateTimeValidator

Validator for DateTime objects.

Checks if the given value is a valid DateTime object.


Note

A value of NULL or an empty string (‘’) is considered valid




Arguments


	locale (string|Locale, optional): The locale to use for date parsing


	strictMode (boolean, optional): Use strict mode for date parsing


	formatLength (string, optional): The format length, see DatesReader::FORMAT_LENGTH_*


	formatType (string, optional): The format type, see DatesReader::FORMAT_TYPE_*







EmailAddressValidator

Validator for email addresses

Checks if the given value is a valid email address.


Note

A value of NULL or an empty string (‘’) is considered valid





FloatValidator

Validator for floats.

The given value is valid if it is of type float or a string matching the regular expression [0-9.e+-]


Note

A value of NULL or an empty string (‘’) is considered valid





GenericObjectValidator

A generic object validator which allows for specifying property validators.

Checks if the given value is valid according to the property validators.


Note

A value of NULL or an empty string (‘’) is considered valid





IntegerValidator

Validator for integers.

Checks if the given value is a valid integer.


Note

A value of NULL or an empty string (‘’) is considered valid





LabelValidator

A validator for labels.

Labels usually allow all kinds of letters, numbers, punctuation marks and
the space character. What you don’t want in labels though are tabs, new
line characters or HTML tags. This validator is for such uses.

The given value is valid if it matches the regular expression specified in PATTERN_VALIDCHARACTERS.


Note

A value of NULL or an empty string (‘’) is considered valid





LocaleIdentifierValidator

A validator for locale identifiers.

This validator validates a string based on the expressions of the
Flow I18n implementation.

Is valid if the given value is a valid “locale identifier”.


Note

A value of NULL or an empty string (‘’) is considered valid





NotEmptyValidator

Validator for not empty values.

Checks if the given value is not empty (NULL, empty string, empty array
or empty object that implements the Countable interface).



NumberRangeValidator

Validator for general numbers

The given value is valid if it is a number in the specified range.


Note

A value of NULL or an empty string (‘’) is considered valid




Arguments


	minimum (integer, optional): The minimum value to accept


	maximum (integer, optional): The maximum value to accept







NumberValidator

Validator for general numbers.

Checks if the given value is a valid number.


Note

A value of NULL or an empty string (‘’) is considered valid




Arguments


	locale (string|Locale, optional): The locale to use for number parsing


	strictMode (boolean, optional): Use strict mode for number parsing


	formatLength (string, optional): The format length, see NumbersReader::FORMAT_LENGTH_*


	formatType (string, optional): The format type, see NumbersReader::FORMAT_TYPE_*







RawValidator

A validator which accepts any input.

This validator is always valid.


Note

A value of NULL or an empty string (‘’) is considered valid





RegularExpressionValidator

Validator based on regular expressions.

Checks if the given value matches the specified regular expression.


Note

A value of NULL or an empty string (‘’) is considered valid




Arguments


	regularExpression (string): The regular expression to use for validation, used as given







StringLengthValidator

Validator for string length.

Checks if the given value is a valid string (or can be cast to a string
if an object is given) and its length is between minimum and maximum
specified in the validation options.


Note

A value of NULL or an empty string (‘’) is considered valid




Arguments


	minimum (integer, optional): Minimum length for a valid string


	maximum (integer, optional): Maximum length for a valid string







StringValidator

Validator for strings.

Checks if the given value is a string.


Note

A value of NULL or an empty string (‘’) is considered valid





TextValidator

Validator for “plain” text.

Checks if the given value is a valid text (contains no XML tags).

Be aware that the value of this check entirely depends on the output context.
The validated text is not expected to be secure in every circumstance, if you
want to be sure of that, use a customized regular expression or filter on output.

See http://php.net/filter_var for details.


Note

A value of NULL or an empty string (‘’) is considered valid





UniqueEntityValidator

Validator for uniqueness of entities.

Checks if the given value is a unique entity depending on it’s identity properties or
custom configured identity properties.


Note

A value of NULL or an empty string (‘’) is considered valid




Arguments


	identityProperties (array, optional): List of custom identity properties.







UuidValidator

Validator for Universally Unique Identifiers.

Checks if the given value is a syntactically valid UUID.


Note

A value of NULL or an empty string (‘’) is considered valid







            

          

      

      

    

  

    
      
          
            
  
Media Validator Reference

This reference was automatically generated from code on 2019-03-05


ImageOrientationValidator

Validator that checks the orientation (square, portrait, landscape) of a given image.

Supported validator options are (array)allowedOrientations with one or two out of ‘square’, ‘landcape’ or ‘portrait’.

Example:

[at]Flow\Validate("$image", type="\Neos\Media\Validator\ImageOrientationValidator",
      options={ "allowedOrientations"={"square", "landscape"} })





this would refuse an image that is in portrait orientation, but allow landscape and square ones.

The given $value is valid if it is an NeosMediaDomainModelImageInterface of the
configured orientation (square, portrait and/or landscape)
Note: a value of NULL or empty string (‘’) is considered valid


Note

A value of NULL or an empty string (‘’) is considered valid




Arguments


	allowedOrientations (array): Array of image orientations, one or two out of ‘square’, ‘landcape’ or ‘portrait’







ImageSizeValidator

Validator that checks size (resolution) of a given image

Example:
[at]FlowValidate(“$image”, type=”NeosMediaValidatorImageSizeValidator”, options={ “minimumWidth”=150, “maximumResolution”=60000 })

The given $value is valid if it is an NeosMediaDomainModelImageInterface of the configured resolution
Note: a value of NULL or empty string (‘’) is considered valid


Note

A value of NULL or an empty string (‘’) is considered valid




Arguments


	minimumWidth (integer, optional): The minimum width of the image


	minimumHeight (integer, optional): The minimum height of the image


	maximumWidth (integer, optional): The maximum width of the image


	maximumHeight (integer, optional): The maximum height of the image


	minimumResolution (integer, optional): The minimum resolution of the image


	maximumResolution (integer, optional): The maximum resolution of the image







ImageTypeValidator

Validator that checks the type of a given image

Example:
[at]FlowValidate(“$image”, type=”NeosMediaValidatorImageTypeValidator”, options={ “allowedTypes”={“jpeg”, “png”} })

The given $value is valid if it is an NeosMediaDomainModelImageInterface of the
configured type (one of the image/* IANA media subtypes)

Note: a value of NULL or empty string (‘’) is considered valid


Note

A value of NULL or an empty string (‘’) is considered valid




Arguments


	allowedTypes (array): Allowed image types (using image/* IANA media subtypes)









            

          

      

      

    

  

    
      
          
            
  
Party Validator Reference

This reference was automatically generated from code on 2019-03-05


AimAddressValidator

Validator for AIM addresses.

Checks if the given value is a valid AIM name.

The AIM name has the following requirements: “It must be
between 3 and 16 alphanumeric characters in length and must
begin with a letter.”


Note

A value of NULL or an empty string (‘’) is considered valid





IcqAddressValidator

Validator for ICQ addresses.

Checks if the given value is a valid ICQ UIN address.

The ICQ UIN address has the following requirements: “It must be
9 numeric characters.” More information is found on:
http://www.icq.com/support/icq_8/start/authorization/en


Note

A value of NULL or an empty string (‘’) is considered valid





JabberAddressValidator

Validator for Jabber addresses.

Checks if the given value is a valid Jabber name.

The Jabber address has the following structure: “name@jabber.org”
More information is found on:
http://tracker.phpbb.com/browse/PHPBB3-3832


Note

A value of NULL or an empty string (‘’) is considered valid





MsnAddressValidator

Validator for MSN addresses.

Checks if the given value is a valid MSN address.

The MSN address has the following structure:
“name@hotmail.com, name@live.com, name@msn.com, name@outlook.com”


Note

A value of NULL or an empty string (‘’) is considered valid





SipAddressValidator

Validator for Sip addresses.

Checks if the given value is a valid Sip name.

The Sip address has the following structure: “sip:+4930432343@isp.com”
More information is found on:
http://wiki.snom.com/Features/Dial_Plan/Regular_Expressions


Note

A value of NULL or an empty string (‘’) is considered valid





SkypeAddressValidator

Validator for Skype addresses.

Checks if the given value is a valid Skype name.

The Skype website says: “It must be between 6-32 characters, start with
a letter and contain only letters and numbers (no spaces or special
characters).”

Nevertheless dash and underscore are allowed as special characters.
Furthermore, account names can contain a colon if they were auto-created
trough a connected Microsoft or Facebook profile. In this case, the syntax
is as follows:
- live:john.due
- Facebook:john.doe

We added period and minus as additional characters because they are
suggested by Skype during registration.


Note

A value of NULL or an empty string (‘’) is considered valid





UrlAddressValidator

Validator for URL addresses.

Checks if the given value is a valid URL.


Note

A value of NULL or an empty string (‘’) is considered valid





YahooAddressValidator

Validator for Yahoo addresses.

Checks if the given value is a valid Yahoo address.

The Yahoo address has the following structure:
“name@yahoo.*”


Note

A value of NULL or an empty string (‘’) is considered valid







            

          

      

      

    

  

    
      
          
            
  
Signal Reference



	Content Repository Signals Reference
	Context (Neos\ContentRepository\Domain\Service\Context)

	Node (Neos\ContentRepository\Domain\Model\Node)

	NodeData (Neos\ContentRepository\Domain\Model\NodeData)

	NodeDataRepository (Neos\ContentRepository\Domain\Repository\NodeDataRepository)

	PublishingService (Neos\ContentRepository\Domain\Service\PublishingService)

	Workspace (Neos\ContentRepository\Domain\Model\Workspace)





	Flow Signals Reference
	AbstractAdvice (Neos\Flow\Aop\Advice\AbstractAdvice)

	AbstractBackend (Neos\Flow\Persistence\Generic\Backend\AbstractBackend)

	ActionRequest (Neos\Flow\Mvc\ActionRequest)

	AfterAdvice (Neos\Flow\Aop\Advice\AfterAdvice)

	AfterReturningAdvice (Neos\Flow\Aop\Advice\AfterReturningAdvice)

	AfterThrowingAdvice (Neos\Flow\Aop\Advice\AfterThrowingAdvice)

	AroundAdvice (Neos\Flow\Aop\Advice\AroundAdvice)

	AuthenticationProviderManager (Neos\Flow\Security\Authentication\AuthenticationProviderManager)

	BeforeAdvice (Neos\Flow\Aop\Advice\BeforeAdvice)

	Bootstrap (Neos\Flow\Core\Bootstrap)

	CacheCommandController (Neos\Flow\Command\CacheCommandController)

	ConfigurationManager (Neos\Flow\Configuration\ConfigurationManager)

	CoreCommandController (Neos\Flow\Command\CoreCommandController)

	Dispatcher (Neos\Flow\Mvc\Dispatcher)

	DoctrineCommandController (Neos\Flow\Command\DoctrineCommandController)

	EntityManagerFactory (Neos\Flow\Persistence\Doctrine\EntityManagerFactory)

	PackageManager (Neos\Flow\Package\PackageManager)

	PersistenceManager (Neos\Flow\Persistence\Doctrine\PersistenceManager)

	PersistenceManager (Neos\Flow\Persistence\Generic\PersistenceManager)

	PolicyService (Neos\Flow\Security\Policy\PolicyService)

	SlaveRequestHandler (Neos\Flow\Cli\SlaveRequestHandler)





	Media Signals Reference
	Asset (Neos\Media\Domain\Model\Asset)

	AssetService (Neos\Media\Domain\Service\AssetService)

	Audio (Neos\Media\Domain\Model\Audio)

	Document (Neos\Media\Domain\Model\Document)

	Image (Neos\Media\Domain\Model\Image)

	ImageVariant (Neos\Media\Domain\Model\ImageVariant)

	Thumbnail (Neos\Media\Domain\Model\Thumbnail)

	ThumbnailService (Neos\Media\Domain\Service\ThumbnailService)

	Video (Neos\Media\Domain\Model\Video)





	Neos Signals Reference
	AbstractCreate (Neos\Neos\Ui\Domain\Model\Changes\AbstractCreate)

	ContentContext (Neos\Neos\Domain\Service\ContentContext)

	ContentController (Neos\Neos\Controller\Backend\ContentController)

	Create (Neos\Neos\Ui\Domain\Model\Changes\Create)

	CreateAfter (Neos\Neos\Ui\Domain\Model\Changes\CreateAfter)

	CreateBefore (Neos\Neos\Ui\Domain\Model\Changes\CreateBefore)

	PublishingService (Neos\Neos\Service\PublishingService)

	Site (Neos\Neos\Domain\Model\Site)

	SiteImportService (Neos\Neos\Domain\Service\SiteImportService)

	SiteService (Neos\Neos\Domain\Service\SiteService)

	UserService (Neos\Neos\Domain\Service\UserService)












            

          

      

      

    

  

    
      
          
            
  
Content Repository Signals Reference

This reference was automatically generated from code on 2019-03-05


Context (Neos\ContentRepository\Domain\Service\Context)

This class contains the following signals.


beforeAdoptNode

Autogenerated Proxy Method



afterAdoptNode

Autogenerated Proxy Method




Node (Neos\ContentRepository\Domain\Model\Node)

This class contains the following signals.


beforeNodeMove

Autogenerated Proxy Method



afterNodeMove

Autogenerated Proxy Method



beforeNodeCopy

Autogenerated Proxy Method



afterNodeCopy

Autogenerated Proxy Method



beforeNodeCreate

Autogenerated Proxy Method



afterNodeCreate

Autogenerated Proxy Method



nodeAdded

Autogenerated Proxy Method



nodeUpdated

Autogenerated Proxy Method



nodeRemoved

Autogenerated Proxy Method



beforeNodePropertyChange

Autogenerated Proxy Method



nodePropertyChanged

Autogenerated Proxy Method



nodePathChanged

Autogenerated Proxy Method




NodeData (Neos\ContentRepository\Domain\Model\NodeData)

This class contains the following signals.


nodePathChanged

Autogenerated Proxy Method




NodeDataRepository (Neos\ContentRepository\Domain\Repository\NodeDataRepository)

This class contains the following signals.


repositoryObjectsPersisted

Autogenerated Proxy Method




PublishingService (Neos\ContentRepository\Domain\Service\PublishingService)

This class contains the following signals.


nodePublished

Autogenerated Proxy Method



nodeDiscarded

Autogenerated Proxy Method




Workspace (Neos\ContentRepository\Domain\Model\Workspace)

This class contains the following signals.


baseWorkspaceChanged

Autogenerated Proxy Method



beforeNodePublishing

Autogenerated Proxy Method



afterNodePublishing

Autogenerated Proxy Method






            

          

      

      

    

  

    
      
          
            
  
Flow Signals Reference

This reference was automatically generated from code on 2019-03-05


AbstractAdvice (Neos\Flow\Aop\Advice\AbstractAdvice)

This class contains the following signals.


adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.




AbstractBackend (Neos\Flow\Persistence\Generic\Backend\AbstractBackend)

This class contains the following signals.


removedObject

Autogenerated Proxy Method



persistedObject

Autogenerated Proxy Method




ActionRequest (Neos\Flow\Mvc\ActionRequest)

This class contains the following signals.


requestDispatched

Autogenerated Proxy Method




AfterAdvice (Neos\Flow\Aop\Advice\AfterAdvice)

This class contains the following signals.


adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.




AfterReturningAdvice (Neos\Flow\Aop\Advice\AfterReturningAdvice)

This class contains the following signals.


adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.




AfterThrowingAdvice (Neos\Flow\Aop\Advice\AfterThrowingAdvice)

This class contains the following signals.


adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.




AroundAdvice (Neos\Flow\Aop\Advice\AroundAdvice)

This class contains the following signals.


adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.




AuthenticationProviderManager (Neos\Flow\Security\Authentication\AuthenticationProviderManager)

This class contains the following signals.


authenticatedToken

Autogenerated Proxy Method



loggedOut

Autogenerated Proxy Method



successfullyAuthenticated

Autogenerated Proxy Method




BeforeAdvice (Neos\Flow\Aop\Advice\BeforeAdvice)

This class contains the following signals.


adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.




Bootstrap (Neos\Flow\Core\Bootstrap)

This class contains the following signals.


finishedCompiletimeRun

Emits a signal that the compile run was finished.



finishedRuntimeRun

Emits a signal that the runtime run was finished.



bootstrapShuttingDown

Emits a signal that the bootstrap finished and is shutting down.




CacheCommandController (Neos\Flow\Command\CacheCommandController)

This class contains the following signals.


warmupCaches

Autogenerated Proxy Method




ConfigurationManager (Neos\Flow\Configuration\ConfigurationManager)

This class contains the following signals.


configurationManagerReady

Emits a signal after The ConfigurationManager has been loaded




CoreCommandController (Neos\Flow\Command\CoreCommandController)

This class contains the following signals.


finishedCompilationRun

Signals that the compile command was successfully finished.




Dispatcher (Neos\Flow\Mvc\Dispatcher)

This class contains the following signals.


beforeControllerInvocation

Autogenerated Proxy Method



afterControllerInvocation

Autogenerated Proxy Method




DoctrineCommandController (Neos\Flow\Command\DoctrineCommandController)

This class contains the following signals.


afterDatabaseMigration

Autogenerated Proxy Method




EntityManagerFactory (Neos\Flow\Persistence\Doctrine\EntityManagerFactory)

This class contains the following signals.


beforeDoctrineEntityManagerCreation

Autogenerated Proxy Method



afterDoctrineEntityManagerCreation

Autogenerated Proxy Method




PackageManager (Neos\Flow\Package\PackageManager)

This class contains the following signals.


packageStatesUpdated

Emits a signal when package states have been changed (e.g. when a package was created)

The advice is not proxyable, so the signal is dispatched manually here.




PersistenceManager (Neos\Flow\Persistence\Doctrine\PersistenceManager)

This class contains the following signals.


allObjectsPersisted

Autogenerated Proxy Method




PersistenceManager (Neos\Flow\Persistence\Generic\PersistenceManager)

This class contains the following signals.


allObjectsPersisted

Autogenerated Proxy Method




PolicyService (Neos\Flow\Security\Policy\PolicyService)

This class contains the following signals.


configurationLoaded

Autogenerated Proxy Method



rolesInitialized

Autogenerated Proxy Method




SlaveRequestHandler (Neos\Flow\Cli\SlaveRequestHandler)

This class contains the following signals.


dispatchedCommandLineSlaveRequest

Emits a signal that a CLI slave request was dispatched.






            

          

      

      

    

  

    
      
          
            
  
Media Signals Reference

This reference was automatically generated from code on 2019-03-05


Asset (Neos\Media\Domain\Model\Asset)

This class contains the following signals.


assetCreated

Autogenerated Proxy Method




AssetService (Neos\Media\Domain\Service\AssetService)

This class contains the following signals.


assetCreated

Autogenerated Proxy Method



assetRemoved

Autogenerated Proxy Method



assetUpdated

Autogenerated Proxy Method



assetResourceReplaced

Autogenerated Proxy Method




Audio (Neos\Media\Domain\Model\Audio)

This class contains the following signals.


assetCreated

Autogenerated Proxy Method




Document (Neos\Media\Domain\Model\Document)

This class contains the following signals.


assetCreated

Autogenerated Proxy Method




Image (Neos\Media\Domain\Model\Image)

This class contains the following signals.


assetCreated

Autogenerated Proxy Method




ImageVariant (Neos\Media\Domain\Model\ImageVariant)

This class contains the following signals.


assetCreated

Autogenerated Proxy Method




Thumbnail (Neos\Media\Domain\Model\Thumbnail)

This class contains the following signals.


thumbnailCreated

Autogenerated Proxy Method




ThumbnailService (Neos\Media\Domain\Service\ThumbnailService)

This class contains the following signals.


thumbnailCreated

Autogenerated Proxy Method




Video (Neos\Media\Domain\Model\Video)

This class contains the following signals.


assetCreated

Autogenerated Proxy Method






            

          

      

      

    

  

    
      
          
            
  
Neos Signals Reference

This reference was automatically generated from code on 2019-03-05


AbstractCreate (Neos\Neos\Ui\Domain\Model\Changes\AbstractCreate)

This class contains the following signals.


nodeCreationHandlersApplied

Autogenerated Proxy Method




ContentContext (Neos\Neos\Domain\Service\ContentContext)

This class contains the following signals.


beforeAdoptNode

Autogenerated Proxy Method



afterAdoptNode

Autogenerated Proxy Method




ContentController (Neos\Neos\Controller\Backend\ContentController)

This class contains the following signals.


assetUploaded

Autogenerated Proxy Method




Create (Neos\Neos\Ui\Domain\Model\Changes\Create)

This class contains the following signals.


nodeCreationHandlersApplied

Autogenerated Proxy Method




CreateAfter (Neos\Neos\Ui\Domain\Model\Changes\CreateAfter)

This class contains the following signals.


nodeCreationHandlersApplied

Autogenerated Proxy Method




CreateBefore (Neos\Neos\Ui\Domain\Model\Changes\CreateBefore)

This class contains the following signals.


nodeCreationHandlersApplied

Autogenerated Proxy Method




PublishingService (Neos\Neos\Service\PublishingService)

This class contains the following signals.


nodePublished

Autogenerated Proxy Method



nodeDiscarded

Autogenerated Proxy Method




Site (Neos\Neos\Domain\Model\Site)

This class contains the following signals.


siteChanged

Autogenerated Proxy Method




SiteImportService (Neos\Neos\Domain\Service\SiteImportService)

This class contains the following signals.


siteImported

Autogenerated Proxy Method




SiteService (Neos\Neos\Domain\Service\SiteService)

This class contains the following signals.


sitePruned

Autogenerated Proxy Method




UserService (Neos\Neos\Domain\Service\UserService)

This class contains the following signals.


userCreated

Autogenerated Proxy Method



userDeleted

Autogenerated Proxy Method



userUpdated

Autogenerated Proxy Method



rolesAdded

Autogenerated Proxy Method



rolesRemoved

Autogenerated Proxy Method



userActivated

Autogenerated Proxy Method



userDeactivated

Autogenerated Proxy Method






            

          

      

      

    

  

    
      
          
            
  
Coding Guideline Reference



	PHP Coding Guidelines & Best Practices

	JavaScript Coding Guidelines








            

          

      

      

    

  

    
      
          
            
  
PHP Coding Guidelines & Best Practices

Coding Standards are an important factor for achieving a high code quality. A common
visual style, naming conventions and other technical settings allow us to produce a
homogenous code which is easy to read and maintain. However, not all important factors can
be covered by rules and coding standards. Equally important is the style in which certain
problems are solved programmatically - it’s the personality and experience of the
individual developer which shines through and ultimately makes the difference between
technically okay code or a well considered, mature solution.

These guidelines try to cover both, the technical standards as well as giving incentives
for a common development style. These guidelines must be followed by everyone who creates
code for the Flow core. Because Neos is based on Flow, it follows the same principles -
therefore, whenever we mention Flow in the following sections, we equally refer to Neos.
We hope that you feel encouraged to follow these guidelines as well when creating your own
packages and Flow based applications.


CGL on One Page


[image: The Coding Guidelines on One Page]

The Coding Guidelines on One Page



The most important parts of our Coding Guidelines in a one page document
you can print out and hang on your wall for easy reference.
Does it get any easier than that?



Code Formatting and Layout aka “beautiful code”

The visual style of programming code is very important. In the Neos project we want many
programmers to contribute, but in the same style. This will help us to:


	Easily read/understand each others code and consequently easily spot security problems
or optimization opportunities


	It is a signal about consistency and cleanliness, which is a motivating factor for
programmers striving for excellence




Some people may object to the visual guidelines since everyone has his own habits. You
will have to overcome that in the case of Flow; the visual guidelines must be followed
along with coding guidelines for security. We want all contributions to the project to be
as similar in style and as secure as possible.


General considerations


	Follow the PSR-2 standard for code formatting


	Almost every PHP file in Flow contains exactly one class and does not output anything
if it is called directly. Therefore you start your file with a <?php tag and must not end it
with the closing ?>.


	Every file must contain a header stating namespace and licensing information


	Declare your namespace.


	The copyright header itself must not start with /**, as this may confuse
documentation generators!








The Flow standard file header:

<?php
namespace YourCompany\Package\Something\New;

/*
 * This file is part of the YourCompany.Package package.
 *
 * (c) YourCompany
 *
 * This package is Open Source Software. For the full copyright and license
 * information, please view the LICENSE file which was distributed with this
 * source code.
 */






	Code lines are of arbitrary length, no strict limitations to 80 characters or something
similar (wake up, graphical displays have been available for decades now…). But feel
free to break lines for better readability if you think it makes sense!


	Lines end with a newline a.k.a chr(10) - UNIX style


	Files must be encoded in UTF-8 without byte order mark (BOM)




Make sure you use the correct license and mention the correct package in the header.


Indentation and line formatting

Since we adopted PSR-2 as coding standard we use spaces for indentation.

Here’s a code snippet which shows the correct usage of spaces.

Correct use of indentation:

/**
 * Returns the name of the currently set context.
 *
 * @return string Name of the current context
 */
public function getContextName()
{
    return $this->contextName;
}








Naming

Naming is a repeatedly undervalued factor in the art of software development. Although
everybody seems to agree on that nice names are a nice thing to have, most developers
choose cryptic abbreviations in the end (to save some typing). Beware that we Neos core
developers are very passionate about naming (some people call it fanatic, well …). In
our opinion spending 15 minutes (or more …) just to find a good name for a method is
well spent time! There are zillions of reasons for using proper names and in the end they
all lead to better readable, manageable, stable and secure code.

As a general note, english words (or abbreviations if necessary) must be used for all
class names, method names, comments, variables names, database table and field names. The
consensus is that english is much better to read for the most of us, compared to other
languages.

When using abbreviations or acronyms remember to make them camel-cased as needed, no
all-uppercase stuff.



Vendor namespaces

The base for namespaces as well as package keys is the vendor namespace. Since Flow is
part of the Neos project, the core team decided to choose “Neos” as our vendor
namespace. The Object Manager for example is known under the class name
Neos\Flow\ObjectManagement\ObjectManager. In our examples you will find the Acme
vendor namespace.

Why do we use vendor namespaces? This has two great benefits: first of all we don’t need a
central package key registry and secondly, it allows anyone to seamlessly integrate third-party
packages, such as Symfony2 components and Zend Framework components or virtually any other PHP
library.

Think about your own vendor namespace for a few minutes. It will stay with you for a long
time.



Package names

All package names start with an uppercase character and usually are written in
UpperCamelCase. In order to avoid problems with different filesystems,
only the characters a-z, A-Z, 0-9 and the dash sign “-” are allowed for package names –
don’t use special characters.

The full package key is then built by combining the vendor namespace and the package,
like Neos.Eel or Acme.Demo.



Namespace and Class names


	Only the characters a-z, A-Z and 0-9 are allowed for namespace and class names.


	Namespaces are usually written in UpperCamelCase but variations are allowed for well
established names and abbreviations.


	Class names are always written in UpperCamelCase.


	The unqualified class name must be meant literally even without the namespace.


	The main purpose of namespaces is categorization and ordering


	Class names must be nouns, never adjectives.


	The name of abstract classes must start with the word “Abstract”, class names of aspects
must end with the word “Aspect”.




Incorrect naming of namespaces and classes








	Fully qualified class name

	Unqualified name

	Remarks





	\Neos\Flow\Session\Php

	Php

	The class is not a representation of PHP



	\Neos\Cache\Backend\File

	File

	The class doesn’t represent a file!



	\Neos\Flow\Session\Interface

	Interface

	Not allowed, “Interface” is a reserved keyword



	\Neos\Foo\Controller\Default

	Default

	Not allowed, “Default” is a reserved keyword



	\Neos\Flow\Objects\Manager

	Manager

	Just “Manager” is too fuzzy






Correct naming of namespaces and classes








	Fully qualified class name

	Unqualified name

	Remarks





	\Neos\Flow\Session\PhpSession

	PhpSession

	That’s a PHP Session



	\Neos\Flow\Cache\Backend\FileBackend

	FileBackend

	A File Backend



	\Neos\Flow\Session\SessionInterface

	SessionInterface

	Interface for a session



	\Neos\Foo\Controller\StandardController

	StandardController

	The standard controller



	\Neos\Flow\Objects\ObjectManager

	ObjectManager

	“ObjectManager” is clearer






Edge cases in naming of namespaces and classes








	Fully qualified class name

	Unqualified name

	Remarks





	\Neos\Flow\Mvc\ControllerInterface

	ControllerInterface

	Consequently the interface belongs to all the controllers in the Controller sub namespace



	\Neos\Flow\Mvc\Controller\ControllerInterface

	
	Better



	\Neos\Cache\AbstractBackend

	AbstractBackend

	Same here: In reality this class belongs to the backends



	\Neos\Cache\Backend\AbstractBackend

	
	Better







Note

When specifying class names to PHP, always reference the global namespace inside
namespaced code by using a leading backslash. When referencing a class name inside a
string (e.g. given to the get-Method of the ObjectManager, in pointcut
expressions or in YAML files), never use a leading backslash. This follows the native
PHP notion of names in strings always being seen as fully qualified.





Importing Namespaces

If you refer to other classes or interfaces you are encouraged to import the namespace with the
use statement if it improves readability.

Following rules apply:


	If importing namespaces creates conflicting class names you might alias class/interface or namespaces
with the as keyword.


	One use statement per line, one use statement for each imported namespace


	Imported namespaces should be ordered alphabetically (modern IDEs provide support for this)





Tip

use statements have no side-effects (e.g. they don’t trigger autoloading).
Nevertheless you should remove unused imports for better readability





Interface names

Only the characters a-z, A-Z and 0-9 are allowed for interface names – don’t use special
characters.

All interface names are written in UpperCamelCase. Interface names must be adjectives
or nouns and have the Interface suffix. A few examples follow:


	\Neos\Flow\ObjectManagement\ObjectInterface


	\Neos\Flow\ObjectManagement\ObjectManagerInterface


	\MyCompany\MyPackage\MyObject\MySubObjectInterface


	\MyCompany\MyPackage\MyObject\MyHtmlParserInterface






Exception names

Exception naming basically follows the rules for naming classes. There are two possible
types of exceptions: generic exceptions and specific exceptions. Generic exceptions should
be named “Exception” preceded by their namespace. Specific exceptions should reside in
their own sub-namespace end with the word Exception.


	\Neos\Flow\ObjectManagement\Exception


	\Neos\Flow\ObjectManagement\Exception\InvalidClassNameException


	\MyCompany\MyPackage\MyObject\Exception


	\MyCompany\MyPackage\MyObject\Exception\OutOfCoffeeException






On consistent naming of classes, interfaces and friends

At times, the question comes up, why we use a naming scheme that is inconsistent with
what we write in the PHP sources. Here is the best explanation we have:


At first glance this feels oddly inconsistent; We do, after all, put each
of those at the same position within php code.

But, I think leaving Abstract as a prefix, and Interface/Trait as suffixes
makes sense. Consider the opposite of how we do it: “Interface Foo”, “Trait
Foo” both feel slightly odd when I say them out loud, and “Foo Abstract”
feels very wrong. I think that is because of the odd rules of grammar in
English (Oh! English. What an ugly inconsistent language! And yet, it is my
native tongue).

Consider the phrase “the poor man”. ‘poor’ is an adjective that describes
‘man’, a noun. Poor happens to also work as a noun, but the definition
changes slightly when you use it as a noun instead of an adjective. And, if
you were to flip the phrase around, it would not make much sense, or could
have (sometimes funny) alternative meanings: “the man poor” (Would that
mean someone without a boyfriend?)

The word “Abstract” works quite well as an adjective, but has the wrong
meaning as a noun. An “Abstract” (noun) is “an abridgement or summary” or a
kind of legal document, or any other summary-like document. But we’re not
talking about a document, we’re talking about the computing definition
which is an adjective: “abstract type”. (
http://en.wiktionary.org/wiki/abstract)

“Abstract” can be a noun, an adjective, or a verb. But, we want the
adjective form. “Interface” is a noun or a verb. “Trait” is always a noun.
So, based on current English rules, “Abstract Foo”, “Foo Interface” and
“Foo Trait” feel the most natural. English is a living language where words
can move from one part of speech to another, so we could get away with
using the words in different places in the sentence. But that would, at
least to begin with, feel awkward.

So, I blame the inconsistent placement of Abstract, Interface, and Trait on
the English language.

[…]

—Jacob Floyd, http://lists.typo3.org/pipermail/flow/2014-November/005625.html






Method names

All method names are written in lowerCamelCase. In order to avoid problems with different
filesystems, only the characters a-z, A-Z and 0-9 are allowed for method names – don’t use
special characters.

Make method names descriptive, but keep them concise at the same time. Constructors must
always be called __construct(), never use the class name as a method
name.


	myMethod()


	someNiceMethodName()


	betterWriteLongMethodNamesThanNamesNobodyUnderstands()


	singYmcaLoudly()


	__construct()






Variable names

Variable names are written in lowerCamelCase and should be


	self-explanatory


	not shortened beyond recognition, but rather longer if it makes their meaning clearer




The following example shows two variables with the same meaning but different naming.
You’ll surely agree the longer versions are better (don’t you …?).

Correct naming of variables


	$singletonObjectsRegistry


	$argumentsArray


	$aLotOfHtmlCode




Incorrect naming of variables


	$sObjRgstry


	$argArr


	$cx




As a special exception you may use variable names like $i, $j and $k for
numeric indexes in for loops if it’s clear what they mean on the first sight. But even
then you should want to avoid them.



Constant names

All constant names are written in UPPERCASE. This includes TRUE, FALSE and
NULL. Words can be separated by underscores - you can also use the underscore to group
constants thematically:


	STUFF_LEVEL


	COOLNESS_FACTOR


	PATTERN_MATCH_EMAILADDRESS


	PATTERN_MATCH_VALIDHTMLTAGS




It is, by the way, a good idea to use constants for defining regular expression patterns
(as seen above) instead of defining them somewhere in your code.



Filenames

These are the rules for naming files:


	All filenames are UpperCamelCase.


	Class and interface files are named according to the class or interface they represent


	Each file must contain only one class or interface


	Names of files containing code for unit tests must be the same as the class which is
tested, appended with “Test.php”.


	Files are placed in a directory structure representing the namespace structure. You may
use PSR-0 or PSR-4 autoloading as you like. We generally use PSR-4.




File naming in Flow


	Neos.TemplateEngine/Classes/TemplateEngineInterface.php
	Contains the interface \Neos\TemplateEngine\TemplateEngineInterface which is part
of the package Neos.TemplateEngine



	Neos.Flow/Classes/Error/RuntimeException.php
	Contains the \Neos\Flow\Error\Messages\RuntimeException being a part of the package
Neos.Flow



	Acme.DataAccess/Classes/CustomQuery.php
	Contains class \Acme\DataAccess\CustomQuery which is part of the package
Acme.DataAccess



	Neos.Flow/Tests/Unit/Package/PackageManagerTest.php
	Contains the class \Neos\Flow\Tests\Unit\Package\PackageManagerTest which
is a PHPUnit testcase for Package\PackageManager.








PHP code formatting


PSR-2

We follow the PSR-2 standard which is defined by PHP FIG. You should read the full PSR-2 standard.
.. psr-2 standard: https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md

Some things are not specified in PSR-2, so here are some amendments.



Strings

In general, we use single quotes to enclose literal strings:

$neos = 'A great project from a great team';





If you’d like to insert values from variables, concatenate strings. A
space must be inserted before and after the dot for better readability:

$message = 'Hey ' . $name . ', you look ' . $appearance . ' today!';





You may break a string into multiple lines if you use the dot operator. You’ll have to
indent each following line to mark them as part of the value assignment:

$neos = 'A great ' .
  'project from ' .
  'a great ' .
  'team';





You should also consider using a PHP function such as sprintf() to concatenate
strings to increase readability:

$message = sprintf('Hey %s, you look %s today!', $name, $appearance);








Development Process


Test-Driven Development

In a nutshell: before coding a feature or fixing a bug, write an unit test.

Whatever you do: before committing changes to the repository, run all unit tests to make
sure nothing is broken!



Commit Messages

To have a clear and focused history of code changes is greatly helped by using a
consistent way of writing commit messages. Because of this and to help with (partly)
automated generation of change logs for each release we have defined a fixed syntax for
commit messages that is to be used.


Tip

Never commit without a commit message explaining the commit!



The syntax is as follows:


	Start with one of the following codes:


	FEATURE:
	A feature change. Most likely it will be an added feature, but it could also be removed. For additions there should
be a corresponding ticket in the issue tracker.



	BUGFIX:
	A fix for a bug. There should be a ticket corresponding to this in the issue tracker as well as a new) unit test for
the fix.



	SECURITY:
	A security related change. Those must only be committed by active contributors in agreement with the
Neos Security Team [https://www.neos.io/about/security-bulletins.html].



	TASK:
	Anything not covered by the above categories, e.g. coding style cleanup or documentation changes. Usually only used
if there’s no corresponding ticket.





Except for SECURITY each of the above codes can be prefixed with WIP to mark a change work in progress. This
means that it is not yet ready for a final review. The WIP prefix must be removed before a change is merged.



	The code is followed by a short summary in the same line, no full stop at the end.
If the change affects the public API or is likely to break things on the user side, start the line with [!!!].
This indicates a breaking change that needs human action when updating. Make sure to explain why a change is breaking
and in what circumstances.


	Then follows (after a blank line) a custom message explaining what was done. It should
be written in a style that serves well for a change log read by users.


	If there is more to say about a change add a new paragraph with background information below.
In case of breaking changes give a hint on what needs to be changed by the user.


	If corresponding tickets exist, mention the ticket number(s) using footer lines after
another blank line and use the following actions:


	Fixes <Issue-Id>
	If the change fixes a bug, resolves a feature request or task.



	Related to <Issue-Id>
	If the change relates to an issue but does not resolve or fix it.









A commit messages following the rules…:

TASK: Short (50 chars or less) summary of changes

More detailed explanatory text, if necessary.  Wrap it to about 72
characters or so.  In some contexts, the first line is treated as the
subject of an email and the rest of the text as the body.  The blank
line separating the summary from the body is critical (unless you omit
the body entirely); tools like rebase can get confused if you run the
two together.

Write your commit message in the present tense: "Fix bug" and not "Fixed
bug."  This convention matches up with commit messages generated by
commands like git merge and git revert.

Code snippets::

 should be written in
 ReStructuredText compatible
 format for better highlighting

Further paragraphs come after blank lines.

* Bullet points are okay, too
* An asterisk is used for the bullet, it can be preceded by a single
  space. This format is rendered correctly by Forge (redmine)
* Use a hanging indent

Fixes #123





Examples of good and bad subject lines:

Introduce xyz service                               // BAD, missing code prefix
BUGFIX: Fixed bug xyz                               // BAD, subject should be written in present tense
WIP !!! TASK: A breaking change                     // BAD, subject has to start with [!!!] for breaking changes
BUGFIX: Make SessionManager remove expired sessions // GOOD, the line explains what the change does, not what the
                                                       bug is about (this should be explained in the following lines
                                                       and in the related bug tracker ticket)







Source Code Documentation

All code must be documented with inline comments. The syntax is similar to that known from
the Java programming language (JavaDoc). This way code documentation can automatically be
generated.



Documentation Blocks

A file contains different documentation blocks, relating to the class in the file and the
members of the class. A documentation block is always used for the entity it precedes.



Class documentation

Classes have their own documentation block describing the classes purpose.

Standard documentation block:

/**
 * First sentence is short description. Then you can write more, just as you like
 *
 * Here may follow some detailed description about what the class is for.
 *
 * Paragraphs are separated by an empty line.
 */
class SomeClass {
 ...
}





Additional tags or annotations, such as @see or @Flow\Aspect, can be added as needed.



Documenting variables, constants, includes

Properties of a class should be documented as well. We use the short version for
documenting them.

Standard variable documentation block:

/**
 * A short description, very much recommended
 *
 * @var string
 */
protected $title = 'Untitled';





In general you should try to code in a way that the types can be derived (e.g. by using type hints and annotations).
In some cases this is not possible, for example when iterating through an array of objects. In these cases it’s ok to
add inline @var annotations to increase readability and to activate auto-completion and syntax-highlighting:

protected function someMethod(array $products) {
   /** @var $product \Acme\SomePackage\Domain\Model\Product */
   foreach ($products as $product) {
       $product->getTitle();
   }
}







Method documentation

For a method, at least all parameters and the return value must be documented.

Standard method documentation block:

/**
 * A description for this method
 *
 * Paragraphs are separated by an empty line.
 *
 * @param \Neos\Blog\Domain\Model\Post $post A post
 * @param string $someString This parameter should contain some string
 * @return void
 */
public function addStringToPost(\Neos\Blog\Domain\Model\Post $post, $someString) {
 ...
}





A special note about the @param tags: The parameter type and name are separated by one
space, not aligned. Do not put a colon after the parameter name. Always document the
return type, even if it is void - that way it is clearly visible it hasn’t just been
forgotten (only constructors never have a @return annotation!).



Testcase documentation

Testcases need to be marked as being a test and can have some more annotations.

Standard testcase documentation block:

/**
 * @test
 */
public function fooReturnsBarForQuux() {
 ...
}







Defining the Public API

Not all methods with a public visibility are necessarily part of the intended public API
of a project. For Flow, only the methods explicitly defined as part of the public API
will be kept stable and are intended for use by developers using Flow. Also the API
documentation we produce will only cover the public API.

To mark a method as part of the public API, include an @api annotation for it in the
docblock.

Defining the public API:

/**
 * This method is part of the public API.
 *
 * @return void
 * @api
 */
public function fooBar() {
 ...
}






Tip

When something in a class or an interface is annotated with @api make sure to also
annotate the class or interface itself! Otherwise it will be ignored completely when
official API documentation is rendered!





Overview of Documentation Annotations

There are not only documentation annotations that can be used. In Flow annotations are
also used in the MVC component, for defining aspects and advices for the AOP framework as
well as for giving instructions to the Persistence framework. See the individual chapters
for information on their purpose and use.

Here is a list of annotations used within the project. They are grouped by use case and
the order given here should be kept for the sake of consistency.

Interface Documentation


	@api


	@since


	@deprecated




Class Documentation


	@FlowIntroduce


	@FlowEntity


	@FlowValueObject


	@FlowScope


	@FlowAutowiring


	@FlowLazy


	@FlowAspect


	@api


	@since


	@deprecated




Property Documentation


	@FlowIntroduce


	@FlowIdentity


	@FlowTransient


	@FlowLazy


	@FlowIgnoreValidation


	@FlowInject


	@FlowInjectConfiguration


	@FlowValidate


	@var


	@api


	@since


	@deprecated




Constructor Documentation


	@param


	@throws


	@api


	@since


	@deprecated




Method Documentation


	@FlowAfter


	@FlowAfterReturning


	@FlowAfterThrowing


	@FlowAround


	@FlowBefore


	@FlowPointcut


	@FlowAutowiring


	@FlowCompileStatic


	@FlowFlushesCaches


	@FlowInternal


	@FlowSession


	@FlowSignal


	@FlowIgnoreValidation


	@FlowSkipCsrfProtection


	@FlowValidate


	@FlowValidationGroups


	@param


	@return


	@throws


	@api


	@since


	@deprecated




Testcase Documentation


	@test


	@dataProvider


	@expectedException





Tip

Additional annotations (more or less only the @todo and @see come to mind here),
should be placed after all other annotations.






Best Practices


Flow

This section gives you an overview of Flow’s coding rules and best practices.



Error Handling and Exceptions

Flow makes use of a hierarchy for its exception classes. The general rule is to throw
preferably specific exceptions and usually let them bubble up until a place where more
general exceptions are caught. Consider the following example:

Some method tried to retrieve an object from the object manager. However, instead of
providing a string containing the object name, the method passed an object (of course not
on purpose - something went wrong). The object manager now throws an InvalidObjectName
exception. In order to catch this exception you can, of course, catch it specifically - or
only consider a more general Object exception (or an even more general Flow
exception). This all works because we have the following hierarchy:

+ \Neos\Flow\Exception
+ \Neos\Flow\ObjectManagement\Exception
+ \Neos\Flow\ObjectManagement\Exception\InvalidObjectNameException







Throwing an exception

When throwing an exception, make sure to provide a clear error message and an error code
being the unix timestamp of when you write the ``throw`` statement. That error code must
be unique, so watch out when doing copy and paste!



Unit Testing

Some notes for a start:


	Never use the object manager or factory in unit tests! If they are needed, mock them.


	Avoid tests for the scope of an object. Those tests test the object factory, rather then
the test target. Such a test should be done by checking for the presence of an expected
@scope annotation – eventually we will find an elegant way for this.






Cross Platform Coding


	When concatenating paths, always use
\Neos\Utility\Files::concatenatePaths() to avoid trouble.






PHP in General


	All code should be object oriented. This means there should be no functions outside
classes if not absolutely necessary. If you need a “container” for some helper methods,
consider creating a static class.


	All code must make use of PHP5 advanced features for object oriented programming.


	Use PHP namespaces [http://www.php.net/manual/language.namespaces.php]


	Always declare the scope (public, protected, private) of methods and member variables


	Make use of iterators and exceptions, have a look at the SPL [http://www.php.net/manual/ref.spl.php]






	Make use of type-hinting [http://www.php.net/manual/language.oop5.typehinting.php] wherever possible


	Always use <?php as opening tags (never only <?)


	Never use the closing tag ?> at the end of a file, leave it out


	Never use the shut-up operator @ to suppress error messages. It makes debugging
harder, is dirty style and slow as hell


	Prefer strict comparisons whenever possible, to avoid problems with truthy and falsy
values that might behave different than what you expect. Here are some examples:

Examples of good and bad comparisons:

if ($template)             // BAD
if (isset($template))      // GOOD
if ($template !== NULL))   // GOOD
if ($template !== ''))     // GOOD

if (strlen($template) > 0) // BAD! strlen("-1") is greater than 0
if (is_string($template) && strlen($template) > 0) // BETTER

if ($foo == $bar)          // BAD, avoid truthy comparisons
if ($foo != $bar)          // BAD, avoid falsy comparisons
if ($foo === $bar))        // GOOD
if ($foo !== $bar))        // GOOD






[image: Truthy and falsy are fuzzy...]

Truthy and falsy are fuzzy…





	Order of methods in classes. To gain a better overview, it helps if methods in classes
are always ordered in a certain way. We prefer the following:


	constructor


	injection methods


	initialization methods (including initializeObject())


	public methods


	protected methods


	private methods


	shutdown methods


	destructor






	Avoid double-negation. Instead of exportSystemView(..., $noRecurse) use
exportSystemView(..., $recurse). It is more logical to pass TRUE if you want
recursion instead of having to pass FALSE. In general, parameters negating things
are a bad idea.






Comments

In general, comments are a good thing and we strive for creating a well-documented source
code. However, inline comments can often be a sign for a bad code structure or method
naming. 1 As an example, consider the example for a coding smell:

 // We only allow valid persons
if (is_object($p) && strlen($p->lastN) > 0 && $p->hidden === FALSE && $this->environment->moonPhase === MOON_LIB::CRESCENT) {
 $xmM = $thd;
}





This is a perfect case for the refactoring technique “extract method”: In order to avoid
the comment, create a new method which is as explanatory as the comment:

if ($this->isValidPerson($person) {
  $xmM = $thd;
}





Bottom line is: You may (and are encouraged to) use inline comments if they support the
readability of your code. But always be aware of possible design flaws you probably try to
hide with them.




	1

	This is also referred to as a bad “smell” in the theory of Refactoring. We highly recommend reading “Refactoring” by Martin Fowler - if you didn’t already.










            

          

      

      

    

  

    
      
          
            
  
JavaScript Coding Guidelines

Here, you will find an explanation of the JavaScript Coding Guidelines we use.
Generally, we strive to follow the Neos Flow Coding Guidelines as closely as
possible, with exceptions which make sense in the JavaScript context.

This guideline explains mostly how we want JavaScript code to be formatted;
and it does not deal with the Neos User
Interface structure. If you want to know more about the Neos User
Interface architecture, have a look into the “Neos User Interface
Development” book.


Naming Conventions


	one class per file, with the same naming convention as Neos Flow.


	This means all classes are built like this:
<PackageKey>.<SubNamespace>.<ClassName>, and this class is
implemented in a JavaScript file located at
<Package>/.../JavaScript/<SubNamespace>/<ClassName>.js


	Right now, the base directory for JavaScript in Neos Flow packages
Resources/Public/JavaScript, but this might still change.


	We suggest that the base directory for JavaScript files is JavaScript.


	Files have to be encoded in UTF-8 without byte order mark (BOM).


	Classes and namespaces are written in UpperCamelCase, while properties and methods
are written in lowerCamelCase.


	The xtype of a class is always the fully qualified class name. Every class which can be
instantiated needs to have an xtype declaration.


	Never create a class which has classes inside itself. Example: if the class
TYPO3.Foo exists, it is prohibited to create a class TYPO3.Foo.Bar.You can
easily check this: If a directory with the same name as the JavaScript file exists, this
is prohibited.

Here follows an example:

TYPO3.Foo.Bar // implemented in .../Foo/Bar.js
TYPO3.Foo.Bar = ...

TYPO3.Foo // implemented in ...Foo.js
TYPO3.Foo = ..... **overriding the "Bar" class**





So, if the class TYPO3.Foo.Bar is included before TYPO3.Foo, then
the second class definition completely overrides the Bar object. In order
to prevent such issues, this constellation is forbidden.



	Every class, method and class property should have a doc comment.


	Private methods and properties should start with an underscore (_)
and have a @private annotation.






Doc Comments

Generally, doc comments follow the following form:

/**
 *
 */





See the sections below on which doc comments are available for the different
elements (classes, methods, …).

We are using http://code.google.com/p/ext-doc/ for rendering an API
documentation from the code, that’s why types inside @param, @type and
@cfg have to be written in braces like this:

@param {String} theFirstParameter A Description of the first parameter
@param {My.Class.Name} theSecondParameter A description of the second parameter





Generally, we do not use @api annotations, as private methods and attributes
are marked with @private and prefixed with an underscore. So, everything
which is not marked as private belongs to the public API!

We are not sure yet if we should use @author annotations at all. (TODO Decide!)

To make a reference to another method of a class, use the
{@link #methodOne This is an example link to method one} syntax.

If you want to do multi-line doc comments, you need to format them with <br>,
<pre> and other HTML tags:

/**
 * Description of the class. Make it as long as needed,
 * feel free to explain how to use it.
 * This is a sample class <br/>
 * The file encoding should be utf-8 <br/>
 * UTF-8 Check: öäüß <br/>
 * {@link #methodOne This is an example link to method one}
 */







Class Definitions

Classes can be declared singleton or prototype. A class is singleton, if
only one instance of this class will exist at any given time. An class is of
type prototype, if more than one object can be created from the class at
run-time. Most classes will be of type prototype.

You will find examples for both below.


Prototype Class Definitions

Example of a prototype class definition:

Ext.ns("TYPO3.TYPO3.Content");


/*
 * This file is part of the Neos.Neos package.
 *
 * (c) Contributors of the Neos Project - www.neos.io
 *
 * This package is Open Source Software. For the full copyright and license
 * information, please view the LICENSE file which was distributed with this
 * source code.
 */

/**
 * @class TYPO3.TYPO3.Content.FrontendEditor
 *
 * The main frontend editor.
 *
 * @namespace TYPO3.TYPO3.Content
 * @extends Ext.Container
 */
TYPO3.TYPO3.Content.FrontendEditor = Ext.extend(Ext.Container, {
        // here comes the class contents
});
Ext.reg('TYPO3.TYPO3.Content.FrontendEditor', TYPO3.TYPO3.Content.FrontendEditor);






	At the very beginning of the file is the namespace declaration of the
class, followed by a newline.


	Then follows the class documentation block, which must start with
the @class declaration in the first line.


	Now comes a description of the class, possibly with examples.


	Afterwards must follow the namespace of the class and the information about
object extension


	Now comes the actual class definition, using Ext.extend.


	As the last line of the class, it follows the xType registration. We always use
the fully qualified class name as xtype




Usually, the constructor of the class receives a hash of parameters. The possible
configuration options need to be documented inside the class with the @cfg
annotation:

TYPO3.TYPO3.Content.FrontendEditor = Ext.extend(Ext.Container, {
        /**
         * An explanation of the configuration option followed
         * by a blank line.
         *
         * @cfg {Number} configTwo
         */
        configTwo: 10
        ...
}







Singleton Class Definitions

Now comes a singleton class definition. You will see that it is very similar to a
prototype class definition, we will only highlight the differences.

Example of a singleton class definition:

Ext.ns("TYPO3.TYPO3.Core");


/*
 * This file is part of the Neos.Neos package.
 *
 * (c) Contributors of the Neos Project - www.neos.io
 *
 * This package is Open Source Software. For the full copyright and license
 * information, please view the LICENSE file which was distributed with this
 * source code.
 */

/**
 * @class TYPO3.TYPO3.Core.Application
 *
 * The main entry point which controls the lifecycle of the application.
 *
 * @namespace TYPO3.TYPO3.Core
 * @extends Ext.util.Observable
 * @singleton
 */
TYPO3.TYPO3.Core.Application = Ext.apply(new Ext.util.Observable, {
        // here comes the class contents
});






	You should add a @singleton annotation to the class doc comment after the
@namespace and @extends annotation


	In singleton classes, you use Ext.apply. Note that you need to use new to
instantiate the base class.


	There is no xType registration in singletons, as they are available globally anyhow.






Class Doc Comments

Class Doc Comments should always be in the following order:


	@class <Name.Of.Class> (required)


	Then follows a description of the class, which can span multiple lines. Before and after
this description should be a blank line.


	@namespace <Name.Of.Namespace> (required)


	@extends <Name.Of.BaseClass> (required)


	@singleton (required if the class is a singleton)




If the class has a non-empty constructor, the following doc comments need to be added as
well, after a blank line:


	@constructor


	@param {<type>} <nameOfParameter> <description of parameter> for every parameter of
the constructor




Example of a class doc comment without constructor:

/**
 * @class Acme.Foo.Bar
 *
 * Some Description of the class,
 * which can possibly span multiple lines
 *
 * @namespace Acme.Foo
 * @extends TYPO3.TYPO3.Core.SomeOtherClass
 */





Example of a class doc comment with constructor:

/**
 * @class Acme.TYPO3.Foo.ClassWithConstructor
 *
 * This class has a constructor!
 *
 * @namespace Acme.TYPO3.Foo
 * @extends TYPO3.TYPO3.Core.SomeOtherClass
 *
 * @constructor
 * @param {String} id The ID which to use
 */







Method Definitions

Methods should be documented the following way, with a blank line between methods.

Example of a method comment:

...
TYPO3.TYPO3.Core.Application = Ext.apply(new Ext.util.Observable, {
        ... property definitions ...
        /**
         * This is a method declaration; and the
         * explanatory text is followed by a newline.
         *
         * @param {String} param1 Parameter name
         * @param {String} param2 (Optional) Optional parameter
         * @return {Boolean} Return value
         */
        aPublicMethod: function(param1, param2) {
                return true;
        },

        /**
         * this is a private method of this class,
         * the private annotation marks them an prevent that they
         * are listed in the api doc. As they are private, they
         * have to start with an underscore as well.
         *
         * @return {void}
         * @private
         */
        _sampleMethod: function() {
        }
}
...





Contrary to what is defined in the Neos Flow PHP Coding Guidelines, methods which are public
automatically belong to the public API, without an @api annotation. Contrary,
methods which do not belong to the public API need to begin with an underscore and
have the @private annotation.


	All methods need to have JSDoc annotations.


	Every method needs to have a @return annotation. In case the method does not return
anything, a @return {void} is needed, otherwise the concrete return value should be
described.






Property Definitions

All properties of a class need to be properly documented as well, with an @type
annotation. If a property is private, it should start with an underscore and have the
@private annotation at the last line of its doc comment:

...
TYPO3.TYPO3.Core.Application = Ext.apply(new Ext.util.Observable, { // this is just an example class definition
        /**
         * Explanation of the property
         * which is followed by a newline
         *
         * @type {String}
         */
        propertyOne: 'Hello',

        /**
         * Now follows a private property
         * which starts with an underscore.
         *
         * @type {Number}
         * @private
         */
        _thePrivateProperty: null,
        ...
}







Code Style


	use single quotes(’) instead of double quotes(”) for string quoting


	Multi-line strings (using \) are forbidden. Instead, multi-line strings should be
written like this:

'Some String' +
' which spans' +
' multiple lines'







	There is no limitation on line length.


	JavaScript constants (true, false, null) must be written in lowercase, and not uppercase.


	Custom JavaScript constants should be avoided.


	Use a single var statement at the top of a method to declare all variables:

function() {
        var myVariable1, myVariable2, someText;
        // now, use myVariable1, ....
}

Please do **not assign** values to the variables in the initialization, except empty
default values::

// DO:
function() {
        var myVariable1, myVariable2;
        ...
}
// DO:
function() {
        var myVariable1 = {}, myVariable2 = [], myVariable3;
        ...
}
// DON'T
function() {
        var variable1 = 'Hello',
                variable2 = variable1 + ' World';
        ...
}







	We use a single TAB for indentation.


	Use inline comments sparingly, they are often a hint that a new method must be
introduced.

Inline Comments must be indented one level deeper than the current nesting level:

function() {
        var foo;
                // Explain what we are doing here.
        foo = '123';
}







	Whitespace around control structures like if, else, … should be inserted like
in the Neos Flow CGLs:

if (myExpression) {
        // if part
} else {
        // Else Part
}







	Arrays and Objects should never have a trailing comma after their last element


	Arrays and objects should be formatted in the following way:

[
        {
                foo: 'bar'
        }, {
                x: y
        }
]







	Method calls should be formatted the following way:

// for simple parameters:
new Ext.blah(options, scope, foo);
object.myMethod(foo, bar, baz);

// when the method takes a **single** parameter of type **object** as argument, and this object is specified directly in place:
new Ext.Panel({
        a: 'b',
        c: 'd'
});

// when the method takes more parameters, and one is a configuration object which is specified in place:
new Ext.blah(
        {
                foo: 'bar'
        },
        scope,
        options
);<









TODO: are there JS Code Formatters / Indenters, maybe the Spket JS Code Formatter?




Using JSLint to validate your JavaScript

JSLint is a JavaScript program that looks for problems in JavaScript programs. It is a
code quality tool. When C was a young programming language, there were several common
programming errors that were not caught by the primitive compilers, so an accessory
program called lint was developed that would scan a source file, looking for problems.
jslint is the same for JavaScript.

JavaScript code ca be validated on-line at http://www.jslint.com/. When validating the
JavaScript code, “The Good Parts” family options should be set. For that purpose, there is
a button “The Good Parts” to be clicked.

Instead of using it online, you can also use JSLint locally, which is now described. For
the sake of convenience, the small tutorial bellow demonstrates how to use JSlint with the
help of CLI wrapper to enable recursive validation among directories which streamlines the
validation process.


	Download Rhino from http://www.mozilla.org/rhino/download.html and put it for instance
into /Users/john/WebTools/Rhino


	Download JSLint.js (@see attachment “jslint.js”, line 5667-5669 contains the
configuration we would like to have, still to decide) (TODO)


	Download jslint.php (@see attachment “jslint.php” TODO), for example into
/Users/fudriot/WebTools/JSLint


	Open and edit path in jslint.php -> check variable $rhinoPath and
$jslintPath


	Add an alias to make it more convenient in the terminal:

alias jslint '/Users/fudriot/WebTools/JSLint/jslint.php'









Now, you can use JSLint locally:

// scan one file or multi-files
jslint file.js
jslint file-1.js file-2.js

// scan one directory or multi-directory
jslint directory
jslint directory-1 directory-2

// scan current directory
jslint .





It is also possible to adjust the validation rules JSLint uses. At the end of file
jslint.js, it is possible to customize the rules to be checked by JSlint by changing
options’ value. By default, the options are taken over the book “JavaScript: The Good
Parts” which is written by the same author of JSlint.

Below are the options we use for TYPO3 v5:

bitwise: true, eqeqeq: true, immed: true,newcap: true, nomen: false,
onevar: true, plusplus: false, regexp: true, rhino: true, undef: false,
white: false, strict: true





In case some files needs to be evaluated with special rules, it is possible to add a
comment on the top of file which can override the default ones:

/* jslint white: true, evil: true, laxbreak: true, onevar: true, undef: true,
nomen: true, eqeqeq: true, plusplus: true, bitwise: true, regexp: true,
newcap: true, immed: true */





More information about the meaning and the reasons of the rules can be found at
http://www.jslint.com/lint.html



Event Handling

When registering an event handler, always use explicit functions instead of inline
functions to allow overriding of the event handler.

Additionally, this function needs to be prefixed with on to mark it as event handler
function. Below follows an example for good and bad code.

Good Event Handler Code:

TYPO3.TYPO3.Application.on('theEventName', this._onCustomEvent, this);





Bad Event Handler Code:

TYPO3.TYPO3.Application.on(
        'theEventName',
        function() {
                alert('Text');
        },
        this
);





All events need to be explicitly documented inside the class where they are fired onto
with an @event annotation:

TYPO3.TYPO3.Core.Application = Ext.apply(new Ext.util.Observable, {
        /**
         * @event eventOne Event declaration
         */

        /**
         * @event eventTwo Event with parameters
         * @param {String} param1 Parameter name
         * @param {Object} param2 Parameter name
         * <ul>
         * <li><b>property1:</b> description of property1</li>
         * <li><b>property2:</b> description of property2</li>
         * </ul>
         */
        ...
}





Additionally, make sure to document if the scope of the event handler is not set to
this, i.e. does not point to its class, as the user expects this.



ExtJS specific things

TODO


	explain initializeObject


	how to extend Ext components


	can be extended by using constructor() not initComponents() like it is for panels and so
on





How to extend data stores

This is an example for how to extend an ExtJS data store:

TYPO3.TYPO3.Content.DummyStore = Ext.extend(Ext.data.Store, {

        constructor: function(cfg) {
                cfg = cfg || {};
                var config = Ext.apply(
                        {
                                autoLoad: true
                        },
                        cfg
                );

                TYPO3.TYPO3.Content.DummyStore.superclass.constructor.call(
                        this,
                        config
                );
        }
});
Ext.reg('TYPO3.TYPO3.Content.DummyStore', TYPO3.TYPO3.Content.DummyStore);








Unit Testing


	It’s highly recommended to write unit tests for javascript classes. Unit tests should be
located in the following location: Package/Tests/JavaScript/...


	The structure below this folder should reflect the structure below
Package/Resources/Public/JavaScript/... if possible.


	The namespace for the Unit test classes is Package.Tests.


	TODO: Add some more information about Unit Testing for JS


	TODO: Add note about the testrunner when it’s added to the package


	TODO: http://developer.yahoo.com/yui/3/test/








            

          

      

      

    

  

    
      
          
            
  
Note

This is a documentation stub.




Configuration Reference


Navigation tree loadingDepth

loadingDepth defines the number of levels inside the node tree which shall be loaded eagerly, at start.
A similar setting is available for the structure tree.

If you have lots of nodes you can reduce the number of levels inside Settings.yaml to speed up page loading:

Neos:
  Neos:
    userInterface:
      navigateComponent:
        nodeTree:
          loadingDepth: 2
        structureTree:
          loadingDepth: 2







Node tree presets

By default all node types that extend Neos.Neos:Document appear in the Node tree filter
allowing the editor to only show nodes of the selected type in the tree.

The default baseNodeType can be changed in order to hide nodes from the tree by default.

This example shows how to exclude one specific node type (and it’s children) from the tree:

Neos:
  Neos:
    userInterface:
      navigateComponent:
        nodeTree:
          presets:
            'default':
              baseNodeType: 'Neos.Neos:Document,!Acme.Com:SomeNodeTypeToIgnore'





In addition to the default preset, additional presets can be configured such as:

Neos:
  Neos:
    userInterface:
      navigateComponent:
        nodeTree:
          presets:
            'default':
              baseNodeType: 'Neos.Neos:Document,!Acme.Com:Mixin.HideInBackendByDefault'
            'legalPages':
              ui:
                label: 'Legal pages'
                icon: 'icon-gavel'
              baseNodeType: 'Acme.Com:Document.Imprint,Acme.Com:Document.Terms'
            'landingPages':
              ui:
                label: 'Landing pages'
                icon: 'icon-bullseye'
              baseNodeType: 'Acme.Com:Mixin.LandingPage'





If at least one custom preset is defined, instead of the list of all node types the filter will
display the configured presets.





            

          

      

      

    

  

    
      
          
            
  
Node Migration Reference

Node migrations can be used to deal with renamed node types and property names, set missing default values for
properties, adjust content dimensions and more.

Node migrations work by applying transformations on nodes. The nodes that will be transformed are selected
through filters in migration files.

The Content Repository comes with a number of common transformations:


	AddDimensions


	AddNewProperty


	ChangeNodeType


	ChangePropertyValue


	RemoveNode


	RemoveProperty


	RenameDimension


	RenameNode


	RenameProperty


	SetDimensions


	StripTagsOnProperty




They all implement the Neos\ContentRepository\Migration\Transformations\TransformationInterface. Custom transformations
can be developed against that interface as well, just use the fully qualified class name for those when specifying
which transformation to use.


Migration files

To use node migrations to adjust a setup to changed configuration, a YAML file is created that configures the
migration by setting up filters to select what nodes are being worked on by transformations. The Content Repository
comes with a number of filters:


	DimensionValues


	IsRemoved


	NodeName


	NodeType


	PropertyNotEmpty


	Workspace




They all implement the Neos\ContentRepository\Migration\Filters\FilterInterface. Custom filters can be developed against
that interface as well, just use the fully qualified class name for those when specifying which filter to use.

Here is an example of a migration, Version20140708120530.yaml, that operates on nodes in the “live” workspace
that are marked as removed and applies the RemoveNode transformation on them:

up:
  comments: 'Delete removed nodes that were published to "live" workspace'
  warnings: 'There is no way of reverting this migration since the nodes will be deleted in the database.'
  migration:
    -
      filters:
        -
          type: 'IsRemoved'
          settings: []
        -
          type: 'Workspace'
          settings:
            workspaceName: 'live'
      transformations:
        -
          type: 'RemoveNode'
          settings: []

down:
  comments: 'No down migration available'





Like all migrations the file should be placed in a package inside the Migrations/ContentRepository folder where it will be picked
up by the CLI tools provided with the content repository:


	./flow node:migrationstatus


	./flow node:migrate




Use ./flow help <command> to get detailed instructions. The migrationstatus command also prints a short description
for each migration.


Note

Node migrations in Migrations/TYPO3CR directories are also supported for historic reasons





Transformations Reference


AddDimensions

Add dimensions on a node. This adds to the existing dimensions, if you need to overwrite existing dimensions, use
SetDimensions.

Options Reference:


	dimensionValues (array)
	An array of dimension names and values to set.



	addDefaultDimensionValues (boolean)
	Whether to add the default dimension values for all dimensions that were not given.







AddNewProperty

Add a new property with the given value.

Options Reference:


	newPropertyName (string)
	The name of the new property to be added.



	value (mixed)
	Property value to be set.







ChangeNodeType

Change the node type.

Options Reference:


	newType (string)
	The new Node Type to use as a string.







ChangePropertyValue

Change the value of a given property.

This can apply two transformations:


	If newValue is set, the value will be set to this, with any occurrences of the currentValuePlaceholder replaced
with the current value of the property.


	If search and replace are given, that replacement will be done on the value (after applying the newValue, if set).




This would simply override the existing value:

transformations:
  -
    type: 'ChangePropertyValue'
    settings:
      property: 'title'
      newValue: 'a new value'





This would prefix the existing value:

transformations:
  -
    type: 'ChangePropertyValue'
    settings:
      property: 'title'
      newValue: 'this is a prefix to {current}'





This would prefix existing value and then apply search/replace on the result:

transformations:
  -
    type: 'ChangePropertyValue'
    settings:
      property: 'title'
      newValue: 'this is a prefix to {current}'
      search: 'something'
      replace: 'something else'





And in case your value contains the magic string “{current}” and you need to leav it intact, this would prefix the existing
value but use a different placeholder:

transformations:
  -
    type: 'ChangePropertyValue'
    settings:
      property: 'title'
      newValue: 'this is a prefix to {__my_unique_placeholder}'
      currentValuePlaceholder: '__my_unique_placeholder'





Options Reference:


	property (string)
	The name of the property to change.



	newValue (string)
	New property value to be set.

The value of the option currentValuePlaceholder (defaults to “{current}”) will be used to include the current
property value into the new value.



	search (string)
	Search string to replace in current property value.



	replace (string)
	Replacement for the search string.



	currentValuePlaceholder (string)
	The value of this option (defaults to {current}) will be used to include the current property value into the new
value.







RemoveNode

Removes the node.



RemoveProperty

Remove the property.

Options Reference:


	property (string)
	The name of the property to be removed.







RenameDimension

Rename a dimension.

Options Reference:


	newDimensionName (string)
	The new name for the dimension.



	oldDimensionName (string)
	The old name of the dimension to rename.







RenameNode

Rename a node.

Options Reference:


	newName (string)
	The new name for the node.







RenameProperty

Rename a given property.

Options Reference:


	from (string)
	The name of the property to change.



	to (string)
	The new name for the property to change.







SetDimensions

Set dimensions on a node. This always overwrites existing dimensions, if you need to add to existing dimensions, use
AddDimensions.

Options Reference:


	dimensionValues (array)
	An array of dimension names and values to set.



	addDefaultDimensionValues (boolean)
	Whether to add the default dimension values for all dimensions that were not given.







StripTagsOnProperty

Strip all tags on a given property.

Options Reference:


	property (string)
	The name of the property to work on.








Filters Reference


DimensionValues

Filter nodes by their dimensions.

Options Reference:


	dimensionValues (array)
	The array of dimension values to filter for.



	filterForDefaultDimensionValues (boolean)
	Overrides the given dimensionValues with dimension defaults.







IsRemoved

Selects nodes marked as removed.



NodeName

Selects nodes with the given name.

Options Reference:


	nodeName (string)
	The value to compare the node name against, strict equality is checked.







NodeType

Selects nodes by node type.

Options Reference:


	nodeType (string)
	The node type name to match on.



	withSubTypes (boolean)
	Whether the filter should match also on all subtypes of the configured node type.
Note: This can only be used with node types still available in the system!



	exclude (boolean)
	Whether the filter should exclude the given NodeType instead of including only this node type.







PropertyNotEmpty

Filter nodes having the given property and its value not empty.

Options Reference:


	propertyName (string)
	The property name to be checked for non-empty value.







Workspace

Filter nodes by workspace name.

Options Reference:


	workspaceName (string)
	The workspace name to match on.










            

          

      

      

    

  

    
      
          
            
  
Contribute



	Development
	Neos UI Development





	Documentation
	Neos Documentation

	Beginners Guide Sphinx-Setup












            

          

      

      

    

  

    
      
          
            
  
Development

Developing Neos.



	Neos UI Development
	Setting up your machine for Neos UI development

	Grunt tasks types

	Available grunt tasks












            

          

      

      

    

  

    
      
          
            
  
Neos UI Development


Setting up your machine for Neos UI development

For user interface development of Neos we utilize grunt and some other
tools.

Setting up your machine could be done by using the installation script that can
be found in Neos.Neos/Scripts/install-dev-tools.sh. If you want to do a manual
installation you will need to install the following software:


	nodejs


	npm


	grunt-cli (global, sudo npm install -g grunt-cli)


	requirejs (sudo npm install -g requirejs)


	bower (sudo npm install -g bower)


	bundler (sudo gem install bundler)


	sass & compass (sudo gem install sass compass)





Note

Make sure you call npm install, bundle install --binstubs --path bundle
and bower install before running the grunt tasks.





Grunt tasks types

We have different types of grunt tasks. All tasks have different purposes:


	build commands


Those commands are used to package a production version of the code. Like
for example minified javascript, minified css or rendered documentation.






	compile commands


Those commands are meant for compiling resources that are used in development
context. This could for example be a packed file containing jquery and related
plugins which are loaded in development context using requirejs.






	watch commands


Those commands are used for watching file changes. When a change is detected
the compile commands for development are executed. Use those commands during
your daily work for a fast development experience.






	test commmands


Used for running automated tests. Those tests use phantomjs which is automatically
installed by calling npm install. Phantomjs needs some other dependencies though,
check Neos.Neos/Scripts/install-phantomjs-dependencies.sh for ubuntu based systems.










Available grunt tasks


Build


	grunt build


Executes grunt build-js and grunt build-css.






	grunt build-js


Builds the minified and concatenated javascript sources to ContentModule-built.js
using requirejs.






	grunt build-css


Compiles and concatenates the css sources to Includes-built.css.






	grunt build-docs


Renders the documentation. This task depends on a local installation of Omnigraffle.










Compile


	grunt compile


Executes grunt compile-js and grunt compile-css






	grunt compile-js


Compiles the javascript sources. This is the task to use if you want to package the
jquery sources including plugins or if you want to recreated the wrapped libraries
we include in Neos. During this process some of the included libraries are altered
to prevent collisions with Neos or the website frontend.






	grunt compile-css


Compiles and concatenates the scss sources to css.










Watch


	watch-css


Watches changes to the scss files and runs compile-css if a change is detected.






	watch-docs


Watches changes to the rst files of the documentation, and executes a compilation of
all restructured text sources to html. This task depends on a local sphinx install but
does not require Omnigraffle.






	watch


All of the above.










Test


	grunt test


Runs QUnit tests for javascript modules.













            

          

      

      

    

  

    
      
          
            
  
Documentation

Improving the Neos documentation.



	Neos Documentation
	How it works

	reStructuredText

	Sphinx

	Makefile

	Docker





	Beginners Guide Sphinx-Setup
	Contribute to the Neos-Documentation

	What are the goals?

	Let’s get started

	Guideline - commit messages

	Using git in the console

	The Neos Development Collection Repository

	Sphinx requirements

	Let the fun begin

	reStructuredText (rST)

	GitHub checkout-process












            

          

      

      

    

  

    
      
          
            
  
Neos Documentation


How it works

We use Read The Docs (http://neos.readthedocs.org) to host the documentation
for Neos.
This service listens for commits on Github and automatically builds the
documentation for all branches.

The entire documentation of Neos is located inside the Neos development collection
(https://github.com/neos/neos-development-collection) and can be edited by forking
the repository, editing the files and creating a pull request.



reStructuredText

The markup language that is used by Sphinx is
[reStructuredText](http://docutils.sourceforge.net/rst.html), a plaintext
markup syntax that easy to edit using any text editor and provides the
possibility to write well organized documentations that can be rendered
in multiple output formats by e.g. Sphinx.



Sphinx

Sphinx is a generator that automates building documentations from reStructuredText
markup. It can produce HTML, LaTex, ePub, plain text and many more output formats.

As Sphinx is a python based tool, you can install it by using either pip:

pip install -U Sphinx

or easy_install:

easy_install -U Sphinx



Makefile

As Sphinx accepts many options to build the many output formats,
we included a Makefile to simplify the building process.

In order to use the commands you must already have Sphinx installed.

You can get an overview of the provided commands by

cd Neos.Neos/Documentation

make help



Docker

If you don’t want to install Sphinx on your computer or have trouble installing
it, you can use a prebuilt Docker image that contains a working version of Sphinx.
The image is built on top of a pretty small alpine linux and has only around 80MB.

You can simply prefix your make command with the following docker command:

docker run -v $(pwd):/documents hhoechtl/doctools-sphinx make html

This will fire up a docker-container built from that image and execute the
Sphinx build inside the container. As your current directory is mounted into the
container, it can read the files and the generated output will be written in your
local filesystem as it would by just executing the make command with your local
Sphinx installation.





            

          

      

      

    

  

    
      
          
            
  
Beginners Guide Sphinx-Setup


Contribute to the Neos-Documentation

This Documentation aims to get you started quite from the ground up.
A lot of explainations here can of cause be used to work on the whole repository, it just seems
to be a good starting point to explain the workflow concerning the documentation first.

Imagine you would like to contribute to the Documentation but you haven’t worked with github yet,
you don’t know how a proper workflow looks like and you are not sure how to start contributing.
The problem is, that even while explaining some of the basic steps, there always is the need for
some kind of basic setup you will have to take care of yourself. You can of cause commit by using
GitHub itself. The aim of this document is focusing on working with git locally.
You need for eg. a Linux Console and git to get started. 1



What are the goals?

Once everything is set up nicely and hopefully without to much trouble, you will:


	know how to commit changes directly on GitHub.


	be able to easily access the Documentation offline in your browser


	know how to work with git and hub effectively when editing the Documentation


	see the life updated changes in your browser


	send pull request for your changes back to the Neos-Team


	see how to do some basic formatting with reStructuredText (rST)


	know how to use the todo functionality






Let’s get started

The easiest way to start is using GitHubs website itself to work on the repository.
Just click on the fork-button inside the repository, once you have done this you have
got your own copy (fork) of the repo you can work on. At first create a new branch by
clicking on the branch-button and typing in a new appropriate branch-name into the input field.

Next you can start editing the files relating to the branch you just created. Now you just need
to save your changes by clicking the “Commit changes”-button. (Please read the part below about
meaningful commit messages).

Once you have done all the necessary changes you can click the
“Create pull request”-button. Again make sure to explain what you have done. This last step
opens also a new dialog about your pull request in the original forked repository. Depending
of what you have done this will either be merged right away or you might get some feedback if
some work might still be necessary.

That’s basically it. Next we will look into the way of making your commits more precise before
discussing a detailed offline way of working on the repository.



Guideline - commit messages


Note

The following section was originally posted here (commit message style [https://discuss.neos.io/t/commit-message-style/507]) by Christian Müller.
Please make sure to follow these Guidelines.



To have a clear and focused history of code changes is greatly helped by using a
consistent way of writing commit messages. Because of this and to help with (partly)
automated generation of change logs for each release we have defined a fixed syntax for
commit messages that is to be used.


Warning

Tip: Never commit without a commit message explaining the commit

The syntax is as follows:



Start with one of the following codes:


Note

FEATURE
A feature change. Most likely it will be an added feature, but it could also be removed. There should
be a corresponding ticket in the issue tracker. Features usually only get into the current development master.

BUGFIX
A fix for a bug. There should be a ticket corresponding to this in the issue tracker and we encourage to add a new test that exposes the bug, which makes the work for everyone easier in the future and prevents the bug from reappearing.

TASK
Anything not covered by the above categories, e.g. coding style cleanup or documentation changes. Usually only used if there’s no corresponding ticket.

SECURITY
A security related change. Those are only commited by active team members in the security community of practice.

MERGE
Used for a branch upmerges by the team (or CI server) not something you usually would need to use.



The code is separated by a colon : from a short summary in the same line, no full stop at the end.

If the change affects the public API or is likely to break things on the user side, prefix the line with !!!. This indicates a breaking change that needs human action when updating. Make sure to explain why a change is breaking and in what circumstances. A change including a migration should always be marked breaking to alert users of the need to migrate.

Then (after a blank line) follows the custom message explaining what was done.
It should be written in a style that serves well for a change log read by users.
If there is more to say about a change add a new paragraph with background information below.
In case of breaking changes give a hint on what needs to be changed by the user.
If corresponding tickets exist, mention the ticket number(s) using footer lines after another blank line and use the following actions:

<issue number> #close Some additional info if needed If the change resolves a ticket by fixing a bug, implemeting a feature or doing a task.
<issue number> #comment Some info why this is related If the change relates to an issue but does not resolve or fix it.
This follows Jiras smart commit footers, see more details in the Jira documentation3

A commit messages following the rules…:


Note

TASK: Short (50 chars or less) summary of changes

More detailed explanatory text, if necessary.  Wrap it to about 72
characters or so.  In some contexts, the first line is treated as the
subject of an email and the rest of the text as the body.  The blank
line separating the summary from the body is critical (unless you omit
the body entirely); tools like rebase can get confused if you run the
two together.

Write your commit message in the present tense: “Fix bug” and not “Fixed
bug.”  This convention matches up with commit messages generated by
commands like git merge and git revert.

Code snippets:

should be written in
ReStructuredText compatible
format for better highlighting





Further paragraphs come after blank lines.


	Bullet points are okay, too


	An asterisk is used for the bullet, it can be preceded by a single
space. This format is rendered correctly by Forge (redmine)


	Use a hanging indent




A first step in solving neos/flow-development-collection#789.

Fixes #123

Closes #456



Examples of good and bad subject lines:


Note

Introduce xyz service
BAD, missing code prefix

BUGFIX: Fixed bug xyz
BAD, subject should be written in present tense

TASK!!!: A breaking change
BAD, subject has to start with !!! for breaking changes

BUGFIX: SessionManager removes expired sessions
GOOD, the line explains what the change does, not what the bug is about (this should be explained in the following lines and in the related bug tracker ticket)

!!! BUGFIX: SessionManager never expires sessions
GOOD, the line explains what the change does, not what the bug is about (this should be explained in the following lines and in the related bug tracker ticket)




Warning

Please also have a look at this discussion: (Creating a pull request [https://discuss.neos.io/t/creating-a-pull-request/506]).





Using git in the console

sudo apt-get install git-all hub #(Debian Based)
sudo pacman -Sy git hub #(Arch Linux)






	Quote:
	“Whether you are beginner or an experienced contributor to open-source,
hub makes it easier to fetch repositories, navigate project pages,
fork repos and even submit pull requests, all from the command-line.”
– hub.github.com [https://hub.github.com/]





The Atom Editor including the extension packages Git Diff and language-restructuredtext
would be nice options for editing the files, etc…:

yaourt atom-editor #(Arch Linux)





(See https://github.com/atom/atom for other Distributions) 2

Here you can see how the Atom Editor looks like. On the left side you can see,
that the new (green) and changed (yellow) folders and files are highlighted,
also in the document itself you can see which lines you changed or added:


[image: The Atom Editor]

The Atom Editor



To be able to work with GitHub nicely from the console, you could use hub instead
of git, for that you can edit and add: alias git=hub to the .bashrc and refresh it:

vim ~/.bashrc #(add: alias git=hub)
source ~/.bashrc #(to reload the .bashrc-file)







The Neos Development Collection Repository

Now lets clone the Neos Development Collection Repository into the
folder you are currently in.

git clone https://github.com/neos/neos-development-collection.git







Sphinx requirements

Sphinx is based on Python to make Sphinx available in your System
you probably need to install some packages through pip.

sudo pacman -S python-pip





There are different ways of dealing with Python-packages.
The following way is to install it in the user-directory and a
dding the bin-path to the $PATH – Environment.

pip install --user Sphinx
pip install --user sphinx-autobuild
pip install --user sphinx_rtd_theme





Then add the following line to your .bashrc:
export PATH=$HOME/.local/bin:$PATH

vim ~/.bashrc #(add the above line)
source ~/.bashrc #(to reload the .bashrc-file)







Let the fun begin

Now you should already be able to make the documentation available in the browser.
Go into the following folder from where you cloned the Neos-Collection:

cd /neos-development-collection/Neos.Neos/Documentation/

And then run the following command:

make livehtml





If everything works as planed, you should now see a line like this in the console:

[I 160908 18:55:04 server:281] Serving on http://127.0.0.1:8000


[image: Sphinx make livehtml]

Sphinx make livehtml



The Url served here is, as long as you keep the process running, live reloaded when the files are changed.
Just open the Url in your Browser, you should see the whole Documentation served by your local machine.
Now try to open a file in the Neos-Collection eg. the file you are reading right now is located here:
/neos-development-collection/Neos.Neos/Documentation/Contribute/Documentation/BeginnersGuide.rst


[image: Sphinx browser view]

Sphinx browser view



Now change a line, save it and have a look in the console and the browser. Afterwards undo the change,
to make sure git doesn’t take the change seriously yet…
The console should have recognised by now, that you are connected with a browser to the url,
and now should also tell you which file was changed. If you check the browser again, it should,
without manually refreshing the page, show you the edited line in its new version.



reStructuredText (rST)

Now you can start improving the documentation. If you haven’t worked with reStructuredText (rST)
it’s pretty simple and gives you quite some options. Just have a look at the Documentation files
available, they give you a good understanding of what is possible. It has a lot of capabilities.
Checkout their documentation for more informations Sphinx docs [http://www.sphinx-doc.org/en/stable/rest.html].

One nice feature is the, in the Neos-Sphinx setup integrated, extension todo.
With todo you are able to point out that there is still some work necessary.
Add a todo, if you feel like there is something missing here, or someone else needs to check
if what you have written is correct like this. Just use it a lot to make sure it’s obvious
what still needs to be done…


Note

Every following line which is indented by two spaces now, is part of the note.
If you would replace it with todo instead of (.. note:: -> .. todo::), it wouldn’t be
visible in the frontend/browser anymore, but just just visible for you and others, when editing these files.

There is also the possibility to see all the todos with its positions by putting .. todolist:: into the document.
Both features (the todo itself and their collection) can be made visible in the browser
while working on the documentation for eg. by starting Sphinx like this:



make livehtml SPHINXOPTS="-D todo_include_todos=1"






[image: Sphinx todolist]

Sphinx todolist



If you just want to put a simple comment (also not shown in the frontend) you can do the following:


Note

Comments are also invisible in the browser, you can create them by just using two dots (..)
at the beginning of a line. The following indented lines are part of the comment.




Warning

Make sure that when you add code-blocks eg. .. code-block:: bash to leave a new line afterwards,
otherwise its not being rendered.





GitHub checkout-process

Now we should have a look at the git-workflow. The first step you should checkout a branch from
master to be able to work on that locally for now. Somewhere below the Folder neos-development-collection/,
you should run the following command to create and enter a new branch:

git checkout -b [local_branch_name]





Now you can start editing the files as you like in your own local feature-branch.

If you’ve been working on a branch here and there, you should probably make sure first,
that your master-branch is up to date. The there are two strategies for that. Here we will
rebase your only local branch onto master.
The following would be an example where you stash your changes for now, so you don’t have to commit
them there and then, switch to your local master, pull the changes to be up to date and then
apply your changes back to your reactivated feature-branch.

git stash
git checkout master
git pull
git checkout [local_branch_name]
git rebase master
git stash apply






Warning

Make sure not to rebase branches that you’ve collaborated with others on. Never
rebase anything you have pushed somewhere already.



To get more information about how to work with git go to this page there are many good sources online.
Two good examples are for eg.: SSH [https://help.github.com/articles/generating-an-ssh-key/], Basic Branching and Merging [https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging] or also Rebasing [https://git-scm.com/book/ch3-6.html].

git add [new files]
git commit -m "FEATURE done with the feature: [local_branch_name] to make this and that more efficient"
git fork #(forking repo on GitHub...)
#→ git remote add YOUR_USER git://github.com/YOUR_USER/neos-development-collection.git





# push the changes to your new remote
git push YOUR_USER feature
# open a pull request for the topic branch you've just pushed
git pull-request
#→ (opens a text editor for your pull request message)





Footnotes


	1

	The basic setup, this Tutorial and the Screenshots are based on Arch Linux,
Awesome (as a Window Manager), bash (with urxvt) and ice-firefox (the single-page-browser ice-spb) and Atom as the Editor.



	2

	The Atom Editor is just one example of many good Editors out there, also the given Information here
might not be enough the Arch Linux command makes necessary to have set up AUR and yaourt otherwise you won’t be able to run
that command at all…









            

          

      

      

    

  

    
      
          
            
  
How To’s



	Neos Best Practices (to be written)




	Adding A Simple Contact Form

	Changing the Body Class with a condition

	Changing Defaults Depending on Content Placement

	Creating a simple Content Element

	Customize Login Screen
	How to disable a stylesheet ?





	Editing a shared footer across all pages

	Extending the Page

	Integrating a JavaScript-based slider

	Rendering Custom Document Types
	Select Template based on NodeType





	Rendering a Menu

	Rendering a Meta-Navigation

	Tagging assets automatically
	Asset Collection based on site

	Hooking into the asset creation

	Example: Tagging employee images





	Translating content
	Dimension configuration

	Migration of existing content

	Integrate Language Menu

	Working with translated content





	Wrapping a List of Content Elements
	Extending it to use an option












            

          

      

      

    

  

    
      
          
            
  
Neos Best Practices (to be written)







            

          

      

      

    

  

    
      
          
            
  
Adding A Simple Contact Form

Using the Neos.Form package you can easily create and adopt simple to very complex forms.
For it to work properly you just have to define where it should find its form configurations.

Yaml (Sites/Vendor.Site/Configuration/Settings.yaml)

Neos:
  Form:
    yamlPersistenceManager:
      savePath: 'resource://Vendor.Site/Private/Form/'





Now place a valid Neos.Form Yaml configuration in the Private/Form folder. Then add a Form Element where
you wish the form to be displayed and select it from the dropdown in the Inspector.

Yaml (Sites/Vendor.Site/Resources/Private/Form/contact-form.yaml)

type: 'Neos.Form:Form'
identifier: contact-form
label: Contact
renderingOptions:
  submitButtonLabel: Send
renderables:
  -
    type: 'Neos.Form:Page'
    identifier: page-one
    label: Contact
    renderables:
      -
        type: 'Neos.Form:SingleLineText'
        identifier: name
        label: Name
        validators:
          - identifier: 'Neos.Flow:NotEmpty'
        properties:
          placeholder: Name
        defaultValue: ''
      -
        type: 'Neos.Form:SingleLineText'
        identifier: email
        label: E-Mail
        validators:
          - identifier: 'Neos.Flow:NotEmpty'
          - identifier: 'Neos.Flow:EmailAddress'
        properties:
          placeholder: 'E-Mail'
        defaultValue: ''
      -
        type: 'Neos.Form:MultiLineText'
        identifier: message
        label: Message
        validators:
          - identifier: 'Neos.Flow:NotEmpty'
        properties:
          placeholder: 'Your Message'
        defaultValue: ''
finishers:
  -
    identifier: 'Neos.Form:Email'
    options:
      templatePathAndFilename: resource://Vendor.Site/Private/Templates/Email/Message.txt
      subject: Contact from example.net
      recipientAddress: office@example.net
      recipientName: 'Office of Company'
      senderAddress: server@example.net
      senderName: Server example.net
      replyToAddress: office@example.net
      format: plaintext
  -
    identifier: 'Neos.Form:Confirmation'
    options:
      message: >
        <h3>Thank you for your feedback</h3>
        <p>We will process it as soon as possible.</p>





In this example we are using the Neos.Form:Email Finisher.
The Email Finisher requires the Neos.SwiftMailer package to be installed.
It sends an E-Mail using the defined template and settings.
By the second Finisher a confirmation is displayed.

Html (Sites/Vendor.Site/Resources/Private/Templates/Email/Message.txt)

Hello,

<f:for each="{form.formState.formValues}" as="value" key="label">
  {label}: {value}
</f:for>

Thanks





To find out more about how to create forms see the Neos.Form package. There is even a Click Form Builder that
exports the Yaml settings files.


Warning

Make sure the Neos.Demo package (or other) is deactivated. Otherwise the setting Neos.Form.yamlPersistenceManager.savePath may be overwritten by another package. You can deactivate a package with the command ./flow package:deactivate <PackageKey>.






            

          

      

      

    

  

    
      
          
            
  
Changing the Body Class with a condition

In some cases there is the need to define different body classes based on a certain condition.

It can for example be that if a page has sub pages then we want to add a body class tag for this.

Fusion code:

page {
    bodyTag {
        attributes.class = ${q(node).children().count() > 1 ? 'has-subpages' : ''}
    }
}





First of all we add the part called bodyTag to the Fusion page object. Then inside we
add the attributes.class.

Then we add a FlowQuery that checks if the current node has any children.
If the condition is true then the class “has-subpages” is added to the body tag on all
pages that have any children.

An other example could be that we want to check if the current page is of type page.

Fusion code:

page {
    bodyTag {
        attributes.class = ${q(node).filter('[instanceof Neos.Neos:Page]') != '' ? 'is-page' : ''}
    }
}








            

          

      

      

    

  

    
      
          
            
  
Changing Defaults Depending on Content Placement

Let’s say we want to adjust our YouTube content element depending on the context: By default,
it renders in a standard YouTube video size; but when being used inside the sidebar of the page,
it should shrink to a width of 200 pixels. This is possible through nested prototypes:

page.body.contentCollections.sidebar.prototype(My.Package:YouTube) {
  width = '200'
  height = '150'
}





Essentially the above code can be read as: “For all YouTube elements inside the sidebar of the page,
set width and height”.

Let’s say we also want to adjust the size of the YouTube video when being used in a ThreeColumn
element. This time, we cannot make any assumptions about a fixed Fusion path being rendered,
because the ThreeColumn element can appear both in the main column, in the sidebar and nested
inside itself. However, we are able to nest prototypes into each other:

prototype(ThreeColumn).prototype(My.Package:YouTube) {
  width = '200'
  height = '150'
}





This essentially means: “For all YouTube elements which are inside ThreeColumn elements, set width
and height”.

The two possibilities above can also be flexibly combined. Basically this composability allows to
adjust the rendering of websites and web applications very easily, without overriding templates completely.

After you have now had a head-first start into Fusion based on practical examples, it is now
time to step back a bit, and explain the internals of Fusion and why it has been built this way.




            

          

      

      

    

  

    
      
          
            
  
Creating a simple Content Element

If you need some specific content element, you can easly create a new Node Type with an attached HTML template. To add
a new Node Type, follow this example, just replace “Vendor” by your own vendor prefix:

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml):

'Vendor:YourContentElementName':
  superTypes:
    'Neos.Neos:Content': TRUE
  ui:
    label: 'My first custom content element'
    group: 'general'
    inspector:
      groups:
        image:
          label: 'Image'
          icon: 'icon-image'
          position: 1
  properties:
    headline:
      type: string
      defaultValue: 'Replace by your headline value ...'
      ui:
        label: 'Headline'
        inlineEditable: TRUE
    subheadline:
      type: string
      defaultValue: 'Replace by your subheadline value ...'
      ui:
        label: 'Subheadline'
        inlineEditable: TRUE
    text:
      type: string
      ui:
        label: 'Text'
        reloadIfChanged: TRUE
    image:
      type: Neos\Media\Domain\Model\ImageInterface
      ui:
        label: 'Image'
        reloadIfChanged: TRUE
        inspector:
          group: 'image'





Based on your Node Type configuration, now you need a Fusion object to be able to use your new Node Type. This Fusion
object needs to have the same name as the Node Type:

Fusion (Sites/Vendor.Site/Resources/Private/Fusion/Root.fusion):

prototype(Vendor:YourContentElementName) < prototype(Neos.Neos:Content) {
        templatePath = 'resource://Vendor.Site/Private/Templates/FusionObjects/YourContentElementName.html'

        headline = ${q(node).property('headline')}
        subheadline = ${q(node).property('subheadline')}
        text = ${q(node).property('text')}
        image = ${q(node).property('image')}
}





Last thing, add the required Fluid template:

HTML (Vendor.Site/Private/Templates/FusionObjects/YourContentElementName.html):

{namespace neos=Neos\Neos\ViewHelpers}
{namespace media=Neos\Media\ViewHelpers}
<article>
        <header>
                {neos:contentElement.editable(property: 'headline', tag: 'h2')}
                {neos:contentElement.editable(property: 'subheadline', tag: 'h3')}
        </header>
        <div>
                {neos:contentElement.editable(property: 'text')}
                <f:if condition="{image}"><media:image image="{image}" maximumWidth="300" alt="{headline}" /></f:if>
        </div>
</article>





Now, if you try to add a new Node in your page, you should see your new Node Type. Enjoy editing with Neos.




            

          

      

      

    

  

    
      
          
            
  
Customize Login Screen

You can customize the login screen by editing your Settings.yaml:

Neos:
  Neos:
    userInterface:
      backendLoginForm:
        backgroundImage: 'resource://Your.Package/Public/Images/LoginScreen.jpg'





Or alternatively add a custom stylesheet:

Neos:
  Neos:
    userInterface:
      backendLoginForm:
        stylesheets:
          'Your.Package:CustomStyles': 'resource://Your.Package/Public/Styles/Login.css'






Note

In this case Your.Package:CustomStyles is a simple key, used only internally.




How to disable a stylesheet ?

You can disable existing stylesheets, by setting the value to FALSE, the following snippet will disable
the stylesheet provided by Neos, so your are free to implement your own:

Neos:
  Neos:
    userInterface:
      backendLoginForm:
        stylesheets:
          'Neos.Neos:DefaultStyles': FALSE
          'Your.Package:CustomStyles': 'resource://Your.Package/Public/Styles/Login.css'









            

          

      

      

    

  

    
      
          
            
  
Editing a shared footer across all pages

A shared footer in Neos works as follows:


	The homepage contains a collection of content elements


	The same collection is rendered on all other pages




This enables you to edit the footer on all pages.

To add the footer to the page you use the ContentCollection with a static node path.

To have the collection on the homepage you need to configure the childNodes structure
of the homepage. For this you create a homepage node type with for example
the following configuration in NodeTypes.yaml:

'My.Package:HomePage':
  superTypes:
    'Neos.NodeTypes:Page': TRUE
  ui:
    label: 'Homepage'
  childNodes:
    footer:
      type: 'Neos.Neos:ContentCollection'






Note

If you run into the situation that the child nodes for your page are missing
(for example if you manually updated the node type in the database) you might
have to create the missing child nodes using:

./flow node:repair --node-type Neos.NodeTypes:Page







Fusion code:

footer = Neos.Neos:ContentCollection {
        nodePath = ${q(site).find('footer').property('_path')}
        collection = ${q(site).children('footer').children()}
}





Of course you have to update the selection in the example if your footer is
not stored on the site root, but for example on a page named ‘my-page’. The
selection would then be: ${q(site).find(‘my-page’).children(‘footer’).children()}.




            

          

      

      

    

  

    
      
          
            
  
Extending the Page

In Neos the page is a simple Node Type named Neos.Neos:Page, you can directly extend this Node Type to add specific
properties. Below you will find a simple example for adding a page background image:

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml)

'Neos.NodeTypes:Page':
  ui:
    inspector:
      groups:
        background:
          label: 'Background'
          position: 900
  properties:
    backgroundImage:
      type: Neos\Media\Domain\Model\ImageInterface
      ui:
        label: 'Image'
        reloadPageIfChanged: TRUE
        inspector:
          group: 'background'





With this configuration, when you click on the page, you will see the Image editor in the Inspector.

To access the backgroundImage in your page template you can also modify the Neos.Neos:Page Fusion object, like
in the below example:

Fusion (Sites/Vendor.Site/Resources/Private/Fusion/Root.fusion)

prototype(Neos.Neos:Page) {
        body.backgroundImage = ${q(node).property('backgroundImage')}
}





With Neos.Media ViewHelper you can display the Image with the follwing HTML snippet:

HTML

{namespace media=Neos\Media\ViewHelpers}
<style>
html {
        margin:0;
        padding:0;
        background: url({media:uri.image(image:backgroundImage)}) no-repeat center fixed;
        -webkit-background-size: cover;
        -moz-background-size: cover;
        -o-background-size: cover;
        background-size: cover;
}
</style>








            

          

      

      

    

  

    
      
          
            
  
Integrating a JavaScript-based slider

If you want to integrate a Slider into your page as content element or as part of your template and
want edit it in the backend you have do some simple steps.

First you have to use a slider javscript plugin which initializes itself when added to the
page after page load. Or you write your own initialization code into a javascript function
which you then add as callback for the neos backend events.

For this example the carousel plugin and styling from bootstrap 3.0 has been used:
http://getbootstrap.com/javascript/#carousel

To create the basic content element you have to add it to your node types.

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml):

'Vendor.Site:Carousel':
  superTypes:
    'Neos.Neos:Content': TRUE
  childNodes:
    carouselItems:
      type: 'Neos.Neos:ContentCollection'
  ui:
    label: 'Carousel'
    group: 'plugins'
    icon: 'icon-picture'
    inlineEditable: TRUE





Next you need to define the prototype for the slider in typoscript.

Fusion (Sites/Vendor.Site/Resources/Private/Fusion/NodeTypes/Carousel.fusion):

prototype(Vendor.Site:Carousel) {
        carouselItems = Neos.Neos:ContentCollection {
                nodePath = 'carouselItems'
                content.iterationName = 'carouselItemsIteration'
                attributes.class = 'carousel-inner'
        }

        // Collect the carousels children but only images
        carouselItemArray = ${q(node).children('carouselItems').children('[instanceof Neos.NodeTypes:Image]')}

        // Enhance image prototype when inside the carousel
        prototype(Neos.NodeTypes:Image) {
                // Render images in the carousel with a special template.
                templatePath = 'resource://Vendor.Site/Private/Templates/FusionObjects/CarouselItem.html'

                // The first item should later be marked as active
                attributes.class = ${'item' + (carouselItemsIteration.isFirst ? ' active' : '')}

                // We want to use the item iterator in fluid so we have to store it as variable.
                iteration = ${carouselItemsIteration}
        }
}





Now you need to include this at the top of your (Sites/Vendor.Site/Resources/Private/Fusion/Root.fusion):

// Includes all additional ts2 files inside the NodeTypes folder
include: NodeTypes/*.fusion





For rendering you need the fluid templates for the slider.

Html (Sites/Vendor.Site/Private/Templates/NodeTypes/Carousel.html)

{namespace neos=Neos\Neos\ViewHelpers}
{namespace fusion=Neos\Fusion\ViewHelpers}
<div{attributes -> f:format.raw()}>
        <div class="carousel slide" id="{node.identifier}">
                <!-- Indicators -->
                <ol class="carousel-indicators">
                        <f:for each="{carouselItemArray}" as="item" iteration="itemIterator">
                                <li data-target="#{node.identifier}" data-slide-to="{itemIterator.index}" class="{f:if(condition: itemIterator.isFirst, then: 'active')}"></li>
                        </f:for>
                </ol>

                <!-- Wrapper for slides -->
                {carouselItems -> f:format.raw()}

                <!-- Controls -->
                <a class="left carousel-control" href="#{node.identifier}" data-slide="prev">
                        <span class="icon-prev"></span>
                </a>
                <a class="right carousel-control" href="#{node.identifier}" data-slide="next">
                        <span class="icon-next"></span>
                </a>
        </div>
</div>





And now the fluid template for the slider items.

Html (Sites/Vendor.Site/Private/Templates/FusionObjects/CarouselItem.html)

{namespace neos=Neos\Neos\ViewHelpers}
{namespace media=Neos\Media\ViewHelpers}
<div{attributes -> f:format.raw()}>
        <f:if condition="{image}">
                <f:then>
                        <media:image image="{image}" alt="{alternativeText}" title="{title}" maximumWidth="{maximumWidth}" maximumHeight="{maximumHeight}" />
                </f:then>
                <f:else>
                        <img src="{f:uri.resource(package: 'Neos.Neos', path: 'Images/dummy-image.svg')}" title="Dummy image" alt="Dummy image" />
                </f:else>
        </f:if>
        <div class="carousel-caption">
                <f:if condition="{hasCaption}">
                        {neos:contentElement.editable(property: 'caption')}
                </f:if>
        </div>
</div>





For styling you can simply include the styles provided in bootstrap into your page template.

Html

<link rel="stylesheet" href="{f:uri.resource(path: '3/css/bootstrap.min.css', package: 'Neos.Twitter.Bootstrap')}" media="all" />





If you want to hide specific parts of a plugin while in backend you can use the provided neos-backend class.

Css

.neos-backend .carousel-control {
        display: none;
}





Don’t forget to include the javascript for the plugin from the bootstrap package into your page template.

Html

<script src="{f:uri.resource(path: '3/js/bootstrap.min.js', package: 'Neos.Twitter.Bootstrap')}"></script>





Now, you should be able to add the new ‘Carousel’ node type as content element.




            

          

      

      

    

  

    
      
          
            
  
Rendering Custom Document Types


Select Template based on NodeType

It is possible to select the page rendering configuration based on the node type of the page. Let’s say you have a
custom node type named Your.Site:Page which has Neos.NodeTypes:Page as a supertype. You added a
Your.Site:Employee page which is used for displaying a personal page of employees working in your company.
This page should have a different rendering output compared to your basic page.


[image: NodeType inheritance example]

The right approach would be to create a Fusion prototype for your default page and employee page like:

prototype(Your.Site:Page) < prototype(Neos.Neos:Page) {
    body.templatePath = 'resource://Your.Site/Private/Templates/Page/Default.html'
    # Your further page configuration here
}

prototype(Your.Site:EmployeePage) < prototype(Your.Site:Page) {
    body.templatePath = 'resource://Your.Site/Private/Templates/Page/Employee.html'
    # Your further employee page configuration here
}





Because Neos provides the documentType matcher out of the box (see Rendering A Page), these prototypes will be
automatically picked up and rendered by Fusion, giving you the possibility to control the rendering for each page
type individually.





            

          

      

      

    

  

    
      
          
            
  
Rendering a Menu

The implementation of a menu is done in Fusion and HTML, this gives an
flexibility in what can be rendered.

First of all you have to add a new element (with a name) in Fusion that is
of type Menu. Then inside the Fusion object you can set what kind of
rendering (templatePath) to use, an entryLevel and a maximumLevels properties.

Fusion code:

mainMenu = Menu
mainMenu {
    templatePath = 'resource://VendorName.VendorSite/Private/Templates/FusionObjects/MainMenu.html'
    entryLevel = 1
    maximumLevels = 0
}





The example above sets first a templatePath for the mainMenu object, then the level
to start finding nodes from is set to level 1. It will only take nodes on the
current level because of the property maximumLevels is set to 0.

If you want a custom rendering of my menu items then you need to add a template.
This template renders a ul list that has a link to a node.

Full HTML code:

{namespace neos=Neos\Neos\ViewHelpers}
<ul class="nav">
    <f:for each="{items}" as="item">
        <li class="menu-item">
            <neos:link.node node="{item.node}" />
        </li>
    </f:for>
</ul>





What is done is first to include a viewhelper to being able to link my
nodes inside the HTML. The namespace in the example is neos to
clarify from where the viewhelper is taken.

Viewhelper include:

{namespace neos=Neos\Neos\ViewHelpers}





The next thing is to iterate through the nodes found by Fusion.

Iterating through nodes:

<f:for each="{items}" as="item">
    ...
</f:for>





What then is done inside the iteration is that first we wrap our node
with a li tag with a class called menu-item. Then we use our viewhelper
to (which namespace is neos in this example) link it to a node in Neos.
The linking is set in the parameter node, the you can chose what should be
shown as a text for the link. In this case the label (default) of the
node is the text.

Wrapping and linking of node:

<li class="menu-item">
    <neos:link.node node="{item.node}" />
</li>








            

          

      

      

    

  

    
      
          
            
  
Rendering a Meta-Navigation

To render a meta navigation (ex: footer navigation)
in Neos all you need to use is Fusion and
HTML.

A common fact is that most sites have footer where all
pages are using the same content or information. So a
common issue is how to solve this in the best possible
way.

VendorName.VendorSite/Resources/Private/Fusion/Root.fusion

Fusion code:

page.body {
    metaMenu = Menu
    metaMenu {
        entryLevel = 2
        templatePath = 'resource://VendorName.VendorSite/Private
        /Templates/FusionObjects/MetaMenu.html'
        maximumLevels = 1
        startingPoint = ${q(site).children('[uriPathSegment="metamenu"]').get(0)}
    }
}





The first thing that we define inside the page.body is a Menu object
that is called metaMenu. The options available in this example is:


	entryLevel: On which level in the page structure the menu should
start.


	templatePath: The path to the template where the rendering is
done.


	maximumLevels: How many levels the menu can show.


	startingPoint: The starting point of the menu, in this case the
node with name ‘nameOfNode’ is the starting point.




HTML template code:

{namespace neos=Neos\Neos\ViewHelpers}
<nav class="nav">
    <ul class="nav nav-pills">
        <f:for each="{items}" as="item" iteration="menuItemIterator">
            <li class="{item.state}">
                <neos:link.node node="{item.node}" />
            </li>
        </f:for>
    </ul>
</nav>





What is done is first to include a view helper to be able to link to
nodes inside the HTML. The namespace in the example is neos to
clarify from where the viewhelper is taken.

Viewhelper include:

{namespace neos=Neos\Neos\ViewHelpers}





The next thing is to iterate through the nodes found by Fusion.

Iterating through nodes:

<f:for each="{items}" as="item">
    ...
</f:for>





What then is done inside the iteration is that first we wrap our node
with a li tag with a class called menu-item. Then we use our view helper
to (which namespace is neos that is clarified) link it to a node in Neos.
The linking is set in the parameter node, the you can choose what should be
shown as a text for the link. In this case the label (default) of the
node is the text.

Wrapping and linking of node:

<li class="{item.state}">
    <neos:link.node node="{item.node}" />
</li>





The last thing to do is to include the meta menu to our page layout(s).

Include meta menu:

{parts.metaMenu -> f:format.raw()}








            

          

      

      

    

  

    
      
          
            
  
Tagging assets automatically

Uploaded assets like images, documents or media files can be assigned to Tags and AssetCollections manually
in the Media module.
Especially for sites with many assets it is useful to automate this in order to keep files organized.


Asset Collection based on site

Sites can already be assigned to an AssetCollection in the Sites Management module.
If that is the case, any asset uploaded to a node within that site will automatically be added
to the corresponding AssetCollection.
This is especially useful in order to keep files of multi-site installations separated.

For more fine-granular manipulation the ContentController::assetUploaded signal can be used to
alter assets based on the node they were attached to:



Hooking into the asset creation

In order to hook into the asset creation, a new signal/slot connection has to be established.
For this a new Package.php (usually in Packages/Site/The.Site/Classes/) has to be added:

Example: Package.php

<?php
namespace Some\Package;

use Neos\Flow\Core\Bootstrap;
use Neos\Flow\Package\Package as BasePackage;
use Neos\Neos\Controller\Backend\ContentController;

class Package extends BasePackage
{
    public function boot(Bootstrap $bootstrap)
    {
        $dispatcher = $bootstrap->getSignalSlotDispatcher();
        $dispatcher->connect(ContentController::class, 'assetUploaded', AssetManipulator::class, 'manipulateAsset');
    }
}






Note

If you created a new Package.php file you need to run ./flow flow:package:rescan in order for Flow to pick it up!



The slot gets called with the following arguments:


	The Asset instance that is about to be persisted


	The NodeInterface instance the asset has been attached to


	The node property name (string) the asset has been assigned to




So the signature of the slot method could look like this:

function theSlot(Asset $asset, NodeInterface $node, string $propertyName)





This allows for manipulation of the asset based on the node property it has been assigned to.



Example: Tagging employee images

Imagine you have a node type Employee with the following setup:

'Some.Package:Employee':
  superTypes:
    'Neos.Neos:Content': true
  ui:
    label: 'Employee'
    inspector:
      groups:
        'employee':
          label: 'Employee'
  properties:
    'image':
      type: 'Neos\Media\Domain\Model\ImageInterface'
      ui:
        label: 'Employee profile picture'
        reloadIfChanged: true
        inspector:
          group: 'employee'
          editorOptions:
            features:
              mediaBrowser: false





The following code would automatically tag this with the employee tag (if it exists):

Example: AssetManipulator.php

<?php
namespace Some\Package;

use Neos\ContentRepository\Domain\Model\NodeInterface;
use Neos\Flow\Annotations as Flow;
use Neos\Media\Domain\Model\Asset;
use Neos\Media\Domain\Repository\TagRepository;

/**
 * @Flow\Scope("singleton")
 */
class AssetManipulator
{
    /**
     * @Flow\Inject
     * @var TagRepository
     */
    protected $tagRepository;

    public function assignTag(Asset $asset, NodeInterface $node, string $propertyName)
    {
        if (!$node->getNodeType()->isOfType('Some.Package:Employee') || $propertyName !== 'image') {
            return;
        }
        $employeeTag = $this->tagRepository->findOneByLabel('employee');
        if ($employeeTag === null) {
            return;
        }
        $asset->addTag($employeeTag);
    }
}





Alternatively, the slot could also assign the asset to AssetCollections or alter the asset’s title or caption.





            

          

      

      

    

  

    
      
          
            
  
Translating content

Translations for content are based around the concept of Content Dimensions. The dimension language can be
used for most translation scenarios. This cookbook shows how to set up the dimension, migrate existing content to use
dimensions and how to work with translations.


Dimension configuration

The first step is to configure a language dimension with a dimension preset for each language. This should be done
in the file Configuration/Settings.yaml of your site package:

Neos:
  ContentRepository:
    contentDimensions:
      'language':
        label: 'Language'
        icon: 'icon-language'
        default: 'en'
        defaultPreset: 'en'
        presets:
          'en':
            label: 'English'
            values: ['en']
            uriSegment: 'english'
          'fr':
            label: 'Français'
            values: ['fr', 'en']
            uriSegment: 'francais'
          'de':
            label: 'Deutsch'
            values: ['de', 'en']
            uriSegment: 'deutsch'





This will configure a dimension language with a default dimension value of en, a default preset en and
some presets for the actual available dimension configurations. Each of these presets represents one language that
is available for display on the website.

As soon as a dimension with presets is configured, the content module will show a dimension selector to select presets
for each dimension. This can be used in combination with a language menu on the website.



Migration of existing content

Existing content of a site needs to be migrated to use the dimension default value, otherwise no nodes would be found.
This can be done with a node migration which is included in the Neos.ContentRepository package:

./flow node:migrate 20150716212459





This migration has to be applied whenever a new dimension is configured to set the default value on all existing nodes.



Integrate Language Menu

A simple language menu can be displayed on the site by using the Neos.Neos:DimensionsMenu Fusion object:

page {
    body {
        parts {
            languageMenu = Neos.Neos:DimensionsMenu {
                dimension = 'language'
            }
        }
    }
}





This will render a <ul> with links to node variants in other languages of the current document node with a label
from a dimension preset. Of course the template can be customized for custom output with the templatePath property.



Working with translated content

All content that needs to be translated should go into the default preset first. After selecting a different preset
either using the dimension selector or a language menu, the default content will shine through. As soon as a
shine-through node is updated, it will be automatically copied to a new node variant with the most specific dimension
value in the fallback list.





            

          

      

      

    

  

    
      
          
            
  
Wrapping a List of Content Elements

Create a simple Wrapper that can contain multiple content Elements.

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml)

'Vendor:Box':
  superTypes:
    'Neos.Neos:Content': TRUE
  ui:
    group: structure
    label: Box
    icon: icon-columns
    inlineEditable: true
  childNodes:
    column0:
      type: 'Neos.Neos:ContentCollection'





Fusion (Sites/Vendor.Site/Resources/Private/Fusion/NodeTypes.fusion)

prototype(Vendor:Box) < prototype(Neos.Neos:Content) {
        templatePath = 'resource://Vendor.Site/Private/Templates/FusionObjects/Box.html'
        columnContent = Neos.Neos:ContentCollection
        columnContent {
                nodePath = 'column0'
        }
}





Html (Sites/Vendor.Site/Private/Templates/FusionObjects/Box.html)

{namespace fusion=Neos\Fusion\ViewHelpers}

<div class="container box">
        <div class="column">
                <fusion:render path="columnContent" />
        </div>
</div>






Extending it to use an option

You can even simply extend the box to provide a checkbox for different properties.

Yaml (Sites/Vendor.Site/Configuration/NodeTypes.yaml)

'Vendor:Box':
  superTypes:
    'Neos.Neos:Content': TRUE
  ui:
    group: structure
    label: Box
    icon: icon-columns
    inlineEditable: TRUE
    inspector:
      groups:
        display:
          label: Display
          position: 5
  properties:
    collapsed:
      type: boolean
      ui:
        label: Collapsed
        reloadIfChanged: TRUE
        inspector:
          group: display
  childNodes:
    column0:
      type: 'Neos.Neos:ContentCollection'





Fusion (Sites/Vendor.Site/Resources/Private/Fusion/NodeTypes.fusion)

prototype(Vendor:Box) < prototype(Neos.Neos:Content) {
        templatePath = 'resource://Vendor.Site/Private/Templates/FusionObjects/Box.html'
        columnContent = Neos.Neos:ContentCollection
        columnContent {
                nodePath = 'column0'
        }
        collapsed = ${q(node).property('collapsed')}
}





Html (Sites/Vendor.Site/Private/Templates/FusionObjects/Box.html)

{namespace fusion=Neos\Fusion\ViewHelpers}

<f:if condition="{collapsed}">
        <button>open the collapsed box via js</button>
</f:if>
<div class="container box {f:if(condition: collapsed, then: 'collapsed', else: '')}">
        <div class="column">
                <fusion:render path="columnContent" />
        </div>
</div>









            

          

      

      

    

  

    
      
          
            
  
Neos Operations



	Command Line Tools
	User Management

	Workspace Management

	Site Management












            

          

      

      

    

  

    
      
          
            
  
Command Line Tools

Neos comes with a number of command line tools to ease setup and maintenance. These tools can be used
manually or be added to automated deployments or cron jobs. This section gives a high level overview of
the available tools.

More detailed instructions on the use of the command line tools can be displayed using the help command:

./flow help                     # lists all available command
./flow help <packageKey>        # lists commands provided in package
./flow help <commandIdentifier> # show help for specific command





Here is an example:

./flow help user:addrole

Add a role to a user

COMMAND:
  neos.neos:user:addrole

USAGE:
  ./flow user:addrole [<options>] <username> <role>

ARGUMENTS:
  --username           The username of the user
  --role               Role to be added to the user, for example
                       "Neos.Neos:Administrator" or just "Administrator

OPTIONS:
  --authentication-provider Name of the authentication provider to use. Example:
                       "Neos.Neos:Backend

DESCRIPTION:
  This command allows for adding a specific role to an existing user.

  Roles can optionally be specified as a comma separated list. For all roles provided by Neos, the role
  namespace "Neos.Neos:" can be omitted.

  If an authentication provider was specified, the user will be determined by an account identified by "username"
  related to the given provider. However, once a user has been found, the new role will be added to all
  existing accounts related to that user, regardless of its authentication provider.






User Management

These commands allow to manage users. To create an user with administrative privileges, this is needed:

./flow user:create john@doe.com pazzw0rd John Doe --roles Neos.Neos:Administrator











	Command

	Description





	user:list

	List all users



	user:show

	Shows the given user



	user:create

	Create a new user



	user:delete

	Delete a user (with globbing)



	user:activate

	Activate a user (with globbing)



	user:deactivate

	Deactivate a user (with globbing)



	user:setpassword

	Set a new password for the given user



	user:addrole

	Add a role to a user (with globbing)



	user:removerole

	Remove a role from a user (with globbing)








Workspace Management

The commands to manage workspaces reflect what is possible in the Neos user interface. They allow to list,
create and delete workspaces as well as publish and discard changes.

One notable difference is that rebasing a workspace is possible from the command line even if it contains
unpublished changes.







	Command

	Description





	workspace:publish

	Publish changes of a workspace



	workspace:discard

	Discard changes in workspace



	workspace:create

	Create a new workspace



	workspace:delete

	Deletes a workspace



	workspace:rebase

	Rebase a workspace



	workspace:list

	Display a list of existing workspaces








Site Management







	Command

	Description





	domain:add

	Add a domain record



	domain:list

	Display a list of available domain
records



	domain:delete

	Delete a domain record (with globbing)



	domain:activate

	Activate a domain record (with globbing)



	domain:deactivate

	Deactivate a domain record (with globbing)



	site:import

	Import sites content



	site:export

	Export sites content



	site:prune

	Remove all content and related data (with globbing)



	site:list

	Display a list of available sites










            

          

      

      

    

  

    
      
          
            
  
Appendixes



	Contributors

	Release Notes

	ChangeLogs








            

          

      

      

    

  

    
      
          
            
  
Contributors

The following is a list of contributors generated from version control
information (see below). As such it is neither claiming to be complete nor is the
ordering anything but alphabetic.


	Adrian Föder


	Alessandro Paterno


	Alexander Berl


	Alexander Frühwirth


	Alexander Kappler


	Alexander Stehlik


	Anders Pedersen


	Andreas Förthner


	Andreas Wolf


	Aske Ertmann


	Bastian Heist


	Bastian Waidelich


	Benedikt Schmitz


	Benno Weinzierl


	Berit Hlubek


	Berit Jensen


	Bernhard Schmitt


	Carsten Bleicker


	Carsten Blüm


	Cedric Ziel


	Charles Coleman


	Christian Albrecht


	Christian Jul Jensen


	Christian Müller


	Christian Vette


	Christoph Dähne


	Christopher Hlubek


	Daniel Lienert


	Denny Lubitz


	Dmitri Pisarev


	Dominik Piekarski


	Dominique Feyer


	Ernesto Baschny


	Florian Heinze


	Florian Weiss


	Frans Saris


	Franz Kugelmann


	Frederic Darmstädter


	Garvit Khatri


	Georg Ringer


	Gerhard Boden


	Hans Höchtl


	Helmut Hummel


	Henjo Hoeksma


	Ingmar Schlecht


	Irene Höppner


	Jacob Floyd


	Jacob Rasmussen


	Jan-Erik Revsbech


	Johannes Steu


	Jonas Renggli


	Jose Antonio Guerra


	Julian Kleinhans


	Kai Moeller


	Karsten Dambekalns


	Kay Strobach


	Kerstin Huppenbauer


	Kristin Povilonis


	Lars Röttig


	Lars Nieuwenhuizen


	Lienhart Woitok


	Marc Neuhaus


	Marcin Ryzycki


	Mario Rimann


	Mario Rudloff


	Markus Goldbeck


	Martin Bless


	Martin Brueggemann


	Martin Ficzel


	Martin Helmich


	Matt Gifford


	Mattias Nilsson


	Michael Feinbier


	Michael Gerdemann


	Michael Lihs


	Michiel Roos


	Moritz Spindelhirn


	Nils Dehl


	Pankaj Lele


	Patrick Reck


	Raffael Comi


	Remco Janse


	Rens Admiraal


	Robert Lemke


	Robin Poppenberg


	Roman Minchyn


	Samuel Hauser


	Sascha Nowak


	Sebastian Helzle


	Sebastian Kurfürst


	Sebastian Richter


	Sebastian Sommer


	Simon Schaufelberger


	Soeren Rohweder


	Søren Malling


	Stefan Bruggmann


	Stephan Schuler


	Thierry Brodard


	Thomas Allmer


	Thomas Hempel


	Tim Kandel


	Timo Fink


	Tobias Liebig


	Tristan Koch


	Visay Keo


	Wilhelm Behncke


	Wouter Wolters




The list has been generated with some manual tweaking of the output of this script contributors.sh executed in
Packages/Application:

rm -f contributors.txt
for REPO in `ls` ; do
  if [ -d "$REPO" ]; then
    cd $REPO
    git log --format='%aN' >> ../contributors.txt
    cd ..
  fi
done
sort -u < contributors.txt > contributors-sorted.txt
mv contributors-sorted.txt contributors.txt








            

          

      

      

    

  

    
      
          
            
  
Release Notes



	4.3.0

	4.0.0

	3.3.0

	3.2.0

	3.1.0

	3.0.0

	2.3.0

	2.2.0

	2.0.0

	1.2.0 (2014-12-10)

	1.1.0 (2014-06-19)






Archived Release Notes


	1.0.0 (2013-12-10)


	Alpha Releases (2012-10-05 through 2013-10-30)




Release notes for unmaintained branches have been archived. To access them, look in the
Release Notes appendix of the corresponding branch (or version) of the docs.





            

          

      

      

    

  

    
      
          
            
  
4.3.0


Automatic image variants generation

Automatically generate variants of an original image based on the newly introduced image variant presets configuration.

In this first version, variants are automatically created as soon as an asset is created – for example, when it has been
uploaded by an editor or otherwise been imported. Future versions may defer this generation into a job queue, or provide
a way to put conditions of the generation of these variants.

See the included documentation for configuration syntax and further background.

This change also includes a basic view displaying all variants of an asset in the edit view of the Media Browser.
While this new view (implemented as a tab) may be useful already, it is neither especially polished nor does it provide
additional features.
Therefore it is disabled by a feature switch for now. See the Settings.yaml of Neos.Media.Browser
for details on enabling the tab.



Enable Loops in Fusion AFX without @children annotation

Fusion AFX uses the content key by default to render children. Since collections and loops
use itemRenderer to define the inner content @children=itemRenderer had to be declared
in the past. To overcome this, loop and derived prototypes now got a fallback from itemRenderer
to content. This avoids a common error in AFX code.



Native 404 error rendering that can be controlled via Fusion

This change adds the default Fusion path error that is used to render status messages
for the status codes 403, 404 and 410.


	The matcher receives the context values exception, renderingOptions, statusCode,
	statusMessage and referenceCode and will by default render the previous template.





By extending the error case you can add custom 404 rendering like in the example below.



Set crop image adjustment by aspect ratio

This change introduces a new property “aspectRatio” for the crop image
adjustment. It allows users to set a cropping area simply by providing
an aspect ratio, instead of x, y, width and height.

If an aspect ratio is specified, the x, y, width, and height parameters
are automatically deactivated. Likewise, if x, y, width or height are
specified, a potentially defined aspect ratio value will be reset.



Add format option for image-prototypes, viewHelpers and presets

The option format is added to imagePresets, viewHelpers and FusionPrototypes.
The format is passed as string jpg, jpeg, gif, png, wbmp, xbm, webp and bmp are supported.
If no format is given the crops will use the format of the original image.

This allows to enforce rendering of crops in jpeg or png but also adds support for rendering
of webp-images as alternate sources.


Note

The selected imagine-diver has to support both the source and the target image format for a successful conversion.
Especially the Gd driver lacks some features in this regard. So please test your driver if you are using
format like webp or tiff.



Additionally the option convertFormats is added to settings to automatically convert non-web images into
web images. The example shows how to configure Neos to automatically convert tiff images to jpg.



Add Neos.Neos:MenuItems, Neos.Neos:DimensionMenuItems and Neos.Neos:BreadcrumbMenuItems prototypes

Three new fusion prototypes are added that extract the rendering of the items that are passed to the template from
Neos.Neos:Menu, Neos.Neos:BreadcrumbMenu and Neos.Neos:DimensionsMenu and make those items available for
direct Fusion use without Template.
In addition the Neos.Neos:*Menu prototypes are now based on Neos.Neos:Template and do not have a custom
implementation any more.

Attention: This change removes the old MenuImplementation classes. Those are not part of the API so this is still
non-breaking since the ``*Menu``fusion prototypes still support all previous options by beeing based on
``Neos.Fusion:Template`` now instead of extending the TemplateImplementation class.



Trigger signal when Thumbnail is persisted

Added a signal thumbnailPersisted and an ORM lifecycle callback that triggers the signal once the thumbnail is persisted.



Add NodeLink fusion prototype

The Neos.Neos:NodeLink Fusion prototype has been added which renders an <a> tag based on Neos.Neos:NodeUri,
similar to Neos.Neos:ImageTag and Neos.Neos:ImageUri.

All properties of Neos.Neos:NodeUri are supported and passed on attributes (:ref:Neos_Fusion__Attributes) Link tag
attributes content (string) The label of the link, defaults to the node label q(node).property('_label').
This helps reducing code lines, especially when using Fusion AFX. With this prototype you can now directly link
nodes in an AFX renderer.



Hide property target of Neos.Neos.ShortCut depending on targetMode

I added configuration to the shortcut node type definition to hide the target-property in the UI when targetMode is not
selectedTarget Insert a shortcut node. You should not see the target-property until you change
the targetMode to selectedTarget.



Potentially breaking changes (unplanned extensibility)



Moved new NodeInterface and TraversableNodeInterface to core

Introduced the event-sourced NodeInterface and TraversableNodeInterface in the core
and made the “old” Node implement TraversableNodeInterface as far as possible.
Also adjusted FlowQuery operations to work on the new TraversableNodeInterface wherever it makes sense.

This change is necessary to ensure a smooth upgrade later on to the Event Sourced CR so people working with
NodeInterface in their custom code can already start using TraversableNodeInterface today.



Upgraded our internal testing suite to latest neos/behat version

In case you have Behat tests in place but did not set your own Behat version in the dev dependencies in your own,
there might be some changes that could break your tests within the Behat version that is now acquired by Flow / Neos.





            

          

      

      

    

  

    
      
          
            
  
4.0.0

Neos 4.0 is the next major version and comes with numerous changes, and a few additional features.
Since some refactoring has happeend, developers will need to get familiar with a few changes.


Assets sources support for Neos Media

With this feature it is now possible to integrate remote asset
libraries into Neos own media browser. You can search through these
assets and import them into Neos for usage in the website.
Adapters making use of this are currently being build, but the API is
available for your integrations as well.



“DocumentType” rendering entry point for Fusion

If you provide a Fusion prototype with the same name as your Document NodeType,
it will automatically be used for rendering those Document Nodes now.
This aligns Document rendering with the way Content rendering happens
by default and so should make it easier to use and understand.

In general we favor using of a prototype for rendering documents now instead
of paths (like the “page” fusion path). To that effect a newly created site
will now only have a prototype for a (also created) custom Document NodeType.



Change default charset and collation to utf8mb4

We now use utf8mb4 in MySQL compatible database to store strings.
That means you can now use the full range of unicode characters anywhere
and especially in Neos content. Yes, also emoji 😂

It also means your existing database must be updated to the new charset.



Layout is now only supported with the NodeTypes package

We consider the layout property not a best practice, and therefore
recommend not using it and relying on NodeTypes instead. To allow for
backwards compatibility the matcher that automatically renders a fusion path
with the same name as layout / sublayout is not removed yet though but moved
to the NodeTypes package that makes use of it in the Page NodeType declared
in that package. The NodeTypes package itself is also not recommended as
best practice. Instead create your own set of NodeTypes, maybe based on the
Neos.NodeTypes.BaseMixins package.



Font Awesome 5 usage

We switched to the free version of the latest Font Awesome, that means
more icons for you to use but also that you need to adapt to Font Awesome 5
icons and notation. You need to adapt custom backend modules by simply using
the new icon classes as seen on  https://fontawesome.com/ .
The icon- prefix way of defining NodeType icons still works fine, but you
can also switch to FA5 notation to get more specific about the icon you want.
This change was made for the legacy and React UI as well as the Neos
backend modules.


Upgrade instructions

See https://www.neos.io/download-and-extend/upgrade-instructions-3-3-4-0.html



!!! Breaking changes

As this is a major release a few breaking changes have gone in. All of them can be found
in the ChangeLog, but everything important should be listed above and in the upgrade instructions.

In case you have any problems with this guide, please get in touch with us
via discuss.neos.io [https://discuss.neos.io/] or on Slack [https://neos-project.slack.com/].


Note

Additionally all changes in Flow 5.0 apply, see the release notes to further information.
See http://flowframework.readthedocs.org/en/5.0/TheDefinitiveGuide/PartV/ReleaseNotes/500.html








            

          

      

      

    

  

    
      
          
            
  
3.3.0


FEATURE: Add new user-inteface written in ReactJS [https://github.com/neos/neos-ui]

The Neos User-Interface was completely rewritten based on ReactJS.

While we have been focusing on recreating the existing User-Interface,
there are important changes under the hood and even some exiting new features:


	Responsive preview modes, showcasing how the website looks e.g. on mobile.


	New “create node” dialog, with the ability to select insertion positions
and enter required field values.


	Faster backend-loading and way faster document switching and initialization.


	The content area is now loaded into an iFrame, so CSS Media Queries will just
work properly in the backend as in the frontend. In addition this prevents
unplanned CSS or JavaScript interactions between the website and the Neos UI.


	We integrated CKEditor providing a stable basis for inline-editing.
This brings an improved support for copy/pasting content from word or other websites.
The editor now support using keyboard shortcuts for basic editing operations
(bold/italic/…). On top of that it is now possible to add custom styles
and classes to the editor.




The new UI is default for new projects and can be added to existing projects via composer:

composer require --no-update "neos/neos-ui:~1.0.0"
composer require --no-update "neos/neos-ui-compiled:~1.0.0"
composer update







FEATURE: Allow configuring route after login to backend [https://github.com/neos/neos-development-collection/pull/1794]

This is to allow switching to the new UI seamlessly but also allows to set a completely
different module to be used after login.


	Packages: Neos






FEATURE: Image adjustment for image quality [https://github.com/neos/neos-development-collection/pull/1788]

Add adjustment for the image quality that can be used to override the global configuration.


	Packages: Media Neos






FEATURE: Allow modification of uploaded assets based on node [https://github.com/neos/neos-development-collection/pull/1728]

Introduces a signal ContentController::assetUploaded that
sends the currently selected node and the siteNodeName
along with the asset that’s about to be persisted.

This allows the asset to be tagged or added to collections
based on the node type or path etc.


	Packages: Neos






FEATURE: Allow to configure if processed images must be interlaced [https://github.com/neos/neos-development-collection/pull/1780]

This change adds a new setting in the Media package to enable image interlacing.

It’s disabled by default, but you can change the setting to one of the values in
Neos.Media.image.defaultOptions.interlace:


	%\Imagine\Image\ImageInterface::INTERLACE_NONE% (default)


	%\Imagine\Image\ImageInterface::INTERLACE_LINE%


	%\Imagine\Image\ImageInterface::INTERLACE_PLANE%


	%\Imagine\Image\ImageInterface::INTERLACE_PARTITION%





	Packages: Media






FEATURE: Split useful NodeTypes into separate packages [https://github.com/neos/neos-development-collection/pull/1659]

The package Neos.NodeTypes was split up into separate packages to allow a more fine grained control about the NodeTypes
that are available for editors.


	Neos.NodeTypes.BaseMixins: Base mixins which are useful across projects.


	Neos.NodeTypes.AssetList: A NodeType to provide a list of downloadable assets.


	Neos.NodeTypes.ColumnLayouts: Various simple column layouts NodeTypes.


	Neos.NodeTypes.ContentReferences: A simple content reference node type.


	Neos.NodeTypes.Form: A simple content reference node type.


	Neos.NodeTypes.Navigation: A navigation nodeType to create menus or lists of internal links.


	Neos.NodeTypes.Html: A simple html node type.




The package Neos.NodeTypes is now a wrapper for the packages above so your existing projects will continue to work as before.



FEATURE: Upload/MediaBrowser flags in Image and Asset editor [https://github.com/neos/neos-development-collection/pull/1727]

Adds two new feature flags, upload and mediaBrowser that
allow to hide respective buttons in the Image and Asset
editors.


	Packages: Neos






FEATURE: Add Atomic.Fusion prototypes `Component`, `Editable`, `ContentComponent` and `Augmenter` [https://github.com/neos/neos-development-collection/pull/1752]

The prototypes Component, Editable, ContentComponent and Augmenter are added the Neos-core.


	Neos.Fusion:Component: Create a component that adds all properties to the props context and afterward evaluates the renderer.


	Neos.Neos:Editable: Create an editable tag for a property. In the frontend, only the content of the property gets rendered.


	Neos.Neos:ContentComponent: Base type to render component based content nodes, extends Neos.Fusion:Component


	Neos.Fusion:Augmenter: Add html-attributes to renderer code as processor or as a standalone prototype.




In addition the class \Neos\Neos\Service\HtmlAugmenter was moved to \Neos\Fusion\Service\HtmlAugmenter with a deprecated backwards compatible layer.


	Packages: Neos NodeTypes






FEATURE: Asset Constraints [https://github.com/neos/neos-development-collection/pull/1723]

This change introduces the following Privileges: ReadAssetPrivilege, ReadTagPrivilege. ReadAssetCollectionPrivilege


	Packages: Media Neos






FEATURE: Introduce command to remove unused assets [https://github.com/neos/neos-development-collection/pull/1720]

This command iterates over all existing assets, checks their usage count
and lists the assets which are not reported as used by any AssetUsageStrategies.
The unused assets can than be removed.


Upgrade instructions

See https://www.neos.io/download-and-extend/upgrade-instructions-3-3-3-3.html


Note

Additionally all changes in Flow 4.3 apply, see the release notes to further information.
See http://flowframework.readthedocs.org/en/4.3/TheDefinitiveGuide/PartV/ReleaseNotes/430.html








            

          

      

      

    

  

    
      
          
            
  
3.2.0


Allow non-uuid node identifiers

This replaces all occurrences of node identifier validation against the UUID pattern with a validation against a less restrictive NodeIdentifier pattern
In addition to removing the restriction that characters have to appear in a specific order, it also allows all other lowercase characters.



Allow to select all changes in a document with one click

The workspace module shows changes grouped by document, but until now
there it was only possible to select individual or all changes for
further action.
This change adds the possibility to select all changes on a document
with a single click.



Setting authentication provider on new user creation in user backend module

Allow setting authentication provider on new user creation in user backend module.
If less then two providers are given, the selector does not appear and the default authentication provider is used. Same as no authentication provider is explicit selected.



Add ModulePrivilege to protect Neos Backend modules

Introduces a new Privilege ModulePrivilege that should be used to
access-protect Neos Backend modules. Usage:

privilegeTargets:
  'Neos\\Neos\\Security\\Authorization\\Privilege\\ModulePrivilege':

    'SomePrivilegeTargetIdentifier':
      matcher: 'module/path'





This new privilege will be used to hide links to inaccessible modules
in the Backend. Furthermore they automatically protect access to all
actions of the configured controller of the affected module.

Setting a privilegeTarget in the module settings is still supported
but deprecated as of Neos 3.2.



HtmlAugmenter will augment plaintext with the given fallback-tag

If plaintext is given to the html augmenter now uses the fallback-tag
as it already does if multiple tags are found on the same level.

This fixed the problem of contents not beeing selectable in the backend
if no tags are found but just some text.



Add async flag to the Neos.Neos:ImageUri and Neos.Neos:ImageTag

Adds support for generating asynchronous image URIs in case the requested image does
not exist already. The feature is already supported in the ImageViewHelper but was missing
in the fusion objects.

This works as follows:


	If a resource still has to be processed a /media/thumbnail-uri is rendered that will do the
actual processing and return the image.


	Later if the resource is already processed the _Resource-uri is rendered as previously.






Fallback graph visualization

The content repository is extended by two essential features,


	The Intra Dimensional Fallback Graph


	The Inter Dimensional Fallback Graph




which are supposed to be used for graph-aware projections in future versions.

These can be populated in-memory from the registered DimensionPresetSourceInterface by an application service and thus provide a read-only interface for applications in need of fallback logic.

In addition, Neos is extended by a backend module that visualizes these fallbacks.
They are displayed as an interactive graph using SVG and vanilla JS.

This can be tested/verified by setting up an arbitrary dimension configuration and visiting the Dimensions administration module



Add extension point for domain specific languages to fusion

DSLs are implemented for fusion-assignments using the tagged-template-string syntax of es6.
DSL-identifiers are configured in the configuration key Neos.Fusion.dsl. The configured objects must satisfy the DslInterface
and return fusion code that is parsed by the fusion-parser afterwards.

value = dslExample`... the code that is passed to the dsl ...`





In addition this pr adds a schema for the fusion part of the Settings and integrates it into the automatic schema-validation.



Allow strings and arrays in CachingHelper::nodeTypeTag

This makes the CachingHelper::nodeTypeTag method much more flexible
for it’s use case by allowing also strings and arrays (or \Traversable) as
input, always returning an array of tags to be applied and gracefully
ignoring anything that won’t result in a valid tag.



Evaluate @if in fusion as falsy or truthy values

The behavior of @if is altered to make the distinction between falsy or truthy
values and no longer check for an exactly false value in the condition-expression.
For the distinction the php rules for casting to boolean are applied.
Examples for falsy-values that are now detected in @if:


	empty array


	number zero


	null


	empty string





Upgrade instructions

See https://www.neos.io/download-and-extend/upgrade-instructions-3-1-3-2.html


Note

Additionally all changes in Flow 4.2 apply, see the release notes to further information.
See http://flowframework.readthedocs.org/en/4.2/TheDefinitiveGuide/PartV/ReleaseNotes/420.html








            

          

      

      

    

  

    
      
          
            
  
3.1.0


Shipping the new UI as dev dependency

The Neos UI is currently undergoing a massive rewrite in ReactJS and very recently we proudly announced beta. If you install Neos 3.1 including dev dependencies, you’ll have access to the new UI just by using /neos! as login URI. Please help us to improve the interface further by trying it out the new UI with your websites and provide feedback in our public Slack or on discuss [https://discuss.neos.io/c/creating/design-ux].



Build environment overhaul

For 3.1 our internal build tools have been tweaked when it comes to branching and dependency management. This way it will be less painful for us to provide you with new releases of Neos and Flow.



Preset support in Fusion

Neos.Neos:ImageUri and Neos.Neos:ImageTag prototypes now accept preset as an argument. This has been possible for neos.media:image and typo3.media:uri.image view helpers since 2.1 and is now also possible for the image related Fusion prototypes. For more general information about presets look up the RTD manual [http://neos-media.readthedocs.io/en/latest/ThumbnailPresets.html].


Upgrade instructions

See https://www.neos.io/download-and-extend/upgrade-instructions-3-0-0-3-1.html


Note

Additionally all changes in Flow 4.1 apply, see the release notes to further information.
See http://flowframework.readthedocs.org/en/4.1/TheDefinitiveGuide/PartV/ReleaseNotes/410.html








            

          

      

      

    

  

    
      
          
            
  
3.0.0

Neos 3.0 and Flow 4.0 represent the biggest refactoring effort the Neos project has undergone so far. Not only have Neos and Flow, and more than 100 related packages, been ported over to the new Neos namespace - you can now also say hello to Fusion, which is the new name for TypoScript2. These steps are the basis for all the exciting things that we have planned for Neos and Flow in the future.

Since a lot of refactoring, especially regarding the naming of things, has been done, developers will need to get familiar with a few changes. This was necessary to prepare our basis for the features we are planning to build. Here’s a list of the most important changes and renamings, to help you get used to Neos 3.0 quickly.


“Neos” Namespace

Up until Neos 2.3, we were still using the TYPO3 namespace for all our PHP classes in Neos and Flow. The team pulled a bunch of long nights, armed with a few crates of beer (but mostly coffee), to remove every reference to the old namespace from both Neos and Flow. We’re happy to see this completed. Flow is now in the NeosFlow namespace, Neos itself is using NeosNeos. This is a rather trivial, but very important change as it breaks compatibility with practically all sites and packages developed for pre-3.0. This means that there’s quite a bit of code to adust when you upgrade a package to Neos 3.0 / Flow 4.0. But fear not, we solved migration the “Flow” way – most of the adjustments can be applied automatically! We have compiled a list of things to look at further below in this post.



TypoScript 2 becomes Neos Fusion

The name TypoScript has, until now, been used for both TYPO3 TypoScript and “our” rendering layer, called TypoScript2. As the two languages do not have much in common anymore and many developers are confused by the similar names, the team decided to rename TypoScript2 to Fusion with Neos 3.0. This means that the name TypoScript is officially deprecated in Neos. We even get a new file ending - say hello to .fusion!

Having said that, to not break compatibility too badly, we will continue to support the legacy .ts2 file ending and will also provide a legacy TypoScriptService until the release of Neos 4.0. Check the upgrade guide below to see what you will need to change.



PHP 7.1 Support

PHP 7.1 and Flow 3.3/Neos 2.3 have not been getting along very well, breaking the rendering (Fluid and Fusion) for most sites. This has been fixed, Neos 3.0 and Flow 4.0 are fully compatible with PHP 7.1. Additionally, since PHP 7.0 a few more keywords have been reserved for future use. Among them are “Resource” and “Object”, which previously were used as class names in Flow’s resource framework. Even though this does not cause real problems at present, we refactored our class names and namespaces to comply with these new reserved keywords in order to be compatible with future versions of PHP.



PSR-4 Autoloading Replaces PSR-0

All our packages now use PSR-4 autoloading. In most cases, this means that you will move all your package content from something like Packages/Sites/Vendor.Namespace/Vendor/Namespace/… to just Packages/Sites/Vendor.Namespace, and update your composer.json to indicate the use of PSR-4 instead of PSR-0.



Standalone Fluid

Fluid, the template rendering engine we use in Flow and Neos, has been an integral part of our framework up until now. To allow other projects to use the power of Fluid and make contributing and sharing code easier, Fluid is now a standalone PSR-4 package that can be used by any PHP application. This includes the Fluid core (such as template parser, compiler, cache and rendering) as well as some of the basic view helpers, such as the AbstractTagBasedViewHelper. Fluid is now pulled into Flow and Neos via the Neos.FluidAdaptor [https://github.com/neos/fluidadaptor]. You can find Fluid standalone here [https://github.com/TYPO3/Fluid].



Standalone Media Package

The media browser is now a separate package in Neos which makes it easier to maintain and also easier for developers to adapt it to their own needs.



Neos Content Repository

Since we were at it, we did some more restructuring. Among others, our Content Repository (formerly TYPO3.TYPO3CR) is now officially called Neos.ContentRepository.

We are currently in the research stage for the implementation of the Neos Content Repository with a CQRS/ES architecture. We wrote a comprehensive blog post on the research progress which is absolutely read-worthy.



Experimental Feature: Developer Preview of the React-based Neos Backend UI

At the beginning of 2016, the team decided to do a complete rewrite of the Neos backend user interface on top of a React/Redux stack. With the adoption of React and Redux, we are bringing the current best practices in the JS ecosystem to Neos. At the same time, we are improving the development experience in the backend - it will be much easier to work on (and extend) the Neos backend. Adding new editors in the inspector, for example, will become a breeze because the new React UI is designed for much better extensibility. Most importantly, moving to React will also help us improve the stability and speed for our most important users - the editors. With the release of Neos 3.0, we will begin the alpha stage for this new implementation.

Aside from the technical changes, the alpha ships with new features already. Most prominently, there is the node creation dialog, which allows you to take control over the initialization of newly created nodes. Moreover, we now have an iframe-driven content view, which reduces interference with your own frontend implementation and makes media queries work correctly. Lastly, our inline editing now relies on CKEditor instead of Aloha, which does provide a much-improved RTE experience out of the box.

During the alpha, you will be able to install the new UI in parallel to the continuously supported current UI, so that you can safely test it. We are looking forward to your feedback to further improve the user experience of Neos. Get started by heading over to the Neos UI Github repo and follow the installation instructions (and start contributing).

See also the full change log [http://neos.readthedocs.io/en/3.0/Appendixes/ChangeLogs/300.html]


Upgrade instructions

See https://www.neos.io/download-and-extend/upgrade-instructions-2-3-3-0.html



!!! Breaking changes

We have done our best do make the upgrade process as simple as possible. Due to all the refactoring, upgrading a site from 2.3 to 3.0 will probably not be as smooth as you have been used to during the 2.x releases. We have created a script to take some work off your shoulders, however we still recommend to have a look at things afterwards and check that everything is in order. For sites using more advanced features, you will need to perform a few steps manually.

See https://www.neos.io/download-and-extend/upgrade-instructions-2-3-3-0.html

In case you have any problems with this guide, please get in touch with us via discuss.neos.io [https://discuss.neos.io/] or on Slack [https://neos-project.slack.com/].


Note

Additionally all changes in Flow 4.0 apply, see the release notes to further information.
See http://flowframework.readthedocs.org/en/4.0/TheDefinitiveGuide/PartV/ReleaseNotes/400.html








            

          

      

      

    

  

    
      
          
            
  
2.3.0


User experience improvements


	Stylesheets are now replaced on load of pages in backend allowing different stylesheets per page to be applied correctly. This might introduce a slight flash of unstyled content on changing pages.


	Text editor placeholders are now translatable


	The Neos logo in the login screen is now replaceable by configuring a different partial path for the login and overwriting the partial containing the logo.


	The login screen has an overhauled CSS for better usability on mobile devices.


	The content cache filters special characters used inside the cache to avoid broken cache entries. The special characters are all ascii control characters that should not appear in regular content but are sometimes introduced by copy/paste from other applications.


	The alignment of expand icons in the node tree was corrected.


	Select options in an inspector select editor can now


	Switching sites is no longer error prone to session values like lastVisitedNode not lining up with the new site.


	Cross-domain linking behavior was improved by changing internal behavior of the linking service.


	RequireJS mapping for views is now the same as for editors, handlers and validators, allowing you to includde custom views to the inspector.


	Node repair repairs shadow nodes, removes nodes with invalid dimensions, uses less memory and has an overall improved stability. The command also got --skip and --only options now to process the repairs in small chunks for bigger sites.






Asset and Media improvements

You can now add your own strategies to track usage of assets in your project. This is used in Neos to track usage of Assets inside content. Any AssetUsageStrategyInterface implementation that you provide will also be taken in to consideration in the Media module.
Extensible Asset validation allows you to add validation to any asset class from your package, restricting the possible uploaded assets.
Assets can now be replaced in the Media module, which will automatically put the new asset in place in all places the old one was used before. This works in conjunction with the asset usage strategies.
The image handling supports ImageMagick 7 now, but that breaks support for some older versions.



Menu content element allows setting of startingPoint

The menu content element (TYPO3.Neos.NodeTypes:Menu) now allows configuring a starting point for the rendered menu in the inspector, making this element more flexible to use.



Kickstarted sites improved

The kickstarted site now contains only the homepage, no content element anymore. Additionally the TypoScript was streamlined and improved towards extensibility.



TypoScript and EEL

The new TYPO3.Neos:ContentElementWrapping prototype can be used as a processor to the same as the contentElement.editable ViewHelper of Neos. You don’t need to do this for regular content elmeents, but for example to make properties of pages inline editable.

A TYPO3.TypoScript:Debug prototype allows to debug values inside TypoScript. You can set arbitrary key/value combinations which are output formatted.

The TYPO3.TypoScript:Collection object now has itemName set to item as default. That means you can access the current element of the collection inside the renderer via item, previously there was no default set.

The TYPO3.Neos:DimensionsMenu replaces the TYPO3.Neos:DimensionMenu (note the “s”). For backwards compatibility reasons TYPO3.Neos:DimensionMenu still works but is deprecated. The new DimensionsMenu has much more features than the old one and can be used to render dimensions in various ways.

All multi column elements now automatically provide the columnIteration variable containing iteration information and the columnLayout variable containing the selected laoyut via TypoScript context to the children (the columns).

The new sort operation (example usage: ${q(node).children().sort('title', 'DESC')}) is now available. Note that the sort is done in PHP for now, so performance for bigger datasets might decrease.



Caching changes

Objects with @cache.mode = 'cached' and no entryIdentifier set previously would use all currently assigned context variables (+ the TYPO3.TypoScript:GlobalCacheIdentifiers prototype) to build an entryIdentifier. This behavior is rather pointless as it would also use the request and possibly set backend configuration variables for example. The new behavior is to only use the GlobalIdentifiers prototype, so make sure you configure the necessary entryIdentifier variables.

Dynamic cache is a new mode for the TypoScript cache configuration. This mode will cache results but create separate cache entries based on a configured discriminator. This cache discriminator does not need to be part of the parent objects cache identifier to work (which is the case for fully cached segments). The drawback is that evaluation of this will execute a bit of PHP logic instead of pulling the cached value straight from cache. A typical example for a descriminator and dynamic cached segment is if your result is based on a request argument. See documentation for configuration examples.



Nodes can be related to arbitrary objects

Node properties are now property mapped to strings for usage in the user interface. The converter to use can be configured per property type via settings, allowing you to have arbitrary data types as node properties as long as you can provide a type converter and an inspector editor for them.



Further additions

In addition to the larger features, lots of small improvements and bugfixes have been included in Neos 2.2, among them:


	Filetype icon view helper to output icons for specific filetypes.


	Various documentation fixes


	General Cleanup of NodeTypes package.




See also the full release notes [http://neos.readthedocs.io/en/2.3/Appendixes/ChangeLogs/230.html]


Upgrade instructions

See https://www.neos.io/download-and-extend/upgrade-instructions-2-2-2-2-3.html



!!! Breaking changes


	Keep supertypes unset in supertypes unset [https://github.com/neos/neos-development-collection/pull/599]


This bugfix correctly keeps supertypes unset that are unset in a parent node type when inheriting, which was not always the case. As a result some previously (wrongly) existing configuration might now disappear.






	Http RequestHandler returns correct instance of Request and Response [https://github.com/neos/flow-development-collection/pull/499]


If you used Request::createFromEnvironment() to create URLs in your custom code you must retrieve the Request object from the RequestHandler from now on. Otherwise you might run into malformed URLs like https://acme.com:80 (depending on your environment).









Note

Additionally all changes in Flow 3.3 apply, see the release notes to further information.
See http://flowframework.readthedocs.org/en/3.3/TheDefinitiveGuide/PartV/ReleaseNotes/330.html








            

          

      

      

    

  

    
      
          
            
  
2.2.0


User experience improvements


	The styling of the user interface has been improved in many places (checkboxes [https://github.com/neos/neos-development-collection/pull/457], dropdowns [https://github.com/neos/neos-development-collection/pull/459], radio buttons, active inspector tab [https://github.com/neos/neos-development-collection/pull/456], help message icon [https://github.com/neos/neos-development-collection/pull/453], error notifications [https://github.com/neos/neos-development-collection/pull/424], …)


	Inspector groups can now be assigned icons [https://github.com/neos/neos-development-collection/pull/455] to help identify them more easily.


	The structure tree has been improved (configurable loading depth [https://github.com/neos/neos-development-collection/pull/451], selectable nodes [https://github.com/neos/neos-development-collection/pull/443], node type changes [https://github.com/neos/neos-development-collection/pull/442], …).


	Error notification messages have been improved [https://github.com/neos/neos-development-collection/pull/424] (no more tall orange notifications)


	Insert new/paste position selection is more intuitive [https://github.com/neos/neos-development-collection/pull/320] (opens automatically, only one click needed) – additionally the selected position is shown in the insert new panel [https://github.com/neos/neos-development-collection/pull/426]


	Additional tooltips and a improved styling them [https://github.com/neos/neos-development-collection/pull/427]


	All dialogs are centered vertically [https://github.com/neos/neos-development-collection/pull/434] now.


	The Workspaces module has been improved with better date/time handling, styling fixes, …


	Insert panel groups are now collapsible [https://github.com/neos/neos-development-collection/pull/418].


	Sortable options in selector editors [https://github.com/neos/neos-development-collection/pull/338]  (select, references, asset list).


	Editors can now switch between sites without logging in again [https://github.com/neos/neos-development-collection/pull/356].


	Preview uses the target workspace instead of live [https://github.com/neos/neos-development-collection/pull/399] if applicable.






Media management improvements

Images in CMYK colorspace will be converted into RGB colorspace during the processing of images (not supported when using GD). The original image will still been kept in the original colorspace. The conversion can be disabled by setting the configuration TYPO3.Media.image.convertCMYKToRGB to false.

A new view in the media browser displays information about which nodes an asset is referenced in and where the nodes can actually be found across workspaces, content dimensions and sites.

The sorting in the media browser is now split in sort by and sort direction to sort the asset list independently.



Automatic redirects

A new optional package enables automatic redirects for renamed/moved pages. Redirects will only take
effect after changes are published to the live workspace. This helps with SEO and user experience
by avoiding dead links.

Additionally a 410 (gone) status code will be given for removed pages instead of 404 (not found).

Redirects can be managed via new commands:

./flow redirect:list
./flow redirect:add path/to/old-page path/to/new-page 307
./flow redirect:remove path/to/page
./flow redirect:removeall
./flow redirect:removebyhost hostname.tld





In addition redirects can be imported and exported as CSV using:

./flow redirect:export
./flow redirect:import





Redirects can only be modified using commands for the time being.

The package can be installed using composer with composer require "neos/redirecthandler-neosadapter".

Additionally a storage package needs to be installed. A default one for storing redirects in the
database can be installed using composer with composer require "neos/redirecthandler-databasestorage".



Cross-site linking

Options for scheme and port have been added to site domains to enable setting them for cross-site linking. Additionally a primary flag to site domains to enable selecting them as the primary domain for a site has been added.

When linking to a node the primary domain of the site the node belongs to is taking into account. This allows for correct cross-site linking instead of creating an invalid link to a non-existing node with the existing site’s URL.



Search nodes by property & exact value in NodeDataRepository

It is no longer only possible to search through the properties by giving a string that matches for any key or value found in the
jsonified properties field. Instead, the term can also be an array to match exactly on a given key / value combination. See the PR #1 [https://github.com/neos/neos-development-collection/pull/1] for details.



Update to latest Font Awesome

Neos now ships the Font Awesome, version 4.6. This allows integrators to select from a wider range of icons for node types, inspector groups and other uses.

All icons are prefixed with “icon-” and old icon-names from version 3.2 are still available for backwards compatibility.



Documentation improvements

The documentation of Neos and Flow has been improved through a number of bugfixes and additions.



Further additions

In addition to the larger features, lots of small improvements and bugfixes have been included in Neos 2.2, among them:


	Introduce interface to customize the default TS prototype [https://github.com/neos/neos-development-collection/pull/473]


	Add settings to customize login screen stylesheets [https://github.com/neos/neos-development-collection/pull/285]


	Implement new Login-Screen [https://github.com/neos/neos-development-collection/pull/472]


	Backend fails to load due to RequireJS timeout [https://github.com/neos/neos-development-collection/pull/463]


	Use and improve node label [https://github.com/neos/neos-development-collection/pull/448]


	Only update changed model properties [https://github.com/neos/neos-development-collection/pull/450]


	Improved countByParentAndNodeType performance [https://github.com/neos/neos-development-collection/pull/4]


	Display node label instead of node type label in workspace overview [https://github.com/neos/neos-development-collection/pull/420]


	Ignore empty NodeType configurations [https://github.com/neos/neos-development-collection/pull/367]


	Event logging tweaks & fixes [https://github.com/neos/neos-development-collection/pull/274]




See also the full release notes [https://jira.neos.io/jira/secure/ReleaseNote.jspa?projectId=10000&version=11410] and changelog [http://neos.readthedocs.org/en/2.2/Appendixes/ChangeLogs/220.html]


Upgrade instructions

See https://www.neos.io/download-and-extend/upgrade-instructions-2-1-2-2.html



!!! Breaking changes


	Set useful defaults for Menu [https://github.com/neos/neos-development-collection/pull/195]


This is breaking if you rely on the previous behavior with no defaults set for the two values.






	The demo site package is now called Neos.Demo, watch out if you somehow use the old one.




Further details can be found in the commit messages of the changes


Note

Additionally all changes in Flow 3.2 apply, see the release notes to further information.
See http://flowframework.readthedocs.org/en/3.2/TheDefinitiveGuide/PartV/ReleaseNotes/320.html








            

          

      

      

    

  

    
      
          
            
  
2.0.0


Fine-grained Access Control

A common requirement, especially for larger websites with many editors, is the possibility to selectively control access
to certain backend tools and parts of the content. For example so that editors can only edit certain pages or content
types or that they are limited to specific workspaces. These access restrictions are used to enforce certain workflows
and to reduce complexity for editors.

With Neos 2.0, we introduce a way to define Access Control Lists (ACL) in a very fine-grained manner, enabling the
following use-cases:


	hide parts of the node tree completely (useful for multi-site websites and frontend-login)


	protect arbitrary method calls (as possible before)


	define the visibility of arbitrary elements depending on the authenticated user (as possible before)


	show only specific Backend Modules


	allow to create/edit only specific Node Types


	allow to only edit parts of the Node Tree


	allow to only edit a specific dimension




The above examples are all based upon specific privilege types; defining what can be access-restricted.

Furthermore, the way Neos and Flow handle roles has been completely revised: A user is assigned to one or more specific
roles, defining who the user is. For each role, a list of privileges is specified, defining the exact permissions of
users assigned to each role.

In the Neos user interface, it is possible to assign not just a single role to a user, but instead a list of multiple
roles. This allows to define the permissions a user actually has on a much more fine-grained level than before, where
only the distinction between Editor and Administrator was made. Additionally, the user management module has basic
support for multiple accounts per user: a user may, for example, have one account for backend access and another one
for access of a member-only area on the respective website.

As an example, a privilege only giving access to a specific part of the node tree looks as follows:

'TYPO3\TYPO3CR\Security\Authorization\Privilege\Node\EditNodePrivilege':
    'YourSite:EditWebsitePart':
      matcher: 'isDescendantNodeOf("/sites/yourwebsite/custom")'







Translated Neos User Interface

The User Interface of Neos is now localized into multiple languages – making it easier to use for non-English speakers.
This includes the content editing experience like Node Type definitions and editors as well as backend modules.

The preferred language can be selected in the user settings from the user menu.

If you want to translate Neos to your language or want to help improve translations, head over to http://translate.neos.io/
and start translating or find out more at https://www.neos.io/develop/translations.html.



Translation & Content Variants

While translation of content, or more broadly, content variants, are the flagship feature of Neos 1.2, there were still
some missing spots to fill to make working with content variants really awesome. Neos 2.0 includes quite some of these
improvements.

First, we re-implemented the way an initial translation of a document from one language to another works. If you wanted
to translate from English to French in Neos 1.2, you needed to define that the French-language version of your page falls
back to the “English” version – effectively showing English content if it has not been translated in French yet.
With Neos 2.0, you do not need these fall-backs anymore. Instead, if you choose a content variant which does not exist yet,
you are asked whether you want to start with an empty page or copy the original content and start modifying it.

Second, we re-thought how the node tree should behave in Neos: In order to reduce confusion, if you move a page to a
different position in the hierarchy, it is moved in all variants. However, if you move content from left to right column,
this only affects the current variant. After having tried numerous options in the last months, we believe that this
way leads to the most predictable editing experience.

Third, if you copy content from one variant to another (e.g. a content element which has been created in English, but
not yet in French), the link between the original content and the translation is now preserved. This is an important
technical foundation, based on which features such as a “list of changes in the original language” will be implemented
in later Neos releases.



Cloud-Capable Resource and Media Management

In today’s world, the use of cloud services is very prevalent. People use Google drive, Dropbox or Box.com to share
files and assets. Furthermore, applications of today should be deployable on PAAS systems like Heroku or AWS EC2.
Because these platforms do not contain a writable and persistent file system, alternative storage systems for assets
are needed. For highly scalable websites, the use of Content Delivery Networks for serving static content helps to
keep sites well performing and fast.

With Neos 2.0 and Flow 3.0, we introduce a completely written core of resource management, which features a plugin-based
storage and publishing mechanism, providing support for various cloud providers and other scenarios.

On the one hand, this now allows to store persistent resources like images which the user has uploaded in Amazon S3;
making Flow and Neos a lot more straightforward to run on PAAS.

On the other hand, resources which are used on the website output (like cropped and resized images) can be published
to a CDN like Cloudfront, Akamai or Rackspace CloudFiles.

As a reference implementation for third-party plugins we created a package supporting Rackspace Cloudfiles. A second
implementation, for Amazon S3, is about to be finished.

This feature is also the basis for seamlessly choosing assets from Google Drive or Dropbox in the Neos Media Management,
which will be implemented in a later version of Neos.



SEO Improvements

With Neos 2.0, we’ve added some first tools which help in improving search engine ranks:


	Separation of page and navigation title


	allow to set description, keywords and robots information per-page


	machine-readable links to alternative-language versions


	XML sitemap generation




Furthermore, the appearance of a website when embedded inside tweets or Facebook posts can be adjusted (Open Graph).

These features are provided by a separate package https://packagist.org/packages/typo3/neos-seo



Google Analytics

For many websites, getting key insights on their usage patterns is a requirement for improving content. That’s why we
created a seamless integration of Google Analytics; showing the current access numbers in an inspector tab of the current
page.

Google Analytics integration for Neos 2.0 can be easily installed by adding the package
https://packagist.org/packages/typo3/neos-googleanalytics



Media browser/module

The media browser has been improved in many areas.

The concept of asset collections has been introduced, which is an additional layer to separate large amounts of assets
across different sites. A default asset collection can be set for a site, resulting in every asset uploaded for that
site automatically being added to that collection. Asset collections can have separate tags or share tags among them.

Furthermore, searching, sorting and filtering for assets is now possible, the list view has been extended to include
file size, type & thumbnail image. It is now possible to rename existing tags.

Error handling, drag and drop handling and notifications have been improved.



Editing Improvements

Searching is no longer case sensitive, including link wizards, reference(s) editors and the node tree filter.

In the editing area, the content elements toolbar now supports insert/paste before/into/after similar to the navigate
component.

Image handling has been improved: Added support for SVG files. Image uploads are now possible using drag & drop in the inspector.
Cropping and resizing of images can now be configured per-node type, and resizing is by default switched off to fit better with
responsive websites. To enable the old behavior which allows resizing, change the following configuration in Settings.yaml:

TYPO3:
  Neos:
    userInterface:
      inspector:
        dataTypes:
          'TYPO3\Media\Domain\Model\ImageInterface':
            editorOptions:
              features:
                resize: TRUE





Furthermore, the inspector now shows detailed node information such as creation date, last modified date,
last publication date, node name & identifier.



Improvements to TypoScript & Eel

There have been various finetunings in TypoScript, Eel and FlowQuery:

In order to set new variables in the TypoScript context, you had to use @override in Neos <= 1.2. We found this
name is misleading, so we renamed it to @context instead, deprecating @override.

The FlowQuery operations parentsUntil, nextUntil, prevUntil, prevAll and nextAll have been introduced.

Conditions are now properly executed in processors, so you can use @if to determine whether a processor
should be applied or not.

We now support nested Eel object literals such as {bar: {foo: ‘baz’}}, as well as more comparison operators (<, <=, >, >=)
in FlowQuery filters.



Documentation Restructuring

The documentation has been moved to ReadTheDocs, and in this process been completely restructured. We now also provide
PDF and ePub renderings of the documentation; so it is easier to search it offline.

Find the documentation at http://neos.readthedocs.org/en/2.0/index.html



Data views in inspector (experimental)

Data views is a new feature for the inspector to be able to display custom views without having a property for it.

Supports a simple view, table view and time series view to display generic data from a data source. Include D3 for SVG
graphs. Currently used in the Google Analytics package.

DISCLAIMER Be aware that this feature is still experimental and likely to have breaking changes in the future.



History / Event Log (experimental)

For Neos 2.0, we have explored to add an event log, which records all kinds of changes to a Neos instance. Initially,
the event log helps to answer the following questions:


	What content has changed since I have last used the system?


	Audit Logging: Which users have been created or modified?




A small History module is included which allows to browse the history.

By default, this feature is currently disabled, as the history grows quite quickly and there is no function to prune the
history yet. We also imagine that the history can be used to enable functionality like more intelligent publishing or
merging of changes.

To enable this feature (at your own “risk”), put the following configuration in Settings.yaml:

TYPO3:
  Neos:
    eventLog:
      enabled: TRUE







Additional features


	
	The storage format for the node data properties table has been changed to JSON from a serialized array
	This makes it a lot easier to alter properties in the database, prevents unserialization issues and boost performance.







	Improved exception handling with better output and styling


	Creation date, last modified date & last publication date for nodes


	Possibility to extend content collection as content elements


	Auto-created child node positions (define the order of auto-created child nodes)


	Backend context helpers (easier to determine if in the backend context)


	Node repair improvements (remove broken nodes, remove lost nodes, remove undefined properties, add missing default values, set position)


	Usability improvements to the sites management modules to better support multiple sites


	Auto-created ChildNodes can now have have defined positions to define the order they appear in the backend.





Upgrade instructions

See https://neos.io/develop/download/upgrade-instructions-2-0.html



!!! Breaking changes


	
	Reload content without reloading the whole page
	This is breaking in case you rely on the whole page being reloaded when a property of a single node is changed.
To achieve the previous behavior a new option called reloadPageIfChanged is introduced.







	
	Pull in stable versions of 3rd party dependencies
	Remove the file Configuration/PackageState.php if issues occur with the Doctrine.Instantiator package.







	
	Move PhpCodesniffer installation to Build folder
	See commit message for instructions.







	
	Implement ContentCollection in pure TypoScript
	Change iterationName to content.iterationName to adjust existing content collections if that is used.







	
	Method to easily determine if backend rendering
	Deprecates the TypoScript context variable editPreviewMode, can be replaced seamlessly with
${documentNode.context.currentRenderingMode.name} instead if used.







	
	Add code migration for ImageVariant to ImageInterface change
	To adjust the code use the new class, it should be enough to run this on your site package(s):
./flow flow:core:migrate --package-key <sitepackagekey>







	
	Centralized Neos user domain service
	The user:remove command has been renamed to user:delete. Additionally it drops support for the “–confirmation”
option and now interactively asks for confirmation.







	
	Account should not be available in the context
	This is breaking if you use the context variable ${account} in your own TypoScript. You should instead use
${Security.getAccount()} to retrieve it. Therefor you should also remove all usage of account in safed contexts
for uncached TypoScript objects.







	
	ContentCollection overwrites node directly
	This is breaking if you rely on the contentCollectionNode variable being set. You can retrieve the nearest
ContentCollection via FlowQuery.







	
	Add charset and collation to all MySQL migrations
	This is breaking if you have existing tables that do not use the utf8
charset and utf8_unicode_ci collation. To solve this you need to convert
the existing tables. This can be done using the command:
./flow database:setcharset







	
	Property mapper error on node properties of type date
	The code migration 20141218134700 can be run to adjust the code in your package(s):
./flow flow:core:migrate --package-key <packagekey>







	
	Disable image resizing for image properties by default
	This change is  breaking as the default resize feature is disabled  by default now, which means you need to enable
it if you rely on that feature.







	
	Cleanup multi column rendering
	This is breaking if you rely on the MultiColumnItem having a template as MultiColumnItem is not a ContentCollection
(so a plain tag). Attributes configured for MultiColumnItem still work as before.







	Remove deprecated TYPO3.Neos:Page nodetype


	
	Node path should always be lowercase
	This is breaking in case you have nodes with names that have uppercase letters and they are referenced by their
path somewhere.







	
	Minor changes to improve CR performance
	This is breaking if you rely on the fact that persists are triggered for each newly created Node. This was a side
effect of assigning the highest index to the newly created Node and is now no longer needed in all cases. Therefor
tests need to be adapted so that they do no longer rely on this behavior.







	
	Fix unique constraint for workspace/dimensions
	This is breaking if you were unlucky enough to migrate between the merge of the the aforementioned change and this
very change. See details in the commit message.







	
	Node with identifier should only exist once per context
	This is breaking in case you have existing nodes in this situation, which you shouldn’t have though.







	
	Throw exception for missing implementation class
	This can be breaking if relying on missing implementation classes being silenced and returning NULL.







	
	Deprecate @override and replace it by @context
	The old syntax will still be supported, however you should adjust to the new syntax for streamlining.







	Remove unused ServiceNodeController::getPageByNodePathAction




Further details can be found in the commit messages of the changes

See http://neos.readthedocs.org/en/stable/Appendixes/ChangeLogs/200.html


Note

Additionally all breaking changes in Flow 3.0 apply, see the release notes to further information.
See http://flowframework.readthedocs.org/en/stable/TheDefinitiveGuide/PartV/ReleaseNotes/300.html








            

          

      

      

    

  

    
      
          
            
  
1.2.0 (2014-12-10)

The third release of Neos focuses on adding translation support, improving the editor experience and implementing
many new features. Neos is getting closer to being able to solve most project needs without custom code.

A lot of work has been put into this release to deliver a truly great user experience. Check out the online demo site
(http://neos.demo.typo3.org/) for trying out the new version.

In total 94 new features, 339 tasks and 282 bugfixes made it into the beta and more non-breaking improvements will come
during the finalization phase.

Upgrading from 1.1 can be done easily using the available migrations. Instructions available here
http://neos.typo3.org/develop/download/upgrade-instructions-1-2.html. If you experience any issues please report them
to https://jira.typo3.org/browse/NEOS.

A big thanks goes out to all the contributors that made this happen.

A bunch of teaser videos can be found here https://www.youtube.com/playlist?list=PLmMUGpq3yu-heNfu_e2HtcMH0RtaRPeJU


Translation support

Support for creating localized websites with Neos is years in the making. We took all the experience from a decade of
TYPO3 CMS customer projects into account and came up with a universal concept: Content Dimensions. This feature, which
is deeply rooted in Neos’ content repository, allows for creating and combining an arbitrary number of variants of a
piece of content. In Neos 1.2 we use Content Dimensions for realizing translations. Once the site integrator has
defined which languages should be available, an editor can translate content by simply navigating to the part of the
website he’d like to translate, switch to another language and type away.

All aspects of a node – which is the technical term for any kind of content - can be translated. A new implementation
of the routing component for Neos even allows for translation and customization of the URL of a particular document.

For a first impression you might want to watch a talk about multi language websites with Neos 1.2 from this year’s
T3CON: http://rlmk.me/neosmulti1-2

Information about the general UI approach to localization and full use of content dimensions, some of the planned
concepts are explained at http://rasmusskjoldan.com/post/82289319462/localization-is-not-about-localization

Many more features regarding content translation and content dimensions in general are on our roadmap.

See the chapter Content Dimensions for details.



Constraints

In a typical project, you will create lots of custom node types. However, many node types should only be
used in a specific context and not everywhere. Using node type constraints, it is now possible to restrict the allowed
child node types inside a given node type. Additionally for being able to specify direct child node constraints, it is
also possible to specify grandchild constraints for auto-created node types.

See the chapter Node Type Constraints for details.

Node type constraints are supported in the following places in Neos:


	“Create New” panel in content element handles


	“Create New” panel in the navigate component (document and structure tree)


	moving in Navigate component


	changing node type in the inspector






Additional editor experience improvements


	
	Link editor for nodes, assets and external links
	A link editor for the inspector that can handle internal and external links







	
	Add ability to Shortcut to an external target
	Allows for linking to an external URL for shortcut pages







	
	Crop aspect ratio lock presets (image editor)
	Allow locking or predefining aspect ratios for the image cropping







	
	Tabs for property groups in the inspector
	Allow grouping properties and property groups across different tabs







	
	Update Aloha editor
	Update to a stable version of the editor with various bugfixes and some new features







	
	Improve exception handling during rendering
	Make broken pages less broken







	
	Mark unpublished nodes in context structure tree
	Unpublished nodes are now highlighted in the context structure tree







	
	Manual node selection in Menu element
	The menu content element now supports selecting specify menu items to show







	
	Add new content element for inserting records
	New content element to insert other content elements







	
	Improve usability of publishing button
	The publish button now has a active state during publishing, is disabled during saving and has become more responsive







	
	Allow advanced default values for properties of type date
	Allows setting the current date and more advanced default values for date editors







	
	Add icons to reference(s) inspector editor results
	The reference editor in the inspector now shows icons for the nodes







	
	Allow closing dialogs with esc key
	All the different dialogs now support closing by hitting the escape key







	
	Warn the user about an expired / lost session
	A login dialog appears when a session has expired allowing the editor to login again and resume work







	
	Warn editors when navigating away during saving/publishing
	Warns the editor when navigating away or closing the page during saving/publishing to avoid loss of changes







	
	Improve stability of content saving
	The saving of content has greatly been improved, preventing issues with content not being saved







	
	Improve 404 handling in Neos backend
	When deleting the current page it would end in a 404, instead the closest parent page is found







	
	Login screen removes username on failed login
	The username is kept on failed logins







	
	Use correct icons for node results in Aloha link field
	Previously all results in the aloha link field had the same icon, now they have the one matching their node type







	
	Use placeholder instead of default value in inline link editor
	Adds a placeholder, removes the “http://” and makes it clear that the field allows for searching







	
	Improve usability of new/paste buttons in navigate component
	Adds indication that the new & paste buttons allows for altering insert/paste position







	
	Sorting of node types in insert new panels
	Allows for sorting the node types in the new panels (navigate/content)







	
	Login dialog improvements
	Added progress indication and streamlined normal and re-login forms.







	
	Group, sort & add icons for node types in NodeTypeEditor
	Gives a better overview of available options when changing the node type.







	
	Insert new panel improvements
	Options styled as cards instead of links, supports tab navigation, can handle lots of options and long labels.











Inspector features


	
	Dynamically loaded options for the inspectors SelectBoxEditor
	Support for loading option values dynamically from the server







	
	Multiple selection & grouping in inspector SelectBoxEditor
	Support for selecting multiple options and grouping options







	
	Time support for the inspector date editor
	Allows date selectors with time selection







	
	Textarea inspector editor
	An editor used for multiple lines of text in the inspector (meta description e.g.)







	
	Make button label and highlighting mode configurable
	Allows for more than the HTML format for the code editor in the inspector







	
	Switch to PHP date format for inspector
	The default date format for the date editor is now the PHP date format for easier usage







	
	Make NodeTree baseNodeType configurable
	It’s possible to filter the node tree in a custom way to exclude unwanted document nodes











Inline editing features


	
	Placeholder support for inline editable properties
	Allows for having empty inline editable properties







	
	add <code> tag to Aloha Editor (disabled by default)
	Enables the use of wrapping text in a <code> tag











TypoScript features


	
	TypoScript prototype to handle HTTP headers and response status
	Allows adding custom headers from TypoScript to the response (e.g. application/xml)







	
	Implement TypoScript inclusion globbing
	Include multiple TypoScript files with one include line







	
	@if meta property for conditional evaluation of paths
	Use conditions to disable TypoScript keys







	
	NodeUri TypoScript object for linking to nodes
	A TypoScript object for making linking to nodes easier (link view helper equivalent)







	
	ImageTag and ImageUri TypoScript objects
	TypoScript objects for creating images directly in TypoScript (image view helper equivalents)







	
	Has FlowQuery operation
	Like the jQuery has function for filtering nodes containing specific children







	
	Implement BreadcrumbMenu to replace Breadcrumb
	Breadcrumb menu streamlined with the normal menu implementation (old one deprecated)







	
	Menu item attributes should have access to item in context
	The menu implementation now has access to the current item when evaluating the attributes











Backend interaction features


	
	External event for node creation / removal
	Allows for updating the dom when content is created/removed in the backend







	
	Expose public JavaScript API for reloading the page
	Allows for externally reloading the current page in the backend







	
	External events when panels open/close and layout changes
	Events that integrators can use to update the dom when the backend panels change











Fluid features


	
	Use node label for link.node view helper
	Makes it easier to link to nodes with a relative path by making the linked node accessible







	
	uri.module view helper
	Equivalent of the link.module view helper







	
	Allow linking to site node in NodeLinkingService
	Allows for linking to the site node with the relative path ~ in the node link view helper











Additional features


	
	Dimension/Language Menu
	A new menu for linking to other dimensions (e.g. between languages) – see demo site for an example







	
	Configuration module
	A new backend module to display configuration (Settings, NodeTypes, Policies, Routes, Caches, Objects, Views)







	
	Introduce mixins to avoid illogical inheritance
	Multiple mixins has been added which can be reused in custom elements (TYPO3.Neos.NodeTypes:TextMixin, TYPO3.Neos.NodeTypes:ImageMixin, etc.)







	
	REST services
	New REST controllers were introduced to handle various backend requests (outputs both html/json)







	
	Data sources
	A new way of providing content to the backend via AJAX easily. See the chapter Data sources for details.







	
	Allow simple search/replace in ChangePropertyValue transformation
	Allow node migrations to search and replace in text properties







	
	Commands to activate/deactivate domains
	./flow domain:activate & domain:deactivate







	
	Handle properties of type array
	Node type properties can now be arrays (used for multiple selection in the SelectBoxEditor)











!!! Breaking changes


	
	Move ImageTag and ImageUri TypoScript objects to TYPO3.Neos
	Replace all occurrences of TYPO3.Media:Image* with TYPO3.Neos:Image* to adjust your code.







	
	Serialized image objects cause Doctrine errors
	Images inserted in existing sites cause fatal errors. Running ./doctrine migrate solves the issue.







	
	Rename “Insert records” content element
	To adjust your existing “Insert records” nodes, run the following node migration: ./flow node:migrate 20141210114800







	
	Move FlowQueryOperations concerning nodes to TYPO3CR
	Breaking if you extended existing FlowQueryOperations concerning nodes







	
	Fix linking behavior
	Links to shortcut nodes now point to the end target instead of intermediary URLs







	
	HTML editor: Make button label and highlighting mode configurable
	This is breaking if you used the HtmlEditor in your node types. To adjust, you need to replace HtmlEditor
with CodeEditor, either manually or with ./flow core:migrate –package-key <your package>







	
	Use node label for link.node view helper
	This is breaking since it changes the behavior of empty links, so if you relied on that you need to use the
f:link.uri view helper inside the href attribute of a normal a tag.







	
	Update Aloha editor
	b and i tags are now replaced with strong and em (old ones can still be configured).

Now automatically adds paragraph around non formatted blocks.

Target _blank is now added automatically to external links.







	
	Harmonize TypoScript paths
	The old path Private/TypoScripts(/Library)/Root.ts2 is deprecated in favor of /Private/TypoScript/Root.ts2







	
	Add ability to Shortcut to an external target
	To adjust your existing Shortcut nodes, run the following node migration: ./flow node:migrate 20140930125621







	
	Switch to PHP date format for inspector date editor
	To adjust the code use the new format, it should be enough to run this on your site package(s):
./flow flow:core:migrate --package-key <sitepackagekey>







	Deprecate unused IncludeJavaScriptViewHelper


	
	Menu state should not be calculated based on a shortcut
	This is only breaking compared to the 1.1 branch not to 1.0. If you need a link to the site root page with correct
active state you shouldn’t create a shortcut pointing to it but rather include the real site root in the menu, by
using the itemCollection property of the Menu TypoScript object.







	
	Hide document layout properties by default
	If you rely on these properties, adjust your node type configuration by setting the group on the two layout
properties.







	
	Change default inline editing options
	Disables the underline tag as well as sub- and super script tags by default. They can be enabled again with
configuration.







	
	Use strong and em instead of b and i as default
	Breaking if relying on non-native browser styling of b and i tags.







	
	Mark NodeInterface::getFullLabel deprecated
	The getFullLabel method is now deprecated. The getLabel method returns the full label instead.







	
	New node label management
	The code migration 20140911160326 takes care of changing existing implementations of the old
NodeLabelGeneratorInterface to the deprecated NodeDataLabelGeneratorInterface and to change the NodeTypes
configuration to the new format.







	
	Node Migrations work on NodeData
	This is considered breaking if you added your own Transformations or Filters for Node Migrations or rely on them to
only apply to a specific workspace.







	
	Change handling of empty, false and null attribute values
	This will be breaking if code relied on the previous conversion of values or the output is used for XML, where the
new meta property @allowEmpty should be used to disable empty attributes.









Further details can be found in the commit messages of the changes





            

          

      

      

    

  

    
      
          
            
  
1.1.0 (2014-06-19)

The goals for the 1.1 version were performance and stability improvements while providing a proper base
for localization support in the next version. The new content cache and other performance improvements will
give Neos sites a huge speed boost, eliminating the need for a separate caching proxy for most installations.
The content dimension concept is the foundation to work with different content variants and have a very flexible
localization solution in Neos. The user interface to work with content dimensions and translations will be part
of the next version.


Main highlights are


Performance

Content Cache

The Content Cache is a layer inside the view part of Neos that provides a nested cache for rendered content. It is
fully integrated with the Flow caching framework and configurable via TypoScript

Neos comes with the new Content Cache enabled by default. The setting “TYPO3.TypoScript.enableContentCache” can be used to disable the cache explicitly. We encourage developers and integrators to leave it enabled in the Development context to spot caching issues before going into production. An integration with the file monitoring of Flow will clear the cache on code, configuration, TypoScript and template changes automatically during development

The cache is configurable via TypoScript for every path with the new “@cache” meta-property (see full changelog for more information and examples). Neos and the demo site come with a default configuration for caching. Note that caching is also supported while editing, node changes will flush the according cache segments automatically.

Some features of the TypoScript configuration


	Entry identifiers are resolved from TypoScript using any valid value (expression, simple type or object) Content cache entries can be tagged via TS configuration


	Neos will flush all cache entries with specific tags automatically, depending on the node that was changed (“Everything”, “Node_[Identifier]”, “NodeType_[NodeType]” or “DescendantOf_[Identifier]”)


	A more detailed documentation and guides about this feature will follow until the final Neos 1.1 release.




General Performance Improvements

General improvements in the Flow package show faster response times and less memory consumption for all requests. On the TYPO3CR side the read access performance with many nodes was greatly increased by implementing additional indexes. The content rendering (besides the content cache) will benefit from a first level cache for many node operations (preventing duplicate queries for the same node information) and cached results during the TypoScript evaluation.

If you have implemented your own TypoScript objects, please note


	$this->tsValue() caches the result, and behaves like a simple accessor


	$this->tsRuntime->evaluate() will not cache the result and be evaluated every time




When moving or creating nodes the operations should be significantly faster by using DQL for batch updates, especially if many nodes are involved.

Additionally the database queries were optimised with indexes making large queries a lot faster, e.g. for rendering the tree.



Editing and User Interface

Node Tree

When a new document node is created in the node tree the content module will navigate to the new document automatically. We’ve figured out that this case is more common than creating multiple document nodes in a row. When copying or moving Nodes, they will be pasted “after” a position as the new default, before it was “into”. The new default is more consistent with the default of creating new nodes with position “after”.

The structure tree will show changed nodes (content) like the node tree does for document nodes. This gives a better overview about changes inside a document.

Node Type Switching

A feature that should have already been in the 1.0 but was postponed, is the possibility to switch an existing node to another node type. That works for document nodes as well as content nodes. The feature adds a new select box in the Inspector for node types to allow changing the current node type. If a node type is changed, all properties that are the same in the new node type will be kept.

Switch a Node Type in Neos


[image: Node Type Switching]

Asset Editor

Using arbitrary files (Assets) from the media browser for a node property was a very demanded feature from many Neos users. The new Asset Editor provides two additional property types for nodes to edit a single or multiple Assets in the inspector. The editor will be used for property types “TYPO3MediaDomainModelAsset” and “array<TYPO3MediaDomainModelAsset>” for single and multiple assignment respectively.

The new AssetList node type in the TYPO3.Neos.NodeTypes package is a simple implementation of a file list to render links to multiple Assets.

Asset editor in Neos


[image: Asset Editor]

Asset Linking

Besides editing Asset properties in the inspector there’s also the need to link to Assets from any inline editable content. An extended link plugin for Aloha allows to search for Assets by tag or title and select them in the results.

A new ConvertUris processor object is used to convert node:// and asset:// links via TypoScript. It’s already configured for the TYPO3.Neos:Content prototype, so no changes should be needed to use this feature.
Linking to assets in Neos


[image: Asset Linking]

Publishing and Display of Changes

Many changes and fixes have been implemented to have a consistent state of unpublished and published changes after any action in the content module. The user interface should show a correct state after publishing or discarding changes as well as editing content or creating document nodes.

Edit and Preview

The Edit / Preview panel was improved by adding a responsive slider around the buttons in the Edit and Preview sections. This allows to place more buttons and use custom edit and preview modes extensively.


[image: Edit and Preview]

Other improvements

A new loading indicator in the content module replaces the page overlay with a spinner by a more subtle progress bar under the context bar.


[image: Loading indicator]

Neos Loading indicator
The CodeMirror editor for HTML content was updated to version 3 and some annoying styling issues were fixed

The site JavaScript could break the editing UI if RequireJS was used for the website. By using a custom RequireJS context inside the Neos JavaScript this should no longer be a problem.



Content Rendering

TypoScript

The exception handling in TypoScript was improved to show the original exception if an error occurred. The ThrowingHandler exception handler implementation will just re-throw exceptions now to get a better hint about the original exception cause. The logging of exceptions in several locations was removed, so all TypoScript exception handlers have to do the actual logging themselves.

TypoScript object implementations have to implement AbstractArrayTypoScriptObject to get sub properties mapped automatically. This could be breaking for custom object implementations, note that this API is not public though.

A new BreadcrumbMenu TypoScript object was introduced in the Neos package that has item states according to Menu. The existing Breadcrumb object is deprecated now.

The Menu implementation was improved to calculate the correct entries depending on the “entryLevel” property.

Fluid

The neos:link.node and neos:uri.node view helper arguments were synchronised with the existing link view helpers from the Fluid package. The “arguments”, “section”, “addQueryString” and “argumentsToBeExcludedFromQueryString” arguments were added.

A new view helper uri.module for creating links to modules was added as an addition to the existing link.module view helper.

Eel and FlowQuery

The FlowQuery find operation added support for recursive node type or identifier queries. This allows many new exciting possibilities to query for content independent from the actual structure:


	Find a node by identifier recursively inside the given site ${q(site).find(‘#60216562-0ad9-86ff-0b32-7b7072bcb6b2’)}


	Find all nodes of a specific type recursively inside the given site ${q(site).find(‘[instanceof TYPO3.Neos.NodeTypes:Text]’)}




The filter operation now supports the != operator to support more situationens. Example:

titlePropertyIsNotEmpty = ${q(node).is('[title!=""'])}





The filter operation using the “instanceof” operator now works with attributes as well allowing for checking if attributes matches a certain type. Example:

imagePropertyIsImage = ${q(node).is([image instanceof TYPO3\Media\Domain\Model\ImageVariant])}





A new Math helper brings all JavaScript Math.* functions to Eel expressions. A comprehensive documentation will follow, but the MDN documentation is a good overview of the supported features.



Content Repository

Content Dimensions

The TYPO3CR got a new feature to store different variants of a node with the so called Content Dimensions. A Content Dimension is one aspect of a content variant like Localization, Personalization or Specialization for a Channel. Nodes can have multiple variants, each with one or multiple values for each dimension. The dimensions are configured via Settings (“TYPO3.TYPO3CR.contentDimensions”) and are generic, so the TYPO3CR has no concept of something like a locale. Each dimension has a default value that will be used if no specific dimension is given.

A Node migration is needed after adding a new dimension (the TYPO3CR package provides a migration with version 20140326143834 that will assign the default value of a dimension to all node variants).

The Context in TYPO3CR has a new property for the “dimensions” that will carry an ordered list of values for each dimension that acts as a fallback list when accessing content. This works completely transparent, so the application using the Context does not have to know about the actual content dimensions. All TYPO3CR operations will respect that fallback list and return the best matching variant of a Node.

Neos supports Content Dimensions in the backend by using the context path of nodes consistently. A new route part handler (experimental) can be activated to use prefixed route paths for a “locales” dimension. The Context in Neos will then be initialized to use the resolved locales fallback chain for all Node operations. The route part handler for the Neos frontend can be switched by configuring a different implementation for the TYPO3NeosRoutingFrontendNodeRoutePartHandlerInterface interface using Objects.yaml

To restrict the available locale fallback chains and give them a URL path prefix Neos comes with a new configuration for dimension presets (see “TYPO3.Neos.contentDimensions.dimensions”) that will also be used to fill the view selector that will be part of the next release.

Node Types

The node type configuration (NodeTypes.yaml) can be split in multiple files now. This is important for larger sites to have a better structure for the node type definitions. All files with the pattern “NodeTypes.*.yaml” will be used as a node type definition. The single “NodeTypes.yaml” file is still supported.

Independent

The TYPO3.TYPO3CR package had a dependency on TYPO3.Neos which has now been removed so the package can be used as a standalone package for Flow projects that would like to have the benefit of hierarchical nodes.

Other changes


	The TYPO3CR Node implementation got support for the new CacheAwareInterface of Flow, this allows for easier caching of nodesThe Node API will emit signals (Node::NodeAdded, Node::NodeUpdated, Node::NodeRemoved) on changes to a node, this allows to create a search index over the content or react to events for other purposes


	The ContextInterface interface was removed from the TYPO3CR package, the implementation class Context should be used instead for type hints


	The NodeConverter does not support mapping via UUIDs anymore because they do not carry any context information (e.g. for dimensions), use node context paths instead


	Removed the (implicit) dependency to the TYPO3.Neos package from TYPO3CR


	The NodeConverter supports the switching of node types by an additional “_nodeType” source property


	Node Migrations now work directly on NodeData, this could be breaking if custom Transformations or Filters were implemented






Enhancements

Removal of ExtDirect and ExtJS

The ExtJS package and usage of ExtDirect for server communication was removed in favor of plain HTTP endpoints. This is the foundation for RESTful content editing that will be a public API for Neos

The handling of the node type schema in the backend was improved to be loaded only once to reduce the number of AJAX calls.

Commands

The node type is now optional for the node:createchildnodes command.

Media

The tagging of assets via drag and drop was fixed and improved.



Breaking changes


	Content cache

Due to the content cache you have to specify the cache configuration for content collections and content
elements rendered directly on the page. This means all secondary content collections besides the primary
content and individual instantiated content objects, but not content collections inside content elements.

Read more about the details in the documentation [http://docs.typo3.org/neos/TYPO3NeosDocumentation/1.1/IntegratorGuide/ContentCache.html].





Further details can be found in the commit messages of the changes






            

          

      

      

    

  

    
      
          
            
  
ChangeLogs

To view the ChangeLogs for released versions, check the ChangeLogs chapter in the documentation of
the corresponding branch.



	4.0.17 (2019-06-16)

	4.1.15 (2019-06-14)

	4.1.16 (2019-06-16)

	4.2.11 (2019-06-14)

	4.2.12 (2019-06-16)

	4.3.0 (2019-04-15)

	4.3.1 (2019-05-06)

	4.3.10 (2020-01-15)

	4.3.11 (2020-02-25)

	4.3.12 (2020-03-29)

	4.3.13 (2020-05-04)

	4.3.14 (2020-05-18)

	4.3.15 (2020-07-06)

	4.3.16 (2020-08-14)

	4.3.17 (2020-12-02)

	4.3.18 (2021-02-23)

	4.3.19 (2021-05-02)

	4.3.2 (2019-06-14)

	4.3.3 (2019-06-17)

	4.3.4 (2019-09-02)

	4.3.5 (2019-09-24)

	4.3.6 (2019-10-25)

	4.3.7 (2019-11-06)

	4.3.8 (2019-12-14)

	4.3.9 (2020-01-14)








            

          

      

      

    

  

    
      
          
            
  
4.0.17 (2019-06-16) [https://github.com/neos/neos-development-collection/releases/tag/4.0.17]


Overview of merged pull requests



Detailed log [https://github.com/neos/neos-development-collection/compare/4.0.16...4.0.17]





            

          

      

      

    

  

    
      
          
            
  
4.1.15 (2019-06-14) [https://github.com/neos/neos-development-collection/releases/tag/4.1.15]


Overview of merged pull requests


BUGFIX: Flush affected document node on asset change [https://github.com/neos/neos-development-collection/pull/2527]

When an asset is replaced, the content cache is flushed, but in most
cases this does not have an effect. As most content nodes do not have
a cache entry, the cache entry higher in the chain needs to be
flushed.

This is now done by fetching the affected node for an asset usage and
passing that to registerNodeChange(…) in the ContentCacheFlusher.

Fixes #2061


	Packages: BaseMixins Navigation Neos






BUGFIX: The caption of assets is lost when exporting to Sites.xml [https://github.com/neos/neos-development-collection/pull/2503]

Notes:
1. I could not find tests covering this part of the code. If you point me to it, I will also add a test case for caption.
2. The copyright notice is also missing from the export, but afaik this was added in Neos 4.2, so I will open a separate PR.
3. Relations to tags and collections are also missing from the export, but they seem more complicated, so I will open separate PRs.

<!–
Thanks for your contribution, we appreciate it!

Please read through our pull request guidelines, there are some interesting things there:
https://discuss.neos.io/t/creating-a-pull-request/506

And one more thing… Don’t forget about the tests!
–>

What I did

Included the caption of assets in exports to Sites.xml.

How I did it

Added caption in ArrayConverter.php the same way as title.

How to verify it


	Add a caption to an asset.


	Export to Sites.xml.


	Do a clean import.


	Check that the caption is preserved.





	Packages: Media






BUGFIX: Changed Domains by UriConstraints will not no longer get destroyed by the LinkingService [https://github.com/neos/neos-development-collection/pull/2523]

With UriConstraints we have the ability to modify the Host but there is a problem with the LinkingService in combination with UriConstraints. If you ask the LinkingService for a absolut Uri then it add the current base to the Url.

Fixes #2398


	Packages: Neos






BUGFIX: node label sanitizing regex strips characters [https://github.com/neos/neos-development-collection/pull/2524]

What I did
[[^:print:]] resulted in the characters print: followed by ] being removed from the node label. Non-printable characters should be matched with [^[:print:]].

Resolves neos/neos-ui#2496

How to verify it
Output node labels normally including n], i] etc. e.g. in the document tree.

This PR replaces and closes #2515 which was targeting master.


	Packages: Neos






BUGFIX: Adjust warning text in setup [https://github.com/neos/neos-development-collection/pull/2510]

Fixes Issue #2488
In this PR I adjusted the somewhat missleading warning text, which is displayed in the image driver setup step, if none of the requiered drivers is installed. Additionaly I added some javascript to the image driver and the database configuration step in the setup package to disable the next button, if an error message is shown. See the PR https://github.com/neos/setup/pull/53


	Packages: Neos






TASK: Add setNoOpener property to Neos.Neos:ConvertUris documentation [https://github.com/neos/neos-development-collection/pull/2483]


	Packages: Browser Neos






BUGFIX: Use countAll of AssetRepository to get count of all assets [https://github.com/neos/neos-development-collection/pull/2403]

To get count of all assets, we should use the AssetRepository.
Solves #2358


	Packages: Browser Neos






BUGFIX: Workspace review module no longer shows target dimension [https://github.com/neos/neos-development-collection/pull/2509]

Fix the behaviour Workspace review module don’t shows target dimension

Fixes #2423


	Packages: BaseMixins Browser Neos






BUGFIX: Add translation for discard confirmation [https://github.com/neos/neos-development-collection/pull/2512]

Fixes https://github.com/neos/neos-ui/issues/2283


	Packages: BaseMixins Browser Neos






BUGFIX: Assigned asset collections cannot be unassigned [https://github.com/neos/neos-development-collection/pull/2502]

Fix the behaviour when the asset can’t be unassigned from collections

Fixes #2473



BUGFIX: Make exception for non renderable fusion path more helpful [https://github.com/neos/neos-development-collection/pull/2489]

The existing exception for non renderable fusion pathes was not very helpful hard to read and missed mentioning likely reasons like a typo in the prototype name. It also suggested a solution that is unlikely to fix the problem.

With this change the prototype name is moved to the front of the error message
as it is the most important information.

The path is removed from the message-body as the fusion exception handler will render it anyway.

The most likely reasons typo + missing prototype are mentioned first and other possible reasons
like missing parent-protopype, missing @class and missing include: later.

The proposed solution to inherit from Neos.Fusion:Template is removed as it was misleading


	Packages: Browser Fusion Neos






[TASK] Create .codeclimate.yml [https://github.com/neos/neos-development-collection/pull/6]

Adds a codeclimate configuration excluding Migrations, Tests and
JavaScript libraries.


	Packages: Browser Neos






BUGFIX: Avoid PHP exception in NamespaceDetectionTemplateProcessor [https://github.com/neos/neos-development-collection/pull/2484]

Related to neos/neos-development-collection#2479


	Packages: Browser Neos






Bugfix: Do access objects by key 0 in canEvaluate() of sort-operation [https://github.com/neos/neos-development-collection/pull/2474]

For the current use of the sort operation, the element with key 0 must be present in $context. But this is not necessary for the sort itself. Consequently, the sort operation does not work using arrays without key 0.

Access via pointer avoids this problem in this PR.


	Packages: Neos






Remove wrong property from component wiring property list [https://github.com/neos/neos-development-collection/pull/2480]

The property node is not a wired property


	Packages: Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.1.14...4.1.15]





            

          

      

      

    

  

    
      
          
            
  
4.1.16 (2019-06-16) [https://github.com/neos/neos-development-collection/releases/tag/4.1.16]


Overview of merged pull requests



Detailed log [https://github.com/neos/neos-development-collection/compare/4.1.15...4.1.16]





            

          

      

      

    

  

    
      
          
            
  
4.2.11 (2019-06-14) [https://github.com/neos/neos-development-collection/releases/tag/4.2.11]


Overview of merged pull requests


BUGFIX: Flush affected document node on asset change [https://github.com/neos/neos-development-collection/pull/2527]

When an asset is replaced, the content cache is flushed, but in most
cases this does not have an effect. As most content nodes do not have
a cache entry, the cache entry higher in the chain needs to be
flushed.

This is now done by fetching the affected node for an asset usage and
passing that to registerNodeChange(…) in the ContentCacheFlusher.

Fixes #2061


	Packages: BaseMixins Navigation Neos






BUGFIX: The copyright notice of assets is lost when exporting to Sites.xml [https://github.com/neos/neos-development-collection/pull/2529]

see also #2503

<!–
Thanks for your contribution, we appreciate it!

Please read through our pull request guidelines, there are some interesting things there:
https://discuss.neos.io/t/creating-a-pull-request/506

And one more thing… Don’t forget about the tests!
–>

What I did

Included the copyright notice of assets in exports to Sites.xml.

How I did it

Added copyrightNotice in ArrayConverter.php the same way as title.

How to verify it


	Add a copyright notice to an asset.


	Export to Sites.xml.


	Do a clean import.


	Check that the copyright notice is preserved.





	Packages: Media Neos






BUGFIX: The caption of assets is lost when exporting to Sites.xml [https://github.com/neos/neos-development-collection/pull/2503]

Notes:
1. I could not find tests covering this part of the code. If you point me to it, I will also add a test case for caption.
2. The copyright notice is also missing from the export, but afaik this was added in Neos 4.2, so I will open a separate PR.
3. Relations to tags and collections are also missing from the export, but they seem more complicated, so I will open separate PRs.

<!–
Thanks for your contribution, we appreciate it!

Please read through our pull request guidelines, there are some interesting things there:
https://discuss.neos.io/t/creating-a-pull-request/506

And one more thing… Don’t forget about the tests!
–>

What I did

Included the caption of assets in exports to Sites.xml.

How I did it

Added caption in ArrayConverter.php the same way as title.

How to verify it


	Add a caption to an asset.


	Export to Sites.xml.


	Do a clean import.


	Check that the caption is preserved.





	Packages: Media






BUGFIX: Changed Domains by UriConstraints will not no longer get destroyed by the LinkingService [https://github.com/neos/neos-development-collection/pull/2523]

With UriConstraints we have the ability to modify the Host but there is a problem with the LinkingService in combination with UriConstraints. If you ask the LinkingService for a absolut Uri then it add the current base to the Url.

Fixes #2398


	Packages: Neos






BUGFIX: node label sanitizing regex strips characters [https://github.com/neos/neos-development-collection/pull/2524]

What I did
[[^:print:]] resulted in the characters print: followed by ] being removed from the node label. Non-printable characters should be matched with [^[:print:]].

Resolves neos/neos-ui#2496

How to verify it
Output node labels normally including n], i] etc. e.g. in the document tree.

This PR replaces and closes #2515 which was targeting master.


	Packages: Neos






BUGFIX: Adjust warning text in setup [https://github.com/neos/neos-development-collection/pull/2510]

Fixes Issue #2488
In this PR I adjusted the somewhat missleading warning text, which is displayed in the image driver setup step, if none of the requiered drivers is installed. Additionaly I added some javascript to the image driver and the database configuration step in the setup package to disable the next button, if an error message is shown. See the PR https://github.com/neos/setup/pull/53


	Packages: Neos






TASK: Add setNoOpener property to Neos.Neos:ConvertUris documentation [https://github.com/neos/neos-development-collection/pull/2483]


	Packages: Browser Neos






BUGFIX: Use countAll of AssetRepository to get count of all assets [https://github.com/neos/neos-development-collection/pull/2403]

To get count of all assets, we should use the AssetRepository.
Solves #2358


	Packages: Browser Neos






BUGFIX: Workspace review module no longer shows target dimension [https://github.com/neos/neos-development-collection/pull/2509]

Fix the behaviour Workspace review module don’t shows target dimension

Fixes #2423


	Packages: BaseMixins Browser Neos






BUGFIX: Add translation for discard confirmation [https://github.com/neos/neos-development-collection/pull/2512]

Fixes https://github.com/neos/neos-ui/issues/2283


	Packages: BaseMixins Browser Neos






BUGFIX: Assigned asset collections cannot be unassigned [https://github.com/neos/neos-development-collection/pull/2502]

Fix the behaviour when the asset can’t be unassigned from collections

Fixes #2473



BUGFIX: Make exception for non renderable fusion path more helpful [https://github.com/neos/neos-development-collection/pull/2489]

The existing exception for non renderable fusion pathes was not very helpful hard to read and missed mentioning likely reasons like a typo in the prototype name. It also suggested a solution that is unlikely to fix the problem.

With this change the prototype name is moved to the front of the error message
as it is the most important information.

The path is removed from the message-body as the fusion exception handler will render it anyway.

The most likely reasons typo + missing prototype are mentioned first and other possible reasons
like missing parent-protopype, missing @class and missing include: later.

The proposed solution to inherit from Neos.Fusion:Template is removed as it was misleading


	Packages: Browser Fusion Neos






[TASK] Create .codeclimate.yml [https://github.com/neos/neos-development-collection/pull/6]

Adds a codeclimate configuration excluding Migrations, Tests and
JavaScript libraries.


	Packages: Browser Neos






BUGFIX: Avoid PHP exception in NamespaceDetectionTemplateProcessor [https://github.com/neos/neos-development-collection/pull/2484]

Related to neos/neos-development-collection#2479


	Packages: Browser Neos






Bugfix: Do access objects by key 0 in canEvaluate() of sort-operation [https://github.com/neos/neos-development-collection/pull/2474]

For the current use of the sort operation, the element with key 0 must be present in $context. But this is not necessary for the sort itself. Consequently, the sort operation does not work using arrays without key 0.

Access via pointer avoids this problem in this PR.


	Packages: Neos






Remove wrong property from component wiring property list [https://github.com/neos/neos-development-collection/pull/2480]

The property node is not a wired property


	Packages: Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.2.10...4.2.11]





            

          

      

      

    

  

    
      
          
            
  
4.2.12 (2019-06-16) [https://github.com/neos/neos-development-collection/releases/tag/4.2.12]


Overview of merged pull requests



Detailed log [https://github.com/neos/neos-development-collection/compare/4.2.11...4.2.12]





            

          

      

      

    

  

    
      
          
            
  
4.3.0 (2019-04-15) [https://github.com/neos/neos-development-collection/releases/tag/4.3.0]


Overview of merged pull requests


BUGFIX: Fix site-package generator [https://github.com/neos/neos-development-collection/pull/2447]

Somehow the classic site generator did not replace the occurrences of the package names
in fusion reference://{packageKey}/… strings any more while in other places this still worked.

This works around this by falling back to a very plain search replace based implementation that is only used on the fusion files.

With this change a site package created with the setup tool or the kickstart:site command will not directly welcome the user with fusion-errors which it did before.


	Packages: SiteKickstarter






FEATURE: Variant view in react and possibility of cropping [https://github.com/neos/neos-development-collection/pull/2426]

This variant view based on React is a beta feature, just like the current
implementation of the variant view. It allows to crop any preset variant
with a crop, retaining the current aspect ratio.


	Packages: Browser Media






BUGFIX: Apply enforced image format conversions to all generated images [https://github.com/neos/neos-development-collection/pull/2431]

Previously the configured image format conversions were only applied when a target size was specified. That made the preview images in the media module still not show thumbnails for tiff images.

In addition the new configuration is much more generic and is easier to support in future when we may improve the implementation.

This change removes the ConvertImageThumbnail Generator and the Configuration that came with it and introduces a setting Neos.Media.image.defaultOptions.convertFormats instead. The setting is a key-value-list that allows to specify which media types shall be converted whenever they are rendered. The key in the new configuration is the the source media-type and the value is the target media-type or file-extension.

By default the setting is empty since all format conversions have to be supported by by the imagine driver and especially Gd lacks some features.

With the following setting you setup automatic conversion of tiff images to jpg:
```
Neos:



	Media:
	
	image:
	
	defaultOptions:
	# Image formats that shall always be converted regardless wether an adjustment was applied or not
# The key is the the source media-type and the value is the target media-type or file-extension.
convertFormats:


image/tiff: image/jpeg



















```

!!! This replaces the implementation for the default conversions in #2389 with a more generic approach wich is non breaking since it was not released yet.


	Packages: Media Neos






FEATURE: Add release notes [https://github.com/neos/neos-development-collection/pull/2440]


	Packages: Neos






BUGFIX: add missing and new copyright field to the edit and new dialog in the media manager [https://github.com/neos/neos-development-collection/pull/2444]

add the missing copyright field again and also added a new on for the “new” dialog


	Packages: Browser






BUGFIX: add equals() methods on ContentStreamIdentifier and TraversableNode, use it in TraversableNodes [https://github.com/neos/neos-development-collection/pull/2442]


	Packages: ContentRepository






BUGFIX: Fix tag rendering in media module [https://github.com/neos/neos-development-collection/pull/2439]

The names of tags were not rendered in the sidebar of the media module since https://github.com/neos/neos-development-collection/pull/2408 was merged because of an incomplete renaming from tag to retrievedTag


	Packages: Browser






TASK: Adjust created responses to ``ActionResponse`` [https://github.com/neos/neos-development-collection/pull/2438]

This changes responses created in various areas of Neos to be
of the new ActionResponse class in preparation of the next
major version.

Related: #2437


	Packages: Fusion Neos






Namespace and interface adjustments [https://github.com/neos/neos-development-collection/pull/2430]

This


	moves the new interfaces and value objects to conceptually matching namespaces (e.g. NodeAggregateIdentifier -> NodeAggregate, NodeTypeConstraintFactory -> NodeType)


	makes NodeName nullable


	moves getDimensionSpacePoint from NodeInterface to TraversableNodeInterface


	removes getSubgraph from TraversableNodeInterface


	removes the now obsolete RootNodeIdentifiers class


	removes the now obsolete NodeIdentifier class


	Packages: Browser






` FEATURE: Set crop image adjustment by aspect ratio <https://github.com/neos/neos-development-collection/pull/2408>`_

This change introduces a new property “aspectRatio” for the crop image
adjustment. It allows users to set a cropping area simply by providing
an aspect ratio, instead of x, y, width and height.

If an aspect ratio is specified, the x, y, width, and height parameters
are automatically deactivated. Likewise, if x, y, width or height are
specified, a potentially defined aspect ratio value will be reset.


	Packages: Media






TASK: Remove NodeInterface::getNodeIdentifier and add root node type name constant [https://github.com/neos/neos-development-collection/pull/2425]

This change is required to adjust the codebase to our current Event Sourced CR refactoring, where we drop the NodeInterface::nodeIdentifier.



TASK: Adjust Login Wallpaper for Neos 4.3 [https://github.com/neos/neos-development-collection/pull/2421]


	Packages: Neos






BUGFIX: Respect settings for quality and format even if images are smaller that target dimensions [https://github.com/neos/neos-development-collection/pull/2422]

Thumbnail images always returned the original source if allowUpscaling is false and the target size is smaller than the original image. This is unexpected when quality and format are defined.

This change makes sure the new assets are rendered when quality and format is defined.
The dimension calculation of the target images respects the allowUpscaling if the source is smaller that the target dimension.

Resolves: #2416


	Packages: AssetList BaseMixins Browser ColumnLayouts ContentReferences ContentRepository Form Html Media Navigation Neos NodeTypes






BUGFIX: Lowercase Node Names upon creation [https://github.com/neos/neos-development-collection/pull/2419]

This adjusts the NodeName Value Object to always convert the given
value to lower case when created via the fromString() constructor.

Background:
Node names are considered to be case insensitive. Internally they are
stored lower case but the NodeInterface::MATCH_PATTERN_NAME does not
allow for camel case names.

Fixes: #2418


	Packages: ContentRepository Media






FEATURE: Trigger signal when Thumbnail is persisted [https://github.com/neos/neos-development-collection/pull/2390]

PR for issue #2387

What I did
Added a signal thumbnailPersisted and an ORM lifecycle callback that triggers the signal once the thumbnail is persisted.

How I did it
Added two methods in Neos\Media\Domain\Model\Thumbnail: one for the signal and one for the lifecycle callback that triggers the signal.

Checklist


	[x] Code follows the PSR-2 coding style


	[x] Tests have been created, run and adjusted as needed


	[x] The PR is created against the [lowest maintained branch](https://www.neos.io/features/release-roadmap.html)





	Packages: Media






BUGFIX: node:repair now handles node->getProperties() as ArrayObject [https://github.com/neos/neos-development-collection/pull/2411]

What I did
I changed the code of the node:repair command to handle the result of node->getProperties() as ArrayObject and not as array, because that recently changed.

How I did it
Instead of getting the key via array_keys the properties are now iterated to find undefinded properties.

How to verify it
* run the node:repair-command on a content repository that is fine already => it should not complain about anything
* add a undefinded property to a node (by editing a record in the nodedata-table directly) and run node:repair => you should be asked if you want to remove the undefinded property


	Packages: ContentRepository






BUGFIX: Image previews should be rendered for asset proxies as well [https://github.com/neos/neos-development-collection/pull/2412]

The previous code must be a leftover from an upmerge and it results in
fatal errors when trying to open the details of an asset coming from a
proxy source.


	Packages: Browser Neos






TASK: Add PgSQL migration to support variant presets [https://github.com/neos/neos-development-collection/pull/2410]


	Packages: Media Neos






BUGFIX: Add missing Eel FileHelper registration [https://github.com/neos/neos-development-collection/pull/2407]

Register the file helper by default so that they can be used in Fusion, without the need of separate registration.

Solves Issue: #2405


	Packages: Fusion Neos






FEATURE: Automatic image variants generation [https://github.com/neos/neos-development-collection/pull/2396]

This change adds a feature which allows to automatically generate variants of an original image based on the newly introduced image variant presets configuration.

In this first version, variants are automatically created as soon as an asset is created – for example, when it has been uploaded by an editor or otherwise been imported. Future versions may defer this
generation into a job queue, or provide a way to put conditions of the generation of these variants.

See the included documentation for configuration syntax and further background.

This change also includes a basic view displaying all variants of an asset in the edit view of the Media Browser. While this new view (implemented as a tab) may be useful already, it is neither especially
polished nor does it provide additional features. Therefore it is disabled by a feature switch for now. See the Settings.yaml of Neos.Media.Browser for details on enabling the tab.


	Packages: Media






FEATURE: Add fallback from `itemRenderer` to `content` for `Neos.Fusion:Map` and derived prototypes [https://github.com/neos/neos-development-collection/pull/2400]

This allows to declare the itemRenderers in afx without @children annotation and avoids a
common error in afx code.

Affected prototypes:
-  Neos.Fusion:Map
-  Neos.Fusion:RawCollection
-  Neos.Fusion:Loop
-  Neos.Fusion:Collection


	Packages: Fusion Neos






FEATURE: Add native 404 error rendering that can be controlled via Fusion [https://github.com/neos/neos-development-collection/pull/2374]

This change adds the default fusion path error that is used to render status messages
for the status codes 403, 404 and 410.


	The matcher receives the context values exception, renderingOptions, statusCode,
	statusMessage and referenceCode and will by default render the previous template.





By extending the error Case you can add custom 404 rendering like in the example below.

```
#
# Extend error matcher to render the document with uriPathSegment notfound
# for exceptions with 4xx status code
#
error {


@context.notfoundDocument = ${q(site).children(‘[instanceof Neos.Neos:Document]’).filter(‘[uriPathSegment=”notfound”]’).get(0)}


	4xx {
	@position = ‘start’
condition = ${statusCode >= 400 && statusCode < 500 && notfoundDocument}
renderer = Neos.Fusion:Renderer {


@context.node = ${notfoundDocument}
renderPath = ‘/root’




}





}





}

Resolves: #2325


	Packages: Neos







BUGFIX: Remove coupling of functional tests to `Neos:Demo` and `Neos.NodeTypes` [https://github.com/neos/neos-development-collection/pull/2401]

The previous tests tested nodetypes from those external packages which lead to testing errors because of changes to the master of Neos.Demo. This change uses nodetypes local to the testing context of the cr itself.

This is cleaner and a preparation to move Neos.NodeTypes out of the development collection someday. Right now it allows to run the functional tests without Neos.Demo or Neos.NodeTyoes beeing installed.


	Packages: Neos






FEATURE: Move new NodeInterface and TraversableNodeInterface to core [https://github.com/neos/neos-development-collection/pull/2202]

## Ready for final review / Merging.

This Pull Request does three things:


	Introduce the Event-Sourced NodeInterface and TraversableNodeInterface in the core


	make the “old” Node implement TraversableNodeInterface as far as possible.


	adjust FlowQuery operation code to work on the new TraversableNodeInterface whereever it makes sense.




This change is necessary to ensure a smooth upgrade lateron to the Event Sourced CR; so people working with NodeInterface in their custom code can already start using TraversableNodeInterface today.

The change is rather big, but **not breaking** (at least it should not be breaking ;) )

## ToDo List


	[x] move new NodeInterface and TraversableNodeInterface to CR


	[x] adjust TraversableNodeInterface to have proper method namings. Everything which queries something should be called find*; as opposed to get*.


	[x] make old Node implement TraversableNodeInterface


	[x] make compatible to PHP 7.1 (not sure if things need to be done; travis will tell us!)


	[x] fix test cases


	[x] go through all FlowQueryOperations in Neos and ensure they work with TraversableNodeInterface / new NodeInterface (partially done)


	[x] ensure the new NodeInterface and TraversableNodeInterface have proper API descriptions; and the old NodeInterface has proper deprecation messages set up





	Packages: Neos






FEATURE: Add ``format`` option for image-prototypes, viewHelpers and presets [https://github.com/neos/neos-development-collection/pull/2389]

The option format is added to imagePresets, viewHelpers and FusionPrototypes.
The format is passed as string “jpg”, “jpeg”, “gif”, “png”, “wbmp”, “xbm”, “webp” and “bmp” are supported. If no format is given the crops will use the format of the original image.

This allows to to enforce rendering of crops in jpeg or png but also adds support for rendering
of webp-images as alternate sources.

Additionally this pr adds the ConvertImageThumbnailGenerator that allows to specify images that should be converted for online-presentation to an optimized target format. While the default imageFormat is specified in the settings this can still be overridden via format option on
the thumbnail-configurations.

The ConvertImageThumbnailGenerator is configured via settings:

```
Neos:



	Media:
	
	thumbnailGenerators:
	
	Neos\Media\Domain\Model\ThumbnailGenerator\ConvertImageThumbnailGenerator:
	
	supportedExtensions:
	
	tiff








targetExtension: jpg
















```

Resolves. #2320


	Packages: Media Neos






FEATURE: Add `Neos.Neos:MenuItems`, `Neos.Neos:DimensionMenuItems` and `Neos.Neos:BreadcrumbMenuItems` prototypes [https://github.com/neos/neos-development-collection/pull/2381]

Three new fusion prototypes are added that extract the rendering of the items that are passed to the template from Neos.Neos:Menu, Neos.Neos:BreadcrumbMenu and Neos.Neos:DimensionsMenu and make those items available for direct Fusion use without Template.

In addition the Neos.Neos:*Menu prototypes are now based on Neos.Neos:Template and do not have a custom implementation any more.

Attention: This change removes the old MenuImplementation classes. Those are not part of the api so this is still non-breaking since the ``*Menu``fusion prototypes still support all previous options by beeing based on ``Neos.Fusion:Template`` now instead of extending the TemplateImplementation class.

### Neos.Neos:MenuItems

Create a list of menu items for nodes. Each menuItem has the properties: node, originalNode, state, label and menuLevel.


	entryLevel (integer) Start the menu at the given depth


	maximumLevels (integer) Restrict the maximum depth of items in the menu (relative to entryLevel)


	startingPoint (Node) The parent node of the first menu level (defaults to node context variable)


	lastLevel (integer) Restrict the menu depth by node depth (relative to site node)


	filter (string) Filter items by node type (e.g. '!My.Site:News,Neos.Neos:Document'), defaults to 'Neos.Neos:Document'


	renderHiddenInIndex (boolean) Whether nodes with hiddenInIndex should be rendered, defaults to false


	itemCollection (array) Explicitly set the Node items for the menu (alternative to startingPoints and levels)




### Neos.Neos:BreadcrumbMenuItems

Create a list of of menu-items for a breadcrumb (ancestor documents), based on Neos.Neos:MenuItems.

### Neos.Neos:DimensionsMenuItems

Create a list of menu-items for other node variants (e.g. variants of the current node in other dimensions) by using this Fusion object.

If the dimension setting is given, the menu will only include items for this dimension, with all other configured dimension being set to the value(s) of the current node. Without any dimension being configured, all possible variants will be included.

If no node variant exists for the preset combination, a NULL node will be included in the item with a state absent.


	dimension (optional, string): name of the dimension which this menu should be based on. Example: “language”.


	presets (optional, array): If set, the presets rendered will be taken from this list of preset identifiers


	includeAllPresets (boolean, default false) If TRUE, include all presets, not only allowed combinations


	renderHiddenInIndex (boolean, default true) If TRUE, render nodes which are marked as “hidded-in-index”





	Packages: Neos






BUGFIX: Allow using font awesome brand icons in backend modules [https://github.com/neos/neos-development-collection/pull/2388]

This was broken with 4.0 as fontawesome styling changed.

What I did

Inherit the font family for the icon pseudo element from the surrounding fa* class.

How to verify it

Use fab fa-google as icon for a backend module, f.e. Media Browser.
Instead of an empty square you should see the Google icon.


	Packages: Neos






FEATURE: Add NodeLink fusion prototype [https://github.com/neos/neos-development-collection/pull/2370]

The Neos.Neos:NodeLink fusion prototype is added which renders an <a> tag based on Neos.Neos:NodeUri, similar to Neos.Neos:ImageTag and Neos.Neos:ImageUri.


	all properties of Neos.Neos:NodeUri are supported and passed over


	attributes (Neos.Fusion:Attributes) Link tag attributes


	content (string) The label of the link, defaults to the node label q(node).property('_label').




This helps reducing code lines especially when using fusion-afx, with this prototype you can now directly link nodes in an afx renderer.


	Packages: Neos






TASK: More adjustments to Behat code [https://github.com/neos/neos-development-collection/pull/2382]


	Packages: BaseMixins Browser ContentRepository Neos






!!!TASK: Upgrade to latest neos/behat version [https://github.com/neos/neos-development-collection/pull/2343]

Test distribution for travis:
https://travis-ci.com/johannessteu/neos-development-distribution/builds/97495679


	Packages: Neos






!!! TASK: Tweak CR Value Objects [https://github.com/neos/neos-development-collection/pull/2362]

for better type safety and interoperability


	Packages: ContentRepository






Add Pull Reminders badge [https://github.com/neos/neos-development-collection/pull/2335]

Hi everyone!

Over 500 open-source organizations (like yours) use [Pull Reminders](http://pullreminders.com) for free. We’ve created this README badge so we can hopefully drive some traffic back to our website and continue sustainably providing free accounts to open-source orgazniations.  Let me know if you have any concerns about adding it. Here’s [more information](https://pullreminders.com/badge) about the badge program.



FEATURE: Hide property “target” of Neos.Neos.ShortCut depending on targetMode [https://github.com/neos/neos-development-collection/pull/2303]

What I did/How I did it
I added configuration to the shortcut nodetype definition to hide the target-property in the UI when targetMode is not “selectedTarget”

How to verify it
Insert a shortcut node. You should not see the target-property untill you change the targetMode to “selectedTarget”


	Packages: Neos






Add deprecation annotations to methods that will be removed [https://github.com/neos/neos-development-collection/pull/2332]

Adds @deprecated annotations to methods from NodeInterface
and Node that will be replaced/removed with the CR rewrite.


	Packages: ContentRepository Neos






TASK: Update 3rd party dependency constraints [https://github.com/neos/neos-development-collection/pull/2318]

This allows semantically non-breaking updates for a number of 3rd
party dependencies. It includes PR #2299 and is related to
neos/flow-development-collection#1481

It makes ImportedAsset a non-final class to allow Doctrine to create
a proxy for it.


	Packages: Media






WIP: TASK: Cleanup Node and TraversableNode interfaces [https://github.com/neos/neos-development-collection/pull/2288]


	Introduce TraversableNodes as replacement for array<TraversableNodeInterface>


	Replace nullable param and return types where possible


	Add missing (return) type annotations


	Packages: ContentRepository







Detailed log [https://github.com/neos/neos-development-collection/compare/4.2.9...4.3.0]





            

          

      

      

    

  

    
      
          
            
  
4.3.1 (2019-05-06) [https://github.com/neos/neos-development-collection/releases/tag/4.3.1]


Overview of merged pull requests


TASK: Correct syntax [https://github.com/neos/neos-development-collection/pull/2476]


	Packages: ContentRepository Neos






BUGFIX: Fix `parents` flowQuery operation accidentally returning the `/sites` and `/` node [https://github.com/neos/neos-development-collection/pull/2464]

The test that should verify this behavior failed to mock the root and sites node and thus the exclusion of /sites was not verified correctly.

Resolves: #2459


	Packages: Neos






BUGFIX: Filtering by nodeType that has subtypes causes a php_error [https://github.com/neos/neos-development-collection/pull/2461]

When calculating constraints for nodeType filter the nodeDataRepository currently puts the nodeType that was given as filter-argument directly as string to the returned constraint-object but all superTypes as NodeType-objects. This later causes trouble once the types are passed to the isOfType method that expects (but not enforces) strings.

The problem exists since ages but is exposed in Neos 4.2 by the altered handling of removed NodeTypes. Before that isOfType implicitly accepted a NodeType as argument. The added checks for declaredSuperTypes that are null (removed by subtype) broke this implication.

Resolves: https://github.com/neos/neos-development-collection/issues/2460


	Packages: ContentRepository






BUGFIX: Fix return type annotation [https://github.com/neos/neos-development-collection/pull/2456]

The return type annotation for getParent() was wrong


	Packages: ContentRepository Neos






Apply fixes from StyleCI [https://github.com/neos/neos-development-collection/pull/2454]

This pull request applies code style fixes from an analysis carried out by [StyleCI](https://github.styleci.io).

—

For more information, click [here](https://github.styleci.io/analyses/q5w93B).


	Packages: Browser Neos






DOCS: Fix code blocks [https://github.com/neos/neos-development-collection/pull/2455]


	Packages: Neos






TASK: Update release notes [https://github.com/neos/neos-development-collection/pull/2451]


	Packages: Neos






BUGFIX: Use correct Flow version within 4.3 dev collection [https://github.com/neos/neos-development-collection/pull/2452]



TASK: Contain dimension changes in tests to test case only [https://github.com/neos/neos-development-collection/pull/2427]

The reset to empty array was technically wrong because dimensions were
configured. While this is not an issue at this time, it can be one
when other tests rely on the integrity of configured dimensions and
the repository.


	Packages: Neos






BUGFIX: Allow translation of the textareaeditor placeholder [https://github.com/neos/neos-development-collection/pull/2404]

This additionally requires a fix in the ui which will be done in the neos-ui package.

What I did

Add the textarea editor for configuration enrichment.

How to verify it

When using i18n in the placeholder it should show the full translation path in the textarea editor instead of just i18n.


	Packages: Neos






BUGFIX: No redirect with status 201 [https://github.com/neos/neos-development-collection/pull/2415]

Sending a redirect code of 201 does not cause the browser to redirect
and leads to a blank page.

Fixes: #2414


	Packages: Browser Neos






TASK: Translate Site Management [https://github.com/neos/neos-development-collection/pull/2397]

The Site Management uses labels both from Main.xlf and Modules.xlf. For the labels from Module.xlf, the source attribute must be set. Apart from that, some labels didn’t have a translation at all. This change makes the Site Management fully localizable.

Fixes #2394


	Packages: Neos






BUGFIX: Forward `removedContentShown` in Context->getNodeByIdentifier() [https://github.com/neos/neos-development-collection/pull/2293]

fixes #2292


	Packages: ContentRepository






BUGFIX: Testing Policy has a working expression [https://github.com/neos/neos-development-collection/pull/2391]

The policy expression was wrong and leads to initialize*Action functions being included in the AllControllerActions privilege. That is wrong and can lead to errors in tests. Compared to the (non testing) policy the new expression now works as expected.


	Packages: Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.0...4.3.1]





            

          

      

      

    

  

    
      
          
            
  
4.3.10 (2020-01-15) [https://github.com/neos/neos-development-collection/releases/tag/4.3.10]


Overview of merged pull requests


TASK: PHP 7.4 compatibility [https://github.com/neos/neos-development-collection/pull/2804]

See https://github.com/neos/flow-development-collection/issues/1866


	Packages: Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.9...4.3.10]





            

          

      

      

    

  

    
      
          
            
  
4.3.11 (2020-02-25) [https://github.com/neos/neos-development-collection/releases/tag/4.3.11]


Overview of merged pull requests


BUGFIX: Flush content cache on image variant change [https://github.com/neos/neos-development-collection/pull/2910]

If you access an image property in a node and render an ImageVariant
from it via Fusion using an image variant preset, the cache is now
flushed if the image variant is changed afterwards, e.g. when changing
the crop in the media management module.

Fixes #2897


	Packages: Media Neos






BUGFIX: Access tags of asset in media list view [https://github.com/neos/neos-development-collection/pull/2917]

This uses assetProxy.asset.tags instead of just assetProxy.tags
as a simple way to fix the display of assigned tags in the media
browser list view.

Fixes neos/neos-development-collection#2350


	Packages: Browser






TASK: Remove unused template [https://github.com/neos/neos-development-collection/pull/2912]

This code should have been removed when the UsageController was
introduced in ea7587374012b35d45d1c7402c43410353613f6d [https://github.com/neos/neos-development-collection/commit/ea7587374012b35d45d1c7402c43410353613f6d].


	Packages: Browser






TASK: Remove unused code [https://github.com/neos/neos-development-collection/pull/2911]

This code should have been removed when the ImageVariantController
was introduced in 0aa2eed015e02a468f9b2e8e1d08f8275349edde [https://github.com/neos/neos-development-collection/commit/0aa2eed015e02a468f9b2e8e1d08f8275349edde]. Which
means it should have never been there. ;)


	Packages: Browser






BUGFIX: Prevent double dash formatting in docs for node:repair command [https://github.com/neos/neos-development-collection/pull/2908]

The readthedocs command reference formats double dashes
as one long dash. Copying the command into the CLI will therefore
not work properly as f.e. the node-type filter will not apply
and all nodes are repaired.


	Packages: Neos






BUGFIX: Correct code blocks in documentation [https://github.com/neos/neos-development-collection/pull/2904]


	Packages: Media Neos






TASK: Fix validation warnings/errors on .travis.yml [https://github.com/neos/neos-development-collection/pull/2901]

Fixes build config validation complaints:


	W jobs.include: deprecated key sudo (The key sudo has no effect anymore.)


	W notifications.slack: unknown key on_start (never)


	I root: missing os, using the default linux


	I root: key matrix is an alias for jobs, using jobs





	Packages: Browser Neos






BUGFIX: Convert DateTimeImmutable “Now” into DateTime for account deactivation [https://github.com/neos/neos-development-collection/pull/2859]

Convert “Now” based on DateTimeImmutable to DateTime, as Account::setExpirationDate expects it.

Fixes #2131


	Packages: Neos






TASK: Pass on previous exception in getImageSize() [https://github.com/neos/neos-development-collection/pull/2877]


	Packages: Browser Media Neos






BUGFIX: Respect arguments value as defined in Neos.Neos:NodeUri [https://github.com/neos/neos-development-collection/pull/2893]

The prototype Neos.Neos:NodeUri defines arguments = Neos.Fusion:RawArray
but this value is never processed in the PHP implementation.
Instead, the additionalParams is processed and passed to
the parameter arguments of the NodeLiking service.

Now both parameters are used. additionalParams should be deprecated.


	Packages: Browser Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.10...4.3.11]





            

          

      

      

    

  

    
      
          
            
  
4.3.12 (2020-03-29) [https://github.com/neos/neos-development-collection/releases/tag/4.3.12]


Overview of merged pull requests


BUGFIX: Use Neos config when overriding FrontendRoutePartHandler [https://github.com/neos/neos-development-collection/pull/2949]

When overriding the FrontendRouterPartHandler with a custom implementation but inheriting from it the configuration was not read from Neos.Neos but from the package that did the override.
This causes the setting to always be false and makes the routing not work properly when
having empty segments for dimensions. This is then quite difficult to debug.

Custom implementations can still decide to override the config and read it from somewhere else if required.


	Packages: Browser Neos






BUGFIX: fix isDescendantNodeOf permission with UUIDs if specified node is hidden [https://github.com/neos/neos-development-collection/pull/2866]

Resolves: #2865


	Packages: AssetList Browser ContentReferences ContentRepository Form Navigation Neos






BUGFIX: Don’t use technical workspace name in the UI [https://github.com/neos/neos-development-collection/pull/2920]

The technical name as title can be confusing as it doesn’t
change when the workspace title is changed.


	Packages: Neos






BUGFIX: Have NeosAssetProxy return resource on getImportStream [https://github.com/neos/neos-development-collection/pull/2922]

The AssetProxyInterface declares getImportStream() must return
resource. The NeosAssetProxy returns ?UriInterface there, which
breaks the contract.

In some places getImportStream() is used to access the original URI
(see #2190), but for other proxies, the resulting link target is
Resource id #x since the resource is cast to string and used as is.

This fixes the issue by making getImportStream() in NeosAssetProxy
return resource as expected and add (back) getOriginalUri() to the
proxy. The URI can be used for a download.

An additional ProvidesOriginalUriInterface is added, which can be
implemented by asset sources at will.

Fixes #2918


	Packages: Media Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.11...4.3.12]





            

          

      

      

    

  

    
      
          
            
  
4.3.13 (2020-05-04) [https://github.com/neos/neos-development-collection/releases/tag/4.3.13]


Overview of merged pull requests


TASK: Fix failing evaluateReplaceResourceLinkTargetsInsideTag test [https://github.com/neos/neos-development-collection/pull/2972]

Fixes the test that is failing since merging https://github.com/neos/neos-development-collection/pull/2409


	Packages: Neos






BUGFIX: Prevent exception in asset usage view via editor [https://github.com/neos/neos-development-collection/pull/2957]

Resolves: #2956


	Packages: Browser






BUGFIX: Respect super types in CreateNodePrivilege [https://github.com/neos/neos-development-collection/pull/2961]

Fixes the createdNodeIsOfType() matcher so that it works respects
the inheritance chain:



	privilegeTargets:
	
	‘Neos\ContentRepository\Security\Authorization\Privilege\Node\CreateNodePrivilege’:
	
	‘Cornelsen.Webkatalog:Nodes.DisableCreation’:
	matcher: ‘createdNodeIsOfType(“Some.Package:Some.Mixin”)’
















Fixes: #2960


	Packages: ContentRepository






BUGFIX: Prevent black shapes in document thumbnails [https://github.com/neos/neos-development-collection/pull/2879]

What I did
Tested with the following imagick versions:


	
	6.7.8






	
	6.9






	
	7.0








How I did it

See below
How to verify it

You can verifiy it by running this small code local:

```php
<?php
$filePath = ‘pdf.pdf[0]’;
$width = 500;
$height = 500;

$im = new \Imagick();
$im->setResolution(120, 120);
$im->readImage($filePath);
$im->setImageFormat(‘png’);
$im->setImageBackgroundColor(‘white’);
$im->setImageCompose(\Imagick::COMPOSITE_OVER);


	if (method_exists($im, ‘mergeImageLayers’)) {
	// Replace flattenImages in imagick 3.3.0
// @see https://pecl.php.net/package/imagick/3.3.0RC2
$im = $im->mergeImageLayers(\Imagick::LAYERMETHOD_MERGE);



	} else {
	$im->flattenImages();





}


	if (defined(’\Imagick::ALPHACHANNEL_OFF’)) {
	// ImageMagick >= 7.0, Imagick >= 3.4.3RC1
// @see https://pecl.php.net/package/imagick/3.4.3RC1
$im->setImageAlphaChannel(\Imagick::ALPHACHANNEL_OFF);



	} else {
	$im->setImageAlphaChannel(\Imagick::ALPHACHANNEL_RESET);





}

$im->thumbnailImage($width, $height, true);

$im->writeImage(‘thumb.png’);
$im->destroy();
```
Checklist


	[x] Code follows the PSR-2 coding style


	[x] Tests have been created, run and adjusted as needed


	[x] The PR is created against the [lowest maintained branch](https://www.neos.io/features/release-roadmap.html)





	Packages: Media






BUGFIX: Neos.NodeTypes:Menu has no default class attribute [https://github.com/neos/neos-development-collection/pull/2518]

This fixes a previous breaking change where “Menu” node-type is not
getting a default class attribute rendered for instance ‘neos-nodetypes-menu’
where a website’s stylesheet is relying on this CSS class

<!–
Thanks for your contribution, we appreciate it!

Please read through our pull request guidelines, there are some interesting things there:
https://discuss.neos.io/t/creating-a-pull-request/506

And one more thing… Don’t forget about the tests!
–>

What I did
In fusion prototype Neos.NodeTypes.Navigation:Navigation loaded fusion  path ‘attributes.class.@process’ from Neos.Neos:Content.
How I did it

How to verify it
Add the Menu node type on the page and check in the console/page source it should have css class ‘neos-nodetypes-menu’
Checklist


	[x] Code follows the PSR-2 coding style


	[ ] Tests have been created, run and adjusted as needed


	[ ] The PR is created against the [lowest maintained branch](https://www.neos.io/features/release-roadmap.html)





	Packages: Navigation






BUGFIX: change regex for selecting `<a href=””>` Tag [https://github.com/neos/neos-development-collection/pull/2409]

fixe the behaviour when the a Tag is inside a Tag with the name beginning with a

Example: <article> test <a target=”_blank” href=”http://localhost/_Resources/01”>example1</a></article>

the function replaceLinkTargets returned  <a target=”_blank”rticle> test <a target=”_blank” href=”http://localhost/_Resources/01”>example1</a></article>

create new test evaluateReplaceResourceLinkTargetsInsideTag

this issue was already fixed in 4.2 release on 5 Nov 2018

Fixes #2395


	Packages: Neos






BUGFIX: Only count local assets within collections [https://github.com/neos/neos-development-collection/pull/2773]

Since collections only show up if the current asset source is local
(“Neos”), we should not sum up all assets from external asset sources.

We do not support collections for external asset sources and the
possibly much larger number is irritating, because when clicking
the “All” link the user will only see the local assets.


	Packages: Browser Neos






BUGFIX: Ensure node query by identifier uses strings [https://github.com/neos/neos-development-collection/pull/2939]

Due to how the query is handled using an integer node identifier in a query by identifier
will not break but result in severe performance problems as the query will not use
the index for identifier anymore. Casting to string prevents that.

To expose the problem you can simply try to run such a query with an integer instead
of a string and you will see extreme performance degradation.
Not giving numbers because it depends on the amount of nodes but it is VERY noticeable.


	Packages: ContentRepository Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.12...4.3.13]





            

          

      

      

    

  

    
      
          
            
  
4.3.14 (2020-05-18) [https://github.com/neos/neos-development-collection/releases/tag/4.3.14]


Overview of merged pull requests


BUGFIX: Passing glue string after array is deprecated [https://github.com/neos/neos-development-collection/pull/2982]

Wrong parameter order leads to deprecation warning and to an exception
in PHP 7.4


	Packages: ContentRepository Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.13...4.3.14]





            

          

      

      

    

  

    
      
          
            
  
4.3.15 (2020-07-06) [https://github.com/neos/neos-development-collection/releases/tag/4.3.15]


Overview of merged pull requests


BUGFIX: pass copied node to emitAfterNodeCopy signal [https://github.com/neos/neos-development-collection/pull/2995]

Pass copied node instead of current node instance to emitAfterNodeCopy signal.

This fixes #2994


	Packages: Browser ContentRepository Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.14...4.3.15]





            

          

      

      

    

  

    
      
          
            
  
4.3.16 (2020-08-14) [https://github.com/neos/neos-development-collection/releases/tag/4.3.16]


Overview of merged pull requests


TASK: Improve wording of include/exclude concepts where possible [https://github.com/neos/neos-development-collection/pull/2992]

Matching change with https://github.com/neos/flow-development-collection/pull/2024


	Packages: ContentRepository






BUGFIX: Prevent refetching nodes for policy checks [https://github.com/neos/neos-development-collection/pull/2302]

When defining a policy targeting a static node the static node was
refetched for every subject, slowing down policy information retrieval.

This adds a simple caching mechanism to NodePrivilegeContext::getNodeByIdentifier
that prevents nodes from being refetched for static policy comparisons.

Resolves #2301


	Packages: Browser ContentRepository






TASK: Apply fixes from StyleCI [https://github.com/neos/neos-development-collection/pull/3059]

This pull request applies code style fixes from an analysis carried out by [StyleCI](https://github.styleci.io).

—

For more information, click [here](https://github.styleci.io/analyses/OMdgkW).



Apply fixes from StyleCI [https://github.com/neos/neos-development-collection/pull/3060]

This pull request applies code style fixes from an analysis carried out by [StyleCI](https://github.styleci.io).

—

For more information, click [here](https://github.styleci.io/analyses/lKyEJV).


	Packages: Browser ContentRepository Diff Fusion Media Neos






BUGFIX: Variants tab does not use mainRequest in form when opened from inspector [https://github.com/neos/neos-development-collection/pull/3008]

This adds a condition for using the parentRequest only if it is not the mainRequest already.

Fixes #3005


	Packages: Browser






BUGFIX: Make child nodes of hidden parents inaccessible [https://github.com/neos/neos-development-collection/pull/2998]

Since a couple of months child nodes of hidden nodes are accessible (outside the Neos backend). This change restores the initial behavior and makes sure that accessing child nodes from hidden nodes will lead to a 404 response.

resolves: https://github.com/neos/neos-development-collection/issues/2983


	Packages: ContentRepository Neos






!!! BUGFIX: Speed up node move actions [https://github.com/neos/neos-development-collection/pull/3015]

Due to an issue in how Doctrine 2.x handles the computation of changesets when given
entities to commit it recomputed the changesets for all entities for every entity.
Leading to n^2 change computations.

In a large project this improved the moving of ~750 nodes from 1.7m to 8.5s.
In the demo site moving the “features” page from 4s to 1.65s.
Publishing seems to be only slightly (~10%) faster to its different behaviour in the CR.

What I did

Which this change this behaviour is circumvented by commiting all
entities at once. Including entities which might not have been included
with the previous code but would have been persisted at the end of the request
anyway.

What is breaking
This change leads to all entities scheduled for persistence to actually persist when a node is changed, see following comparison timelines:

Old:
1. Create Entity, mark for insertion
2. change node
3. controller call is done / persistAll was called -> entity from step one is now persisted

New:
1. Create Entity, mark for insertion
2. change node (entity will be persisted at this point)
3. controller call is done / persistAll was called -> nothing happens anymore.

How I did it

Replace the repeated flush calls to the entity manager with a single one.

This should only lead to a behavioural change if custom code would modify a node
then move other nodes and expect the the first node was not persisted yet.

How to verify it


	Move a large set of pages with subpages and nodes in the Neos backend.


	Check the request time of the change xhr request.


	Apply this patch


	Repeat steps 1 + 2 and compare




Example screenshots:

Before:

<img width=”600” alt=”before-change” src=”https://user-images.githubusercontent.com/596967/87766599-b4b94600-c819-11ea-9777-0bbe11f84d3a.png”>

After:

<img width=”600” alt=”after-change” src=”https://user-images.githubusercontent.com/596967/87766608-b7b43680-c819-11ea-83f9-2fbf1993cda7.png”>


	Packages: ContentRepository






TASK: Remove curly brace string offset access for PHP 7.4 compatibility [https://github.com/neos/neos-development-collection/pull/3011]

What I did
I changed string offset access from curly-braces to brackets


	Packages: Diff Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.15...4.3.16]





            

          

      

      

    

  

    
      
          
            
  
4.3.17 (2020-12-02) [https://github.com/neos/neos-development-collection/releases/tag/4.3.17]


Overview of merged pull requests


BUGFIX: Respect already defined attributes in Neos.Neos:ConvertUris [https://github.com/neos/neos-development-collection/pull/3152]


	The rel value get merged with existent`rel` attributes


	If a value already exists, it will not get overridden. Example <a href=”https://external.site” target=”external”> the target stays external


	When you set the external target to something different (e.g. ‘external’) or disable it with false, the rel attribute will still be set


	If you have data-target set, this will not be overwritten


	Fixes: #2942 [https://github.com/neos/neos-development-collection/issues/2942]


	Packages: Neos






BUGFIX: Align fusion caching and service [https://github.com/neos/neos-development-collection/pull/3193]


	Fixes: #3191 [https://github.com/neos/neos-development-collection/issues/3191]


	Packages: Neos






TASK: Adjust Node and NodeInterface deprecation annotations [https://github.com/neos/neos-development-collection/pull/3194]


	Reword the deprecation message in the interface doc comment


	For deprecated methods with a replacement (e.g. getDepth()):
* Don’t remove the method but keep the deprecation annotation
* Remove any @api annotation from the method


	For deprecated methods without replacement (e.g. getContextPath()):
* Don’t remove the method
* replace the @deprecated annotation by some comment


	Related: #3137 [https://github.com/neos/neos-development-collection/issues/3137]


	Packages: ContentRepository Neos






BUGFIX: Use autorotate filter to apply resize adjustments properly to images with exif-orientations [https://github.com/neos/neos-development-collection/pull/3147]

The autorotate is applied before calculating the resize dimensions to work with correct size values.

How to test:
- Go to the media module
- Upload an image with exif orientation like https://github.com/recurser/exif-orientation-examples/blob/master/Landscape_6.jpg
- Look at the generated thumbnails (without this change the thumbnail is rotated 90°)


	Resolves: #3148 [https://github.com/neos/neos-development-collection/issues/3148]


	Packages: Media






BUGFIX: Flush 1st level node caches after publishing [https://github.com/neos/neos-development-collection/pull/3174]

When a fresh variant is published outdated URLs may be generated if
the urlPathSegment was changed on the variant.


	Fixes: #3173 [https://github.com/neos/neos-development-collection/issues/3173]


	Packages: Browser ContentRepository






Apply fixes from StyleCI [https://github.com/neos/neos-development-collection/pull/3160]

This pull request applies code style fixes from an analysis carried out by StyleCI [https://github.styleci.io].

—

For more information, click here [https://github.styleci.io/analyses/PxlLxK].


	Packages: Browser ContentRepository Neos






TASK: Apply fixes from StyleCI [https://github.com/neos/neos-development-collection/pull/3106]

This pull request applies code style fixes from an analysis carried out by StyleCI [https://github.styleci.io].

—

For more information, click here [https://github.styleci.io/analyses/RvbyGK].



TASK: Apply fixes from StyleCI [https://github.com/neos/neos-development-collection/pull/3107]

This pull request applies code style fixes from an analysis carried out by StyleCI [https://github.styleci.io].

—

For more information, click here [https://github.styleci.io/analyses/4xEKGe].


	Packages: Browser ContentRepository Diff Fusion Media Neos






FEATURE: Use breadcrumb for URL preview [https://github.com/neos/neos-development-collection/pull/3100]

This replaces the (preview) URL by a “breadcrumb” to the homepage node.

Essentially applies https://github.com/neos/neos-development-collection/pull/2966
to the 4.3 branch, since the breadcrumb is a lot more user-friendly than the
URL.


	Packages: Neos






BUGFIX: Migrate icons from TYPO3.Media to Neos.Media [https://github.com/neos/neos-development-collection/pull/3101]


	Fixes: #2341 [https://github.com/neos/neos-development-collection/issues/2341]


	Packages: Media






BUGFIX: TransientNodeCache must be able to return null [https://github.com/neos/neos-development-collection/pull/3097]

This is an important bugfix because right now non existing nodes will result in a fatal error
due to the type hint, when the $getter() actually doesn’t resolve a node but null, which can happen.
The current behavior is therefore broken for many installations.

Relate #2301


	Packages: ContentRepository Neos






BUGFIX: Migrate media browser icons [https://github.com/neos/neos-development-collection/pull/3091]

In Neos prior to 4.1, the media browser uses PNG resources to show thumbnails for non graphical documents from …/Public/Icons/, like ppt.png. In 4.1 the PNG ressources were removed and replaced by SVG resources from …/Resources/Public/IconSets/vivid/. When you add new files after the upgrade, the valid SVG resources are used, but old assets still refer to their old resources, which are missing. As a result, the media browser shows the rotating “loading” icon for these old documents.

This adds Doctrine migrations to replace the old with the  new icons in the database.


	Fixes: #2341 [https://github.com/neos/neos-development-collection/issues/2341]


	Packages: Media







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.16...4.3.17]





            

          

      

      

    

  

    
      
          
            
  
4.3.18 (2021-02-23) [https://github.com/neos/neos-development-collection/releases/tag/4.3.18]


Overview of merged pull requests


BUGIX: Fix drag-n-drop upload of assets in media browser [https://github.com/neos/neos-development-collection/pull/3286]

This fixes parsing of the Fluid template on PHP 7.3+ so the upload
URL is correctly set.


	Fixes: #2906 [https://github.com/neos/neos-development-collection/issues/2906]


	Fixes: #3096 [https://github.com/neos/neos-development-collection/issues/3096]


	Packages: BaseMixins Browser Neos NodeTypes






BUGFIX: When copying nodes from another dimension, you are only allowed to re-use the other node’s identifier if the identifier never appears in the target dimension [https://github.com/neos/neos-development-collection/pull/3267]

## PREREQUISITES


	a language dimension with two values, without fallbacks (“de” and “en”)


	create a page in DE with content nodes “text1” and “text2”


	translate this page to EN and let it copy all content. “text1” also sts on EN now, and has the same identifier as in DE.


	publish everything.




## REPRODUCING THE BUG:


	select “text1” in “DE” and copy it


	switch to EN


	REMOVE the node “text1” in EN


	PASTE the node from the clipboard AFTER text2 (in EN).


	(this triggers the code we have here.)




## EXPECTED BEHAVIOR


	the pasted node is shown




## ACTUAL BEHAVIOR


	the pasted node is not shown, but is still in the database.


	it can happen that the node is shown, if it is inserted above the removed node. Still, we have an invariant violation nevertheless.


	this can also trigger problems when publishing the not-rendered-anymore-node (UniqueConstraint errors in the database) - this is how we actually found the error.




## Root Cause

ContentRepository Node.php createRecursiveCopy() checks only in the current context whether the target node identifier exists, and not taking deleted nodes into account.

## Affected versions


	We found this in Neos 5.3, but we’ll fix it for 4.3, as it is the oldest supported version (and it will also exhibit this bug)





	Resolves: #3265 [https://github.com/neos/neos-development-collection/issues/3265]




<!–
Thanks for your contribution, we appreciate it!

Please read through our pull request guidelines, there are some interesting things there:
https://discuss.neos.io/t/creating-a-pull-request/506

And one more thing… Don’t forget about the tests!
–>

What I did

How I did it

How to verify it

Checklist


	[x] Code follows the PSR-2 coding style


	[x] Tests have been created, run and adjusted as needed


	[x] The PR is created against the lowest maintained branch [https://www.neos.io/features/release-roadmap.html]





	Packages: BaseMixins Browser ContentReferences ContentRepository Form Html Navigation Neos NodeTypes






BUGFIX: Avoid possible exception during sitemap rendering [https://github.com/neos/neos-development-collection/pull/3251]

hen rendering the XML sitemap with Neos.Seo sometimes an exception
occurs:


No operation which satisfies the runtime constraints found for
“context”




See https://github.com/neos/neos-development-collection/issues/2968
for more details.

This change should fix that by returning null early, if there is no
“current” node.


	Fixes: #2968 [https://github.com/neos/neos-development-collection/issues/2968]


	Packages: Neos






BUGFIX: Set ``alt`` attribute per default for ``Neos.Neos:ImageTag`` [https://github.com/neos/neos-development-collection/pull/3250]

Add alt attribute (empty by default) for full HTML conformance with validity checkers.
See https://www.w3.org/wiki/HTML/Usage/TextAlternatives

Bonus effect: Since screen readers will read the full file name when no
alt attribute is set at all, this will improve accessibility.
It is recommended to provide meaningful alternative texts for non-decorative images.


	Packages: Browser Neos






BUGFIX: Add missing return tag for the flow query operation [https://github.com/neos/neos-development-collection/pull/3239]

Without this, the reference documentation can not be parsed. The Eel helper was not updated since version 4.3!!!


	Packages: Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.17...4.3.18]





            

          

      

      

    

  

    
      
          
            
  
4.3.19 (2021-05-02) [https://github.com/neos/neos-development-collection/releases/tag/4.3.19]


Overview of merged pull requests


BUGFIX: getAssetProxy failed for local assets [https://github.com/neos/neos-development-collection/pull/2924]

With 836d739fa4f92b3c87c0fcaccd54f2909e188773 [https://github.com/neos/neos-development-collection/commit/836d739fa4f92b3c87c0fcaccd54f2909e188773] a condition was added that prevented getting an AssetProxy for assets in the Neos AssetSource. But they all have one and therefore the query for an imported AssetProxy is not skipped for local assets.

What I did

Return AssetProxy for local assets.

How I did it

Check if the AssetSource is Neos itself.

How to verify it

Added functional test


	Packages: Media






BUGFIX: Use “stable” identifier when auto-creating child nodes [https://github.com/neos/neos-development-collection/pull/3336]

Since node:repair uses the buildAutoCreatedChildNodeIdentifier, it would
best to ensure the identifier is already correct when auto-creating child nodes.

Otherwise the identifier will be changed to a so called “stable”
identifier during a node:repair run which can lead to unwanted
behaviour in certain applications.


	Packages: Browser ContentRepository






BUGFIX: Open delete dialog on edit user view [https://github.com/neos/neos-development-collection/pull/3316]

On the edit view of the user management module it was not possible to delete the user caused by the missing confirmation dialog. This has not been open caused by a wrong if condition.


	Fixes: #3310 [https://github.com/neos/neos-development-collection/issues/3310]


	Packages: Neos






TASK: Mark migrations as applied after behat setup [https://github.com/neos/neos-development-collection/pull/3314]

This should work around an edge-case regression in doctrine/migrations 3.1.1 - see https://github.com/neos/neos-development-collection/pull/3311#issuecomment-803560353


	Packages: github Neos






BUGFIX: Adjust user menu dropdown width [https://github.com/neos/neos-development-collection/pull/3298]

Limit the minimum width of the dropdown to the width of the trigger button
and make it possible to become wider and float from right side of the trigger button to the left.


	Fixes: #3297 [https://github.com/neos/neos-development-collection/issues/3297]


	Packages: github Neos






TASK: Add GH action for builds [https://github.com/neos/neos-development-collection/pull/3291]

See https://github.com/neos/flow-development-collection/pull/2390 and https://github.com/neos/flow-development-collection/pull/2273

Resolves neos/team#54


	Packages: Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.18...4.3.19]





            

          

      

      

    

  

    
      
          
            
  
4.3.2 (2019-06-14) [https://github.com/neos/neos-development-collection/releases/tag/4.3.2]


Overview of merged pull requests


BUGFIX: Flush affected document node on asset change [https://github.com/neos/neos-development-collection/pull/2527]

When an asset is replaced, the content cache is flushed, but in most
cases this does not have an effect. As most content nodes do not have
a cache entry, the cache entry higher in the chain needs to be
flushed.

This is now done by fetching the affected node for an asset usage and
passing that to registerNodeChange(…) in the ContentCacheFlusher.

Fixes #2061


	Packages: BaseMixins Navigation Neos






BUGFIX: Correctly pass current node to menu templates [https://github.com/neos/neos-development-collection/pull/2534]

<!–
Thanks for your contribution, we appreciate it!

Please read through our pull request guidelines, there are some interesting things there:
https://discuss.neos.io/t/creating-a-pull-request/506

And one more thing… Don’t forget about the tests!
–>

What I did
Correctly pass the current node to menu templates in a way that does not cause an infinite loop

See also: #2532

How I did it
- Revert back to behaviour removed in https://github.com/neos/neos-development-collection/commit/`6f302f19d2d6dcf4293223d801d867d9fd1d208e <https://github.com/neos/neos-development-collection/commit/6f302f19d2d6dcf4293223d801d867d9fd1d208e>`_#diff-033bf88345978204633d4a60db6f410cL5

How to verify it
See #2532


	Packages: Neos






BUGFIX: The copyright notice of assets is lost when exporting to Sites.xml [https://github.com/neos/neos-development-collection/pull/2529]

see also #2503

<!–
Thanks for your contribution, we appreciate it!

Please read through our pull request guidelines, there are some interesting things there:
https://discuss.neos.io/t/creating-a-pull-request/506

And one more thing… Don’t forget about the tests!
–>

What I did

Included the copyright notice of assets in exports to Sites.xml.

How I did it

Added copyrightNotice in ArrayConverter.php the same way as title.

How to verify it


	Add a copyright notice to an asset.


	Export to Sites.xml.


	Do a clean import.


	Check that the copyright notice is preserved.





	Packages: Media Neos






BUGFIX: The caption of assets is lost when exporting to Sites.xml [https://github.com/neos/neos-development-collection/pull/2503]

Notes:
1. I could not find tests covering this part of the code. If you point me to it, I will also add a test case for caption.
2. The copyright notice is also missing from the export, but afaik this was added in Neos 4.2, so I will open a separate PR.
3. Relations to tags and collections are also missing from the export, but they seem more complicated, so I will open separate PRs.

<!–
Thanks for your contribution, we appreciate it!

Please read through our pull request guidelines, there are some interesting things there:
https://discuss.neos.io/t/creating-a-pull-request/506

And one more thing… Don’t forget about the tests!
–>

What I did

Included the caption of assets in exports to Sites.xml.

How I did it

Added caption in ArrayConverter.php the same way as title.

How to verify it


	Add a caption to an asset.


	Export to Sites.xml.


	Do a clean import.


	Check that the caption is preserved.





	Packages: Media






BUGFIX: Changed Domains by UriConstraints will not no longer get destroyed by the LinkingService [https://github.com/neos/neos-development-collection/pull/2523]

With UriConstraints we have the ability to modify the Host but there is a problem with the LinkingService in combination with UriConstraints. If you ask the LinkingService for a absolut Uri then it add the current base to the Url.

Fixes #2398


	Packages: Neos






BUGFIX: node label sanitizing regex strips characters [https://github.com/neos/neos-development-collection/pull/2524]

What I did
[[^:print:]] resulted in the characters print: followed by ] being removed from the node label. Non-printable characters should be matched with [^[:print:]].

Resolves neos/neos-ui#2496

How to verify it
Output node labels normally including n], i] etc. e.g. in the document tree.

This PR replaces and closes #2515 which was targeting master.


	Packages: Neos






BUGFIX: Adjust warning text in setup [https://github.com/neos/neos-development-collection/pull/2510]

Fixes Issue #2488
In this PR I adjusted the somewhat missleading warning text, which is displayed in the image driver setup step, if none of the requiered drivers is installed. Additionaly I added some javascript to the image driver and the database configuration step in the setup package to disable the next button, if an error message is shown. See the PR https://github.com/neos/setup/pull/53


	Packages: Neos






TASK: Add setNoOpener property to Neos.Neos:ConvertUris documentation [https://github.com/neos/neos-development-collection/pull/2483]


	Packages: Browser Neos






BUGFIX: Use countAll of AssetRepository to get count of all assets [https://github.com/neos/neos-development-collection/pull/2403]

To get count of all assets, we should use the AssetRepository.
Solves #2358


	Packages: Browser Neos






BUGFIX: Workspace review module no longer shows target dimension [https://github.com/neos/neos-development-collection/pull/2509]

Fix the behaviour Workspace review module don’t shows target dimension

Fixes #2423


	Packages: BaseMixins Browser Neos






BUGFIX: Add translation for discard confirmation [https://github.com/neos/neos-development-collection/pull/2512]

Fixes https://github.com/neos/neos-ui/issues/2283


	Packages: BaseMixins Browser Neos






BUGFIX: Assigned asset collections cannot be unassigned [https://github.com/neos/neos-development-collection/pull/2502]

Fix the behaviour when the asset can’t be unassigned from collections

Fixes #2473



BUGFIX: Make exception for non renderable fusion path more helpful [https://github.com/neos/neos-development-collection/pull/2489]

The existing exception for non renderable fusion pathes was not very helpful hard to read and missed mentioning likely reasons like a typo in the prototype name. It also suggested a solution that is unlikely to fix the problem.

With this change the prototype name is moved to the front of the error message
as it is the most important information.

The path is removed from the message-body as the fusion exception handler will render it anyway.

The most likely reasons typo + missing prototype are mentioned first and other possible reasons
like missing parent-protopype, missing @class and missing include: later.

The proposed solution to inherit from Neos.Fusion:Template is removed as it was misleading


	Packages: Browser Fusion Neos






Show hidden in index nodes in dimensions menu [https://github.com/neos/neos-development-collection/pull/2504]

Re-add renderHiddenInIndex with default true, to show also hidden in index nodes in dimensions menu as before.


	Packages: Neos






[TASK] Create .codeclimate.yml [https://github.com/neos/neos-development-collection/pull/6]

Adds a codeclimate configuration excluding Migrations, Tests and
JavaScript libraries.


	Packages: Browser Neos






BUGFIX: Avoid PHP exception in NamespaceDetectionTemplateProcessor [https://github.com/neos/neos-development-collection/pull/2484]

Related to neos/neos-development-collection#2479


	Packages: Browser Neos






Bugfix: Do access objects by key 0 in canEvaluate() of sort-operation [https://github.com/neos/neos-development-collection/pull/2474]

For the current use of the sort operation, the element with key 0 must be present in $context. But this is not necessary for the sort itself. Consequently, the sort operation does not work using arrays without key 0.

Access via pointer avoids this problem in this PR.


	Packages: Neos






TASK: Limit parentpath index length through annotation [https://github.com/neos/neos-development-collection/pull/2478]

As of Doctrine DBAL 2.9.0 this is actually possible, so we can finally
do it right.

See #2475


	Packages: ContentRepository Neos






Remove wrong property from component wiring property list [https://github.com/neos/neos-development-collection/pull/2480]

The property node is not a wired property


	Packages: Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.1...4.3.2]





            

          

      

      

    

  

    
      
          
            
  
4.3.3 (2019-06-17) [https://github.com/neos/neos-development-collection/releases/tag/4.3.3]


Overview of merged pull requests



Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.2...4.3.3]





            

          

      

      

    

  

    
      
          
            
  
4.3.4 (2019-09-02) [https://github.com/neos/neos-development-collection/releases/tag/4.3.4]


Overview of merged pull requests


TASK: Fixed Typo in ContentCache.rst [https://github.com/neos/neos-development-collection/pull/2647]

What I did
fixed typo


	Packages: Neos






TASK: Fix documentation about f:widget.uri [https://github.com/neos/neos-development-collection/pull/2646]

its <f:widget.uri> / <f:widget.link> and not <f:uri.widget> / <f:link.widget>


	Packages: Neos






BUGFIX: Prevent deleting or rebasing the live workspace [https://github.com/neos/neos-development-collection/pull/2632]

Doing so would completely break Neos when resolving
the content of a workspace that is based on live.

Resolves: #2631


	Packages: Neos






TASK: Add more doc for Eel Translation.translate [https://github.com/neos/neos-development-collection/pull/2640]

What I did

Add more information for Eel Translation helper:
- existence of I18n alias
- add more doc for Translation.translate’s source argument
- add an example

How to verify it

Check that the doc is accurate


	Packages: Neos






TASK: Fix option name for NodeName filter [https://github.com/neos/neos-development-collection/pull/2641]

What I did

Fix option name for NodeName filter in the documentation

How to verify it

Check that the doc is accurate with the source code of the Filter


	Packages: Neos






BUGFIX: Fix broken JS require implementation in Backend Modules [https://github.com/neos/neos-development-collection/pull/2639]

With resolution of #2479 javascript blocks were put into CDATA
sections in order to prevent them to break the Fluid parser.

This introduced a regression that prevents Backend Modules to
work properly when loadMinifiedJavascript is disabled.

Background:

The string resource://… is replaced by the ResourceInterceptor
but that behavior is skipped for CDATA sections.

Related: #2479


	Packages: Neos






BUGFIX: Don’t render exception message in Production Context [https://github.com/neos/neos-development-collection/pull/2603]

Synchronizes the behavior of the Fusion rendering exception handing with the one
from Flow to only render the exception message in Development Context.

Fixes: #2602


	Packages: AssetList BaseMixins Browser ColumnLayouts ContentReferences Form Fusion Navigation Neos NodeTypes






TASK: Safelist branches for travis builds [https://github.com/neos/neos-development-collection/pull/2600]

This prevents builds from running doubly on branches created on this repository for PRs, e.g. through the StyleCI bot or by github inline PRs.

See https://docs.travis-ci.com/user/customizing-the-build/#safelisting-or-blocklisting-branches
See also https://github.com/neos/flow-development-collection/pull/1660

Retargeted replacement for #2593



Apply fixes from StyleCI [https://github.com/neos/neos-development-collection/pull/2589]

This pull request applies code style fixes from an analysis carried out by [StyleCI](https://github.styleci.io).

—

For more information, click [here](https://github.styleci.io/analyses/q1QdDL).


	Packages: Browser ContentRepository Media Neos






BUGFIX: Skip nodes if they cannot be resolved in ContentCacheFlusher [https://github.com/neos/neos-development-collection/pull/2595]

If a node cannot be resolved in the content cache flusher
skip this node instead of throwing an exception.

Resolves: #2594


	Packages: Browser Neos






Apply fixes from StyleCI [https://github.com/neos/neos-development-collection/pull/2587]

This pull request applies code style fixes from an analysis carried out by [StyleCI](https://github.styleci.io).

—

For more information, click [here](https://github.styleci.io/analyses/zDEWyy).


	Packages: Browser ContentRepository Media Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.3...4.3.4]





            

          

      

      

    

  

    
      
          
            
  
4.3.5 (2019-09-24) [https://github.com/neos/neos-development-collection/releases/tag/4.3.5]


Overview of merged pull requests


BUGFIX: Remove Connection::PARAM_STR_ARRAY hint [https://github.com/neos/neos-development-collection/pull/2709]

This “fixes” https://github.com/doctrine/orm/issues/7827, by
actually passing the correct type as parameter. And the “type
hint” can be removed, as well.


	Packages: Browser ContentRepository Neos






BUGFIX: CropIimageAdjustment::refit only produces int sizes [https://github.com/neos/neos-development-collection/pull/2702]

This is not a direct problem for Neos 3.3 but it becomes a problem
as soon as PHP type hints come into play. The ratio divided widths
and heights can easily be floats and that is unexpected. Therefore
rounding and casting to int makes sense to prevent problems.

In versions of Neos that include type hints this is an actual major
bug that prevents refitting to work.


	Packages: Media






BUGFIX: Avoid count() call on null [https://github.com/neos/neos-development-collection/pull/2700]

Fixes #2699


	Packages: Diff






BUGFIX: Translate labels when modifying tag and collections [https://github.com/neos/neos-development-collection/pull/2691]

What I did

Allow all media browser controllers to use the modified addFlashMessage method.

How I did it

Use a trait for adding the method to all related controllers.

How to verify it

Add or delete a tag or collection in the media browser.


	Packages: Browser Neos






BUGFIX: Site imports with cropped images [https://github.com/neos/neos-development-collection/pull/2679]

Aspect ratio is stored as a string and there’s no TypeConverter
available to reconstruct the AspectRatio object from a string

Fixes #2538

Replaces https://github.com/neos/neos-development-collection/pull/2598


	Packages: Browser Media






BUGFIX: HTML augmenter preserves multibyte characters in attributes [https://github.com/neos/neos-development-collection/pull/2675]

The html augmenter uses the loadHml method of php which assumes the html content being iso encoded. This caused attributes with umlauts being broken once on the outermost tag. The previous declaration of the UTF-8 charset has no effect on the loadHtml behavior.

The change applies the mb_convert_encoding method to the html which allows to properly read unicode characters as suggested on  https://www.php.net/manual/en/domdocument.loadhtml.php

In addition this change adds a duck-emoji to the neos test codebase which is an important improvement.

Fixes: #2677


	Packages: Fusion Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.4...4.3.5]





            

          

      

      

    

  

    
      
          
            
  
4.3.6 (2019-10-25) [https://github.com/neos/neos-development-collection/releases/tag/4.3.6]


Overview of merged pull requests


BUGFIX: Adjust wrong parameters for log call [https://github.com/neos/neos-development-collection/pull/2749]

This is probably an oversight during upmerges, the log(…) call expects
the level as first parameter. By now this should be a warning(…) call.


	Packages: Browser Media Neos






BUGFIX: Add type=”text” to title input field [https://github.com/neos/neos-development-collection/pull/2747]

Even though the input field is read-only, the type should be given. At least
that makes sure the styling is correct.


	Packages: Browser






BUGFIX: Call PSR logger with warning directly [https://github.com/neos/neos-development-collection/pull/2746]

Fixes: #2744


	Packages: Browser Neos






BUGFIX: Always select local original asset in media browser [https://github.com/neos/neos-development-collection/pull/2743]

Only query for imported assets that are not a variant of an originally imported asset.

Fixes #2742


	Packages: Browser Media






TASK: Make countAll() in AssetRepository work as expected for subclasses [https://github.com/neos/neos-development-collection/pull/2725]

Any repository extending AssetRepository would need to override the
countAll() method or would always return the count of all assets,
not only the type the repository dealt with.

Now countAll() counts all assets or the specific type as expected.

Fixes #2724


	Packages: Media Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.5...4.3.6]





            

          

      

      

    

  

    
      
          
            
  
4.3.7 (2019-11-06) [https://github.com/neos/neos-development-collection/releases/tag/4.3.7]


Overview of merged pull requests


TASK: Update showInvisible check to be upwards compatible [https://github.com/neos/neos-development-collection/pull/2766]

Uses $this->request instead of the http request, to stay upwards compatible with PSR-7 changes.

Related: #2711


	Packages: BaseMixins Neos






TASK : Remove composer requirement for the BaseMixins package itself [https://github.com/neos/neos-development-collection/pull/2760]

The BaseMixin package lists itself as a dependency. This obviously doesn’t make any sense (unless there is a very specific reason for this that I’m not aware of).


	Packages: BaseMixins Neos






TASK: Allow preview of invisible nodes in live [https://github.com/neos/neos-development-collection/pull/2711]

When opening the preview for a hidden page using the React UI a
validation error shows up instead of handling the error or showing
the preview.

This changes fixes that by


	https://github.com/neos/neos-ui/pull/2557


	and changing Neos to allow invisible nodes to be shown for
requests that are granted Neos.Neos:Backend.GeneralAccess




See https://github.com/neos/neos-ui/issues/2500


	Packages: Browser Neos






TASK: Asset variant tweaks [https://github.com/neos/neos-development-collection/pull/2716]

This PR


	cleans up code, applies (strict) typing


	allows numbers and dash in adjustment and variant identifiers


	tweaks value object README a bit





	Packages: Media






DOCS: Use working examples in VariantPresets documentation and mention the variants tab settings [https://github.com/neos/neos-development-collection/pull/2755]

The previous examples were misleading and not helpful since they caused php-errors when used
as mentioned. The adjustments correct this and add a sentence and example about the VariantsTab that has to be enabled.


	Packages: Media






TASK: Add quiet flag to all Neos.Media CLI commands [https://github.com/neos/neos-development-collection/pull/2722]

This unifies the CLI interface and makes the quiet flag available
consistently with all media commands.


	Packages: Media Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.6...4.3.7]





            

          

      

      

    

  

    
      
          
            
  
4.3.8 (2019-12-14) [https://github.com/neos/neos-development-collection/releases/tag/4.3.8]


Overview of merged pull requests


BUGFIX: Invalid ratio mode during site import [https://github.com/neos/neos-development-collection/pull/2834]

Sigh… This fixes one blocking and one small issue with the ratio mode
that still occurred when importing sites from XML. The error fixed is:

During the import of the “Sites.xml” from the package “Neos.Demo” an
exception occurred: Error: During import an exception occurred:
“Could not convert target type “Neos\Media\Domain\Model\ImageVariant”:
Could not convert target type
“Neos\Media\Domain\Model\Adjustment\ResizeImageAdjustment”: Invalid
mode “” specified, supported modes are: “inset”, “outbound” (but use
the ImageInterface::RATIOMODE_* constants)”., see log for further
information.

The fix brings back setting the ratio mode to the default of
ImageInterface::RATIOMODE_INSET when an empty string is given and
fixes the error message sprintf pattern.


	Packages: Media






BUGFIX: Set default ratio mode in ResizeImageAdjustment [https://github.com/neos/neos-development-collection/pull/2781]

The default was assigned during runtime, but this lead to getRatioMode()
potentially failing, since it was declared to return a string, non-nullable.

This is a followup to #2716

Fixes #2811


	Packages: Media Neos






BUGFIX: Add leave statements for apply early returns [https://github.com/neos/neos-development-collection/pull/2813]

Small bugfix to have an even count of enter and leave calls, even if
apply values cause an early return.

This should be refactored anyway to a more efficient solution (see
#2737) where no cache context is prepared unless an object is
evaluated - but it doesn’t hurt and helps the Flowpack.Fusion.Tracing
package to produce correct traces.

Replaces #2739


	Packages: Fusion Neos






BUGFIX: Handle unavailable asset proxies in edit view [https://github.com/neos/neos-development-collection/pull/2771]

When an asset is not found, some actions threw an 404 status, which
leads to Neos showing the “404 page” under certain circumstances.

This change assigns the exception just like in the case of a connection
error, leaving handling to the media browser.

Now when an asset is not available, the edit template reacts to the
connectionError´. This avoids an error with the `format.relativeDate VH
and informs the user correctly about the fact an asset could not be
found.


	Packages: Browser






BUGFIX: Allow content cache flush for asset references in other use workspaces [https://github.com/neos/neos-development-collection/pull/2582]

Asset change leads to exception if unpublished changes in others users workspaces exists, which are referenced to affected asset. Neos tries to access the others user workspace to get the node with the reference to flush there caches. By privilege Neos.Neos:Backend.OtherUsersPersonalWorkspaceAccess this is not allowed.

```
Access denied for method
Method: Neos\ContentRepository\Domain\Service\Context::validateWorkspace()

Evaluated following 1 privilege target(s):
“Neos.Neos:Backend.OtherUsersPersonalWorkspaceAccess”: ABSTAIN
(0 granted, 0 denied, 1 abstained)

Authenticated roles: Neos.Flow:Everybody, Neos.Flow:AuthenticatedUser, Neos.Neos:Editor, Neos.Neos:AbstractEditor, Neos.ContentRepository:Administrator, Neos.ContentRepository:InternalWorkspaceAccess, Neos.Neos:LivePublisher, Neos.Neos:Administrator
```

This fixes that behaviour by allowing access to the content repository without authorization
checks during retrieval of affected nodes.


	Packages: Neos






BUGFIX: Allow HtmlAugmenter operate on script tags [https://github.com/neos/neos-development-collection/pull/2764]

What I did
Regarding #2763 the HtmlAugmenter does not find script tags as root elements. Ths DomDocument->loadHTML() puts them automatically into html/head instead of html/body as it does with other tags.

How I did it
Extend XPath query to search in head AND body for root elements.

How to verify it
For script-tag:
`
$html = '<script>console.log("fooo");</script>';
$domDocument = new \\DOMDocument('1.0', 'UTF-8');
$domDocument->loadHTML((substr($html, 0, 5) === '<?xml') ? $html : '<?xml encoding="UTF-8"?>' . $html);
var_dump($domDocument->saveHTML());
`
it returns:
`
string(195) "<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-html40/loose.dtd">
<?xml encoding="UTF-8"?><html><head><script>console.log("fooo");</script></head></html>
"
`

For other tags:
`
$html = '<a>console.log("fooo");</a>';
$domDocument = new \\DOMDocument('1.0', 'UTF-8');
$domDocument->loadHTML((substr($html, 0, 5) === '<?xml') ? $html : '<?xml encoding="UTF-8"?>' . $html);
var_dump($domDocument->saveHTML());
`
it returns:
`
string(185) "<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-html40/loose.dtd">
<?xml encoding="UTF-8"?><html><body><a>console.log("fooo");</a></body></html>
"
`


	Packages: Fusion






TASK: Remove showInvisible query parameter handling again [https://github.com/neos/neos-development-collection/pull/2790]

The correct preview of a hidden document is not showing it, after all…

Related to https://github.com/neos/neos-ui/issues/2500


	Packages: AssetList BaseMixins ColumnLayouts ContentReferences Form Html Neos NodeTypes






BUGFIX: setting Headers while evaluating PluginView. [https://github.com/neos/neos-development-collection/pull/2788]

This results in redirects without delay working not only for Plugins but also for PluginViews.

While updating a Neos Project from 3.3 to 4.3 I encountered an issue with the PluginViewImplementation. Redirects without a delay inside controllers of the plugin views did not work anymore, while redirects in the controllers of the master plugin still worked.
This problem occurred because the implementation of AbstractController::redirectToUri() changed in Neos 4.
In Neos 3 the line $this->response->setContent(‘<html><head><meta http-equiv=”refresh” content=”’ . (int)$delay . ‘;url=’ . $escapedUri . ‘”/></head></html>’); was always executed – in Neos 4 it is only executed if a delay is set. Without a delay only the “Location” in the Response-Header is set.
The PluginViewImplementation (in contrast to the PluginImplementation) does not append these Headers to the ParentRequest. I copied the lines from the PluginImplementation to the PluginViewImplementation and the redirects worked fine again.

(Actually this was also kind of a Problem in Neos 3, because it resulted in redirects from PluginViews always having a visible delay in the Frontend, even if the delay was 0. But I don’t know if you still want to patch it in Neos 3.3 or only in 4.3 where it does not work at all.)


	Packages: AssetList BaseMixins ColumnLayouts ContentReferences Form Html Neos NodeTypes






BUGFIX: Add missing translation in pagination [https://github.com/neos/neos-development-collection/pull/2727]

The labels were only partially translated in https://github.com/neos/neos-development-collection/commit/`8d1c98a9999fac1830b78f17c08f87c0f67a6065 <https://github.com/neos/neos-development-collection/commit/8d1c98a9999fac1830b78f17c08f87c0f67a6065>`_#diff-86d35dae35fd27aa00b7d0723d538960


	Packages: Browser ContentRepository






BUGFIX: MariaDB 10.4 compatibility for events migration [https://github.com/neos/neos-development-collection/pull/2735]

See https://jira.mariadb.org/browse/MDEV-19598

This will first rename the existing index before adding
a new primary key as MariaDB 10.4 would complain about
the existing unique key „uid“ and not allow adding
the primary key with the same name.

As the behavior for MariaDB 10.2 and 10.4 is different
we also need to check for the existence of the indices
before changing them or it will cause trouble with 10.2.

Replaces: #2665
Resolves neos/flow-development-collection#1704


	Packages: Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.7...4.3.8]





            

          

      

      

    

  

    
      
          
            
  
4.3.9 (2020-01-14) [https://github.com/neos/neos-development-collection/releases/tag/4.3.9]


Overview of merged pull requests


BUGFIX: Fix login behind basic auth [https://github.com/neos/neos-development-collection/pull/2857]

In the latest version of Chrome (79.0.3945.88) the login page will
remain white if it’s protected by Basic Authentication.

Until now a 401 status code was returned whenever the login page was
opened, causing a faulty behavior in Chrome and resulting in a white
page in almost all cases.

We now use a custom header instead to identify if Authentication is
necessary to view the content.

resolves: https://github.com/neos/neos-development-collection/issues/2845


	Packages: Neos






BUGFIX: Hide inaccessible backend modules [https://github.com/neos/neos-development-collection/pull/2855]

Adds a ViewHelper ifModuleAccessible that allows to evaluate whether a
given (sub) module is accessible to the currently authenticated user and
uses that ViewHelper in the SubmoduleOverview partial in order to hide
inaccessible modules from the module overview.

Background:

With #964 the module.<submodule>.privilegeTarget configuration became
deprecated in favor of `ModulePrivilege`s but the partial only checked
the “privilegeTarget” configuration.

Note: This is just a quick fix for the bug. In the long run we should
rewrite the whole backend module logic in order to move such crucial
conditions from the view to the domain layer.

Fixes: #2854


	Packages: Neos






BUGFIX: Call getPersonalWorkspaceName just once [https://github.com/neos/neos-development-collection/pull/2852]

Use result of first call of getPersonalWorkspaceName() instead of calling it twice.


	Packages: Neos






BUGFIX: Avoid isRemoved() call on null [https://github.com/neos/neos-development-collection/pull/2843]

The array returned by getNodes() may have null entries, e.g. if a
node was filtered in createFromNodeData().


	Packages: Neos






BUGFIX: #2664 set position to PHP_INT_MAX if nodeDimensionValue is no… [https://github.com/neos/neos-development-collection/pull/2736]

Fix returning invalid nodes in reduceNodeVariantsByWorkspacesAndDimensions. See #2664 for further details.


	Packages: Browser ContentRepository Neos







Detailed log [https://github.com/neos/neos-development-collection/compare/4.3.8...4.3.9]





            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  

    
      
          
            
  
Navigating Nodes with Eel and FlowQuery

(Sebastian H.)

Finding the closest node on the rootline having a layout set:


	q(node).parents(‘[layout]’).first()




Get the siblings of a node:


	q(node).siblings()




Get the children of a node:


	q(node).children()







            

          

      

      

    

  

    
      
          
            
  
Rendering a Breadcrumb

(Christian)




            

          

      

      

    

  

    
      
          
            
  
Structuring your Site Package


	Naming conventions for Fusion files, Fluid templates, …







            

          

      

      

    

  

    
      
          
            
  
Well-behaved JavaScript Code for Content Editing

(Sebastian H. + Sebastian K. + Thomas)




            

          

      

      

    

  

    
      
          
            
  
Working with conditions


	nested prototypes


	“root” case matcher


	Case-Fusion object (root/….)







            

          

      

      

    

  _images/110-asset-linking.png
Navigate Edit/ Preview
Paragraph 4 BI Ux <% @B
carro

) Carroll Alice 15t





_images/110-edit-preview.png
&

.

Navigate

»

8 Download
& Metamenu
# Download

8 Contribute
B Documentation

B The book
8 1. Down the Rabbit-hole
8 11.he Pool of Tears

8111 A Caucus-race and a Long
& 1v. The Rabbit sendt

@

Edit/ Preview

»

sin a Lt

@

o

Editing Modes

V' NEOS

Features

Tryme

Preview Central

Deskiop

Download

& Christopher Hiubek v

Print Google Se:

The book

Inspector
Selected element

& Page

Title
Tite

The book

Name (URL)

the-book

Publish 2)





_images/110-change-nodetype.png
Change type v

Type

Page
Chapter
Page

Shorteut






_images/CacheHierarchy.png
i e






_images/110-loading-indicator.png
= Navigate  Edit/Preview & Christopher Hiubek v
Inspector

Selected eleme

CNEOS  rewrs  myme  oownoss  Thewook D o

Features





_images/PHP_TrueFalse.jpg





_images/Flow_Coding_Guidelines_on_one_page.png
et s 5.2 o e






_images/Setup-Step-1.png
Neos Setup Sigpileis

Neos requirements check O Logout

Image Manipulation
We checked for supported image manipulation libraries on your server.
Only one is needed and we select the best one available for you.

Using GD in production environment is not recommended as it has some issues and can easily
lead to blank pages due to memory exhaustion.

PHP extension "gmagick" is not installed

PHP extension "imagick" is not installed

N





_images/Setup-Step-0.png
Neos Setup

Blicat /Users/golfb/Documents/neos/neos-development-distribution/Data/SetupPassword.txt

iThe setup password is:

1LbxKwIn

IAfter you successfully logged in, this file is automatically deleted for security reasons.
Make sure to save the setup password for later use.

Login

Enter the setup password to continue:

Password

N





_images/110-asset-editor.png
Selected element

& Assetlist

Resources
Assets

12 Carrol_Alice_1st.pdf

12TYPO3 Flow_Coding_Guidelines.pdf

[

Visibility
Hide before

o





nav.xhtml

    
      Table of Contents


      
        		
          Neos 4.3 Documentation
        


        		
          Getting Started
          
            		
              Installation
              
                		
                  Requirements
                


                		
                  Fundamental Installation
                


                		
                  The Neos Setup Tool
                


              


            


          


        


        		
          Technical Principles
        


        		
          Creating a Site with Neos
          
            		
              Node Types
              
                		
                  Content Structure
                


                		
                  Node Type Definition
                


                		
                  Node Type Constraints
                


                		
                  Node Creation Dialog Configuration
                


                		
                  Translate NodeTypes
                


                		
                  Dynamic Client-side Configuration Processing
                


                		
                  Depending Properties
                


                		
                  Disable NodeTypes
                


              


            


            		
              Fusion
              
                		
                  Inside Fusion
                


                		
                  Eel, FlowQuery and Fizzle
                


              


            


            		
              Rendering Custom Markup
              
                		
                  Templating
                


                		
                  Rendering A Page
                


                		
                  Creating Custom Content Elements
                


                		
                  Adjusting Neos Output
                


              


            


            		
              Content Dimensions
              
                		
                  Introduction
                


                		
                  Dimension Configuration
                


                		
                  Preset Constraints
                


                		
                  Migration of existing content
                


                		
                  Routing
                


                		
                  Limitations
                


              


            


            		
              Multi Site Support
              
                		
                  Separating Assets Between Sites
                


              


            


            		
              Content Cache
              
                		
                  Introduction
                


                		
                  The basics
                


                		
                  Default cache configuration
                


                		
                  Global cache entry identifiers
                


                		
                  Tuning your cache
                


              


            


            		
              Permissions & Access Management
              
                		
                  Introduction
                


                		
                  Adjusting and defining roles
                


                		
                  Node Privileges
                


                		
                  Privilege Matchers
                


                		
                  Asset Privileges
                


                		
                  Restricting Access to Backend Modules
                


                		
                  Limitations
                


                		
                  Further Reading
                


              


            


          


        


        		
          Extending Neos
          
            		
              Creating a plugin
              
                		
                  Creating a Flow package
                


                		
                  Converting a Flow Package Into a Neos Plugin
                


                		
                  Linking to a Plugin
                


                		
                  Configuring a plugin to show specific actions on different pages
                


              


            


            		
              Custom Backend Modules
              
                		
                  Controller Class
                


                		
                  Fluid Template
                


                		
                  Configuration
                


                		
                  Access Rights
                


              


            


            		
              Custom Edit/Preview-Modes
              
                		
                  Add a custom Preview Mode
                


                		
                  Add a custom Editing Mode
                


              


            


            		
              Custom Editors
            


            		
              Custom Eel Helper
            


            		
              Custom FlowQuery Operations
              
                		
                  Create FlowQuery Operation
                


                		
                  Create Final FlowQuery Operations
                


                		
                  Further Reading
                


              


            


            		
              Custom Fusion Objects
              
                		
                  Create a Fusion Object Class
                


              


            


            		
              Custom Validators
            


            		
              Custom ViewHelpers
              
                		
                  Create A ViewHelper Class
                


                		
                  Declare View Helper Arguments
                


                		
                  Context and Children
                


                		
                  Further reading
                


              


            


            		
              Customizing the Inspector
              
                		
                  Add a simple checkbox element
                


                		
                  Add a simple selectbox element
                


                		
                  Select multiple options in a selectbox element
                


                		
                  Use custom DataSources for a selectbox element
                


                		
                  Remove fields from an existing Node Type
                


                		
                  Remove a selectbox option from an existing Node Type
                


              


            


            		
              Data sources
            


            		
              Interaction with the Neos backend
              
                		
                  JavaScript events
                


              


            


            		
              Rendering special formats (CSV, JSON, XML, …)
              
                		
                  Routing
                


                		
                  Fusion
                


              


            


            		
              Neos User Interface Extensibility API
              
                		
                  Inspector-specific Registries
                


                		
                  Validators
                


                		
                  Frontend Configuration
                


                		
                  Inline Editors
                


                		
                  CKEditor5-specific registries
                


                		
                  CKEditor4-specific registries
                


                		
                  Data Loaders
                


                		
                  Containers
                


                		
                  Server Feedback Handlers
                


                		
                  Reducers
                


                		
                  Sagas
                


              


            


            		
              Writing Tests For Neos
              
                		
                  Behat tests for Neos
                


              


            


          


        


        		
          Inside of Neos
          
            		
              User Interface Development
              
                		
                  General User Interface Principles
                


                		
                  Content Module Principles
                


                		
                  Backend Module Principles
                


                		
                  JavaScript Style Guide
                


                		
                  Ember.JS Tips & Tricks
                


                		
                  Translating the user interface
                


              


            


          


        


        		
          References
          
            		
              Property Editor Reference
              
                		
                  Property Type: boolean BooleanEditor – Checkbox editor
                


                		
                  Property Type: string TextFieldEditor – Single-line Text Editor (default)
                


                		
                  Property Type: string TextAreaEditor – Multi-line Text Editor
                


                		
                  Property Type: string CodeEditor – Full-Screen Code Editor
                


                		
                  Property Type: string / array<string> SelectBoxEditor – Dropdown Select Editor
                


                		
                  Property Type: string LinkEditor – Link Editor for internal, external and asset links
                


                		
                  Property Type: integer TextFieldEditor
                


                		
                  Property Type: reference / references ReferenceEditor / ReferencesEditor – Reference Selection Editors
                


                		
                  Property Type: DateTime DateTimeEditor – Date & Time Selection Editor
                


                		
                  Property Type: image (Neos\Media\Domain\Model\ImageInterface) ImageEditor – Image Selection/Upload Editor
                


                		
                  Property Type: asset (Neos\Media\Domain\Model\Asset / array<Neos\Media\Domain\Model\Asset>) AssetEditor – File Selection Editor
                


              


            


            		
              View Helper Reference
              
                		
                  Content Repository ViewHelper Reference
                


                		
                  FluidAdaptor ViewHelper Reference
                


                		
                  Form ViewHelper Reference
                


                		
                  Fusion ViewHelper Reference
                


                		
                  Media ViewHelper Reference
                


                		
                  Neos ViewHelper Reference
                


                		
                  TYPO3 Fluid ViewHelper Reference
                


              


            


            		
              Fusion Reference
              
                		
                  Neos.Fusion
                


                		
                  Neos.Neos Fusion Objects
                


              


            


            		
              Eel Helpers Reference
              
                		
                  Array
                


                		
                  Configuration
                


                		
                  ContentDimensions
                


                		
                  Date
                


                		
                  File
                


                		
                  Json
                


                		
                  Math
                


                		
                  Neos.Array
                


                		
                  Neos.Caching
                


                		
                  Neos.Link
                


                		
                  Neos.Node
                


                		
                  Neos.Rendering
                


                		
                  Neos.Ui.Modules
                


                		
                  Neos.Ui.PositionalArraySorter
                


                		
                  Neos.Ui.Sites
                


                		
                  Neos.Ui.StaticResources
                


                		
                  Neos.Ui.Workspace
                


                		
                  NodeInfo
                


                		
                  Security
                


                		
                  String
                


                		
                  Translation
                


                		
                  Type
                


              


            


            		
              FlowQuery Operation Reference
              
                		
                  add
                


                		
                  cacheLifetime
                


                		
                  children
                


                		
                  children
                


                		
                  closest
                


                		
                  context
                


                		
                  count
                


                		
                  filter
                


                		
                  filter
                


                		
                  find
                


                		
                  first
                


                		
                  get
                


                		
                  has
                


                		
                  is
                


                		
                  last
                


                		
                  neosUiDefaultNodes
                


                		
                  neosUiFilteredChildren
                


                		
                  next
                


                		
                  nextAll
                


                		
                  nextUntil
                


                		
                  parent
                


                		
                  parents
                


                		
                  parents
                


                		
                  parentsUntil
                


                		
                  parentsUntil
                


                		
                  prev
                


                		
                  prevAll
                


                		
                  prevUntil
                


                		
                  property
                


                		
                  property
                


                		
                  remove
                


                		
                  search
                


                		
                  siblings
                


                		
                  slice
                


                		
                  sort
                


              


            


            		
              Neos Command Reference
              
                		
                  Package NEOS.CONTENTREPOSITORY
                


                		
                  Package NEOS.FLOW
                


                		
                  Package NEOS.FLUIDADAPTOR
                


                		
                  Package NEOS.KICKSTARTER
                


                		
                  Package NEOS.MEDIA
                


                		
                  Package NEOS.NEOS
                


                		
                  Package NEOS.SITEKICKSTARTER
                


              


            


            		
              Validator Reference
              
                		
                  Flow Validator Reference
                


                		
                  Media Validator Reference
                


                		
                  Party Validator Reference
                


              


            


            		
              Signal Reference
              
                		
                  Content Repository Signals Reference
                


                		
                  Flow Signals Reference
                


                		
                  Media Signals Reference
                


                		
                  Neos Signals Reference
                


              


            


            		
              Coding Guideline Reference
              
                		
                  PHP Coding Guidelines & Best Practices
                


                		
                  JavaScript Coding Guidelines
                


              


            


            		
              Configuration Reference
              
                		
                  Navigation tree loadingDepth
                


                		
                  Node tree presets
                


              


            


            		
              Node Migration Reference
              
                		
                  Migration files
                


                		
                  Transformations Reference
                


                		
                  Filters Reference
                


              


            


          


        


        		
          Contribute
          
            		
              Development
              
                		
                  Neos UI Development
                


              


            


            		
              Documentation
              
                		
                  Neos Documentation
                


                		
                  Beginners Guide Sphinx-Setup
                


              


            


          


        


        		
          How To’s
          
            		
              Neos Best Practices (to be written)
            


            		
              Adding A Simple Contact Form
            


            		
              Changing the Body Class with a condition
            


            		
              Changing Defaults Depending on Content Placement
            


            		
              Creating a simple Content Element
            


            		
              Customize Login Screen
              
                		
                  How to disable a stylesheet ?
                


              


            


            		
              Editing a shared footer across all pages
            


            		
              Extending the Page
            


            		
              Integrating a JavaScript-based slider
            


            		
              Rendering Custom Document Types
              
                		
                  Select Template based on NodeType
                


              


            


            		
              Rendering a Menu
            


            		
              Rendering a Meta-Navigation
            


            		
              Tagging assets automatically
              
                		
                  Asset Collection based on site
                


                		
                  Hooking into the asset creation
                


                		
                  Example: Tagging employee images
                


              


            


            		
              Translating content
              
                		
                  Dimension configuration
                


                		
                  Migration of existing content
                


                		
                  Integrate Language Menu
                


                		
                  Working with translated content
                


              


            


            		
              Wrapping a List of Content Elements
              
                		
                  Extending it to use an option
                


              


            


          


        


        		
          Neos Operations
          
            		
              Command Line Tools
              
                		
                  User Management
                


                		
                  Workspace Management
                


                		
                  Site Management
                


              


            


          


        


        		
          Appendixes
          
            		
              Contributors
            


            		
              Release Notes
              
                		
                  4.3.0
                


                		
                  4.0.0
                


                		
                  3.3.0
                


                		
                  3.2.0
                


                		
                  3.1.0
                


                		
                  3.0.0
                


                		
                  2.3.0
                


                		
                  2.2.0
                


                		
                  2.0.0
                


                		
                  1.2.0 (2014-12-10)
                


                		
                  1.1.0 (2014-06-19)
                


                		
                  Archived Release Notes
                


              


            


            		
              ChangeLogs
              
                		
                  4.0.17 (2019-06-16)
                


                		
                  4.1.15 (2019-06-14)
                


                		
                  4.1.16 (2019-06-16)
                


                		
                  4.2.11 (2019-06-14)
                


                		
                  4.2.12 (2019-06-16)
                


                		
                  4.3.0 (2019-04-15)
                


                		
                  4.3.1 (2019-05-06)
                


                		
                  4.3.10 (2020-01-15)
                


                		
                  4.3.11 (2020-02-25)
                


                		
                  4.3.12 (2020-03-29)
                


                		
                  4.3.13 (2020-05-04)
                


                		
                  4.3.14 (2020-05-18)
                


                		
                  4.3.15 (2020-07-06)
                


                		
                  4.3.16 (2020-08-14)
                


                		
                  4.3.17 (2020-12-02)
                


                		
                  4.3.18 (2021-02-23)
                


                		
                  4.3.19 (2021-05-02)
                


                		
                  4.3.2 (2019-06-14)
                


                		
                  4.3.3 (2019-06-17)
                


                		
                  4.3.4 (2019-09-02)
                


                		
                  4.3.5 (2019-09-24)
                


                		
                  4.3.6 (2019-10-25)
                


                		
                  4.3.7 (2019-11-06)
                


                		
                  4.3.8 (2019-12-14)
                


                		
                  4.3.9 (2020-01-14)
                


              


            


          


        


      


    
  

_static/file.png





_static/plus.png





_static/minus.png





_images/Setup-Step-4.png
Neos Setup Sigpaieis
Create a new site Otogout
There are two ways of creating a site. Choose between the following:
Import a site from an existing site package
Select a site package*

Neos.Demo =

Delete existing sites

O

Create a new site package with a dummy site

Package Name (in form "Vendor.DomainCom")

Site Name (e.g. "domain.com")

< Back Skip > -

N





_images/Setup-Step-3.png
Neos Setup Step 3 of 5

Create administrator account O Logout

Enter the personal data and credentials for your backend account:

Personal Data

First name*

Max

Last name*

Mustermann

Credentials

Username*

max123

Password*

Confirmation*





_images/Sphinx_make_livehtml.png
2H5 6789
[*1*] 2 [3]4]5
pickling environment... done
checking consistency... /srv/http/neos/github/neos-development-collection/TYPO3.Neos/Documentation/Appendixes/ChangeLogs/232. rs
/srv/http/neos/github/neos-development-collection/TYPO3. Neos/Documentation/Appendixes/ChangeLogs/233. rst: : WARNING: document isn
done
preparing documents... done
/srv/http/neos/github/neos-development-collection/TYPO3. Neos/Documentation/CreatingASite/RenderingCustonMarkup/Templating. rst:670: WARNING: Could not lex literal block as "xml". Highlighting skipped
writing output... [100%] index
/srv/http/neos/github/neos-development-collection/TYPO3. Neos/Documentation/GettingStarted/FeatureList. rst:64: WARNING: undefined labe
st precede a section header)

| Thu Sep 08, 21:30 [

718

WARNING: document isn't included in any toctree
included in any toctree

: neos command reference (if the link has no caption the label mu

generating indices... genindex

writing additional pages... searc

copying images... [100%] Appendixes/ReleaseNotes/Inages/110-asset-linking.png

copying downloadable files... [100%] References/CodingGuideLines/Pdf/TYPO3_Flow_Coding Guidelines_on_one_page.pdf
copying static files... done

copying extra files... done

dunping search index in English (code: en) ... done

dunping object inventory... done

build succeeded, 6 warnings.

Build finished. The HTHL pages are in _build/html.
# Ignore Vim Temporary Files: *.swipmnox] and *~ and 491
sphinx-autobuild -b html -i ‘*.swlpmnox]' -i '*~' -i '*/4913' -i '4913' -d _build/doctrees . _build/html

+ - manually triggered build
| Running Sphinx v1.4.6

WARNING: while setting up extension conf.py: directive 'toctree' is already registered, it will be overridde;

| loading pickled environment... done

| building [mol: targets for 6 po files that are out of date

| building [html]: targets for 0 source files that are out of date

| updating environment: 0 added, 1 changed, 0 remove

/srv/http/neos/github/neos-developnent-coliection/TYPO3. Neos/Documentation/Cont ribute/Documentation/index. rst:7: WARNING: toctree contains reference to nonexisting document 'Contribute/Documentation/

imaxdepth: 2'

| reading sources... [100%] Contribute/Documentation/index
|

| Looking for now-outdated files... none found

|

pickling environment... done

/srv/http/neos/github/neos-development-collection/TYPO3. Neos/Documentation/Appendixes/ChangeLogs/232. rs

/srv/http/neos/github/neos-development-collection/TYPO3. Neos/Documentation/Appendixes/ChangeLogs/233. rs

| checking consistency... done

WARNING: search index couldn't be loaded, but not all documents will be built: the index will be incomplete
preparing documents... done

writing output... [ 33%] Contribute/Documentation/index

writing output... [ 66%] Contribute/index

writing output... [100%] index

WARNING: document isn't included in any toctree
WARNING: document isn't included in any toctree

generating indices... genindex
writing additional pages... searc
copying downloadable files... [100%] References/CodingGuideLines/Pdf/TYPO3_Flow_Coding Guidelines_on_one_page.pdf

copying static files... done
copying extra files... done
dunping search index in English (code: en) ... done

dumping object inventory... done

build succeeded, 5 warnings.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
i

[1 160908 21:30:03 server:281] Serving on http://127.0.0.1:8000

[1 160908 21:30:03 handlers:50] Start watching change:

[1 160908 21:30:03 handlers:61] Start detecting change:

[1 160908 21:30:30 handlers:132] Browser Connected: http://127.0.8

8000/Contribute/Documentation/BeginnersGuide. html






_images/Sphinx_Browser_view.png
+ ) Beginners Guide Sphinx-

# Neos CMS

Technical Principle
User Guide
Creating a Site with Neo:
Extending Neos
Inside of Neo:
Reference
B Contribute
Development
2 Documentation
Neos Documentation
 Beginners Guide Sphinx-setup

Contributetothe
Neos-Documentation

Whatare the goals?
Letsgetstarted:

The Neos Development
Collection Repository:

Sphinxrequirements:

Letthe fun begin:

How To'
Neos Operation:

.1:8000/HowTos/index.html

up — Neos CMS dev-master documentation - Mozilla Firefox

Now you can start improving the documentation. If you haven't worked with reStructuredText (rST)
it's pretty simple and gives you quite some options. Just have a look at the other Documents to seeit's

One important feature might be the in the Neos-Sphinx setup integrated Extension todos. With todos
You are able to point out that there is still some work necessary.

If you just want to put a simple comment (also not shown in the frontend) you can do the following:

© Warning

make sure that when you add code-blocks eg. . code-block:: bash to leave a new line afterwards,
otherwise its not being rendered.

I you've been working on a branch on-and-off,or lots has happened in other branches while you've
been working on something, it's best to rebase your branch onto master.

git checkout master git pull git checkout local_branch_name git rebase master
Notes: Don't rebase branches that you've collaborated with others on.

Footnotes

[1] Theba:

2] The Atom Editor s just one example of mar

O Previous Next®

Copyright 2006 and onwards by the authors

Built with Sphinx using a theme provided by Read the Docs.

| Thu






_images/StartPage.png
Features Try me Download The book English (US) ¥






_images/Sphinx_todolist.png
+ ) Begini

# Neos CMS

Creating a Site with Neo:
Extending Neos
inside of Neos
Reference
B Contribute
Development
2 Documentation
Neos Documentation
 Beginners Guide Sphinx-setup

Contributetothe
Neos-Documentation

Whatare the goals?
Letsgetstarted:

The Neos Development
Collection Repository:

Sphinxrequirements:

Letthe fun begin:

Guide Sphinx-

up — Neos CMS dev-master documentation - Mozilla Firefox

(The original entryis located in /srv/http/neos/github/neos-development-collection/TYPO3Neos
/Documentation/ExtendingNeos/CreatingAPlugin.rst, line 448.)

© Todo

You can create todos like this... All todos are invisible in the Documentation if you want to see
them in your broser, instead of make livehtm, type the following into your console:

make livehtml SPHINXOPTS="-D todo_include_todos=1"

(The original entryis located in /srv/http/neos/github/neos-development-collection/TYPO3Neos
/Documentation/Contribute/Documentation/BeginnersGuidexrst, line 5)

© Todo

image!

(The original entryis located in /srv/http/neos/github/neos-development-collection/TYPO3Neos
/Documentation/Contribute/Documentation/BeginnersGuidexrst, line 157)

O Previous Next®

Copyright 2006 and onwards by the authors

Built with Sphinx using a theme provided by Read the Docs.

.1:8000/Contribute/Documentation/BeginnersGuide.html#index-0

U






_images/internal_structure_attribute_updates.png
How attributes are modified

Froonogatin Ao Pugn [
P P
e (5 o ory
e oang) :
BlockSelection ; Changes.

| a0k

P

oo s

. ©
=
© e

‘iona Back






_images/TheAtomEditor.png
28R367809 i Thu Sep 08, 20:5:

> I git presentat index.htm untitled s indexphp  08_Query.  CreatingAF indexrst  Documentc | Beginners®  untitleds  confpy  config.cso stylesles: New.htm
> B Neos.Diff N
> I TYPO3.Media 2 Beginners Guide Sphinx
~ B TYPO3 Neos 3
> B Classes 4
5 .. tod
& D) Eriiueien 6 You can create todos like this. ..
~ B Documentation 7 AlL todos are invisible in the Documentation if you want to see them in your broser,
> B _build 8 instead of *make livehtml®, type the following into your console:
> B _static N .
10 “make livehtnl SPHINXOPTS="-D todo_include todos
> B _templates =
> B Appendices. 12
~ B Contribute 13 Contribute to the Neos-Documentation
1
> I Code
0 15
v M Documentation 16  This Documentation aims to get you started quite from the ground up.
[ BeginnersGuidest 17 Inagine you would like to contribute to the Documentation but you haven't worked with github yet,
B Crammsim 18 you don't know how a proper workflow looks Like and you are not sure how to start contributing.
19
B indexrst .
20 The problen is, that even while eplaining some basic steps, there always needs to be
B indexrst 21 some kind of basic setup you will need to get started at all.
> B Creatingasite 22 In this case you do need a Linux Console to get started. [#f1]
v I ExtendingNeos 23
- 2
> N Tests I
[ CreatingAPlugin.rst 2
B CustomBackendModules.rst 27 What are the goals?
[ CustomEditors st ;';
B armE S 30 Once everything is set up nicely, you:
[ CustomEelHelper.rst an
B @it e e e 32 * will be able to easily access the Documentation offline in your Browser
B @t s 33 * know howto work with git and hub effectively when editing the Documentation
B 34 + see the life updated changes in your browser
B CustomTypoScriptObjects.st. 35  * send pull request for your changes back to the Neos-Team
B customvalidators.st 36 * see howto do some basic formating with rsT
B CustomViewHelpersist 37 * Know howto use the todo functionallity.
38
DataSourcessst
8 39
B indexrst o
[ InteractionwithTheNeosBackendrst 41 Startingpoint:
[ RenderingSpecialFormats.rst 42
> B Gettingstarted File 0 Project 0+ Nolssues TYPO3.Neos/Documentation/Contribute/Documentation/BeginnersGuide.sst*  48:30 F UTF8 PlainText o extendingdocumentation [E]+165 9 4updates





_images/ui_parts.png
113 ) 00 T ———
e TOPBAr oo |
o tawche 1

oo e e S e v
oot s s ot s stnsaone
e e

Property Panel






_images/internal_structure_ui_updates.png
Ul Updates on selection change

Posnitageaton Alcha Plugin u
T >

poes_ upoites i
[ S vougn bincings

e ° e

© i

Biockianager

create
biocks,
tnecessary. oo

g e






_images/Setup-Step-2.png
Neos Setup

Configure database

Please enter database details below:

Connection

DB Driver*

MySQL/MariaDB via PDO

DB Username*

neos

DB Password

DB Host*

127.0.0.1: 8889

Database
DB Name*

Step 2 of 5

O Logout

<«

neos2017

<«

< Back

N






